United States Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Jan. 6, 1953 2,624,750 UNITED STATES PATENT OFFICE 2,624,750 PROCESS OF PRODUCING PEOSPERATE ESTER, Aphorase Pechukas, Akron, Ohio, assignor, by Inesne assignments, to Columbia-Souther Chemical Corporation, Pittsburgh, Pa., a cor poration of Delaware No Drawing. Application January 23, 1948, Serial No. 4,069 4. Claims. (C. 260-46) 2 This invention is concerned with the produc By using a nonsolvent for HC in the manner tion of esters of alcohols, particularly primary herein contemplated, the amount of HCl in the and Secondary alcohols. reaction mixture may be maintained low. This It is known that Various esters may be prepared is particularly true when the reaction mixture is by reaction of an acid halide with a primary or maintained at a temperature such that substan Secondary alcohol. This reaction proceeds with tial distillation takes place. In such a case the the evolution of the desired ester and hydrogen solubility of the HCl remains at a substantial halide. minimum and is removed substantially as soon as In certain cases this method has been found formed due to the distillation of the nonsolvent. objectionable since yields of the desired ester are O In general the process is initiated by introduc undesirably low and formation of by-products is ing a quantity of the nonsolvent into a reactor undesirably high. Frequently, it has been con equipped with a reflux condenser system. This Sidered essential to conduct the reaction in the condenser system has a suitable outlet to permit presence of hydrogen chloride acceptors, such as escape of HCl gas beyond the condenser. Heat pyridine or sodium hydroxide. 5 is applied to the reactor to cause vaporization and The present invention provides a simple method reflux of the nonsolvent. Thereupon alcohol and Whereby esters may be prepared by reaction of acid chloride are added continuously or periodi alcohols particularly primary and secondary al cally in relative amounts required to react and cohols in high yield, without the use of an hydro to form the corresponding ester. gen chloride acceptor Such as pyridine and With 20 During the reaction, the temperature of the out excessive formation of by-products. In ac reaction mixture is maintained at a level at which Cordance With this invention it has been found Substantial distillation of the nonsolvent OCCUIS. that esters may be prepared in high yield, fre The rate of such distillation should be sufficient quently higher than prior art processes, and in a to ensure removal of HCl substantially as fast as simple and economic manner by reacting a pri 25 it is evolved. mary or secondary alcohol with an acid halide, The process is continued by adding reactants Such as an acid chloride, in liquid phase and in periodically or continuously and nonsolvent is re the presence of a liquid solvent which is a solvent turned or added to the mixture at a rate Sufficient for the alcohol, acid chloride and ester of the to replace that distilled off. If the process is alcohol and Which essentially is a nonsolvent or 30 conducted in a continuous manner, Suitable poor Solvent for the hydrogen chloride evolved means are provided for drawing off a quantity during the reaction. In this process, the tem of the mixture during the operation. perature of the reaction mixture is maintained Various solvents for the alcohol and the acid at the boiling temperature whereby substantial chloride which are nonsolvents for HCl may be distillation takes place, and sufficient of the non 35 used. Such “nonsolvents' are liquids in which Solvent is maintained present to ensure removal the solubility of HCI at their boiling temperature of HCl substantially as soon as formed and to is low, for example of the order of one percent reduce the solubility of HCI in the reaction mix by weight of HCl or below. In general non ture to a low Value. As a consequence, hydrogen oxygenated solvents having boiling points of 0 chloride Which is evolved during the reaction is 40 to 200° C. are suitable. Such solvents or 'non carried from the solution with the vaporizing solvents’ should be substantially miscible with OnSolvent. This Vapor mixture passes through the ester being produced or at least have a rela a Suitable reflux condenser system for the purpose tively high solubility (for example 10 percent or of condensing the nonsolvent and returning it to more by weight) therein. the reaction mixture. Because of insolubility of A particularly effective class of solvents which the HC1 in the nonsolvent, only a minor quantity may be used as herein contemplated, are the or substantially none of the HCl escaping from hydrocarbon halides. Typical chlorinated hydro the reaction mixture is returned with the non carbons which have been found to be Suitable Solvent to the reaction mixture. are ethyl chloride, methylene chloride, chloro Chloride formation, previously encountered in 50 form, carbon tetrachloride, trichloro-propanes, a reaction of this character, is due, at least to a monochlorobenzene, trichloroethylene, perchloro large degree, to reaction of evolved hydrogen ethylene, difluoro-dichloro-methane and Ortho chloride With the ester and/or the alcohol to form dichlorobenzene. A further class of nonsolvents the corresponding Organic chloride (RCI). I which are Suitable for this purpose include liquid have found that HCl has substantial solubility in 55 hydrocarbons having the boiling points desired, many liquid esters such as are produced by re Such as heptane, hexane, cyclohexane, benzene, action of acid chlorides With alcohols. This fac Xylene, gasoline or toluene. The Selection of any tor promotes formation of chlorides, frequently particular nonsolvent will depend, to some degree to a serious degree. at least, upon the boiling point of the alcohol 2,624,750 3 4 undergoing esterification and the solubility of the may be reacted with other acid chlorides which alcohol in the nonsolvent, as will be readily contain the group understood by those skilled in the art. Especially effective nonsolvents for the purpose herein Con --C templated are methylene chloride and carbon O tetrachloride. where X is carbon, sulphur or phosphorus. Such The nonsolvent used should have a boiling point acid chlorides include phosphrous Oxychloride; below that of the alcohol or hydroxy compound sulphuryl chloride; chloroformates such as which is being esterified. However, it is usually methyl, ethyl, n-propyl, n-butyl, allyl, phenyl, desirable for the nonsolvent to have a boiling 10 crotyl, methallyl cinnamyl chloroformate or Sini point above room temperature, preferably above lar chloroformates of monohydroxy compounds, 50° C. and within 25 to 75° C. of the boiling point chloroformates of polyhydroxy alcohols Such as of the alcohol. For example, in reacting phenol ethylene glycol bis chloroformate, diethylene gly with thionyl chloride, better yields are obtained col bis chloroformate, triethylene glycol bis using monochlorobenzene than with methylene chloroformate tetraethylene glycol bis chloro chloride or carbon tetrachloride. The producer formate and 2,3-carbonyldioxypropyl chlorofor tion of sulfites of the lower aliphatic alcohols nate; chlorosulfinates corresponding to the containing up to 8 carbon atoms, is best accom above chloroformates such as diethylene glycol bis plished using solvents which boil at about 50 to chlorosulfinate; Organic carboxylic acid chlorides 125° C. and preferably having a boiling point 20 such as acetyl chloride, funnaryl chloride, phthalyl within about 25° C. of the boiling point of the Chloride, propionyl chloride, butyryl chloride, or alcohol. cinnamyl chloride. The invention also contem The amount of nonsolvent used should be Suf plates the production of esters from other acid ficient to ensure appreciable distillation of Solvent chlorides wherein an acidic hydrogen or hydroxy and to cause appreciable reflux thereof. No hard is substituted by halogen as in the case of silicon and fast rule may be laid down in this connection tetrachloride, titanium tetrachloride and partial since it has been found that a wide variation in esters of Such compounds. the ratio of solvent to alcohol-acid chloride mix The process is particularly concerned with the ture may be maintained so long as substantial preparation of esters of monohydric alcohols reflux or at least distillation of the nonsolvent 30 Which contain up to 8 carbon atoms. Thus, the from the reaction mixture takes place. Usually invention has been found to be applicable to the amount of nonsolvent present and the rate of the production of esters of methyl alcohol, ethyl vaporization thereof should be sufficient to estab alcohol, n-propyl alcohol, isopropyl alcohol, n lish a partial pressure due to nonsolvent vapol'S butyl alcohol, isobutyl alcohol, isoamyl alcohol, which is not less than about one-half of the Octyl alcohol, cyclohexyl alcohol, methyl hexyl partial pressure of the HCl vapor and preferably carbinol, benzyl alcohol, cinnannyl alcohol, Beta the nonsolvent vapor partial pressure should be phenyl ethyl alcohol, 2-chloroethyl alcohol, 2 at least 75 percent of atmospheric preSSure. Dur Cyano ethyl alcohol, 1,2-dichloropropanol and the ing the process, the concentration of the ester corresponding nitro- or bromo-alcohols or other formed in the reaction mixture increases and fre 40 Similar monohydric aliphatic, cycloaliphatic or quently the solubility of HCl in the reaction mix aryl alcohol. Esters of higher alcohols contain ture increases as the ester concentration in ing, for example up to 30 carbon atoms such as creases. In general, the amount of nonsolvent esters of stearyl alcohol, lauryl alcohol, nonyl in the reactor should not be less than 10 percent alcohol, oleyl alcohol, blown sperm alcohols, etc. by volume of the volume of ester being prepared also may be prepared. Moreover the invention which is present. For most purposes the Volume may be extended to the production of esters of Of nonsolvent Should be 0.5 to 5 times the Volume other compounds which contain an hydroxyl of ester present.
Recommended publications
  • A-PDF Split DEMO : Purchase from to Remove the Watermark
    A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark Figure 7.5 (a) Transition state for E2H-syn elimination. (b) Transition state for E2H-anti elimination. (c) Transition state for E,C elimination. tion state similar to that shown in Figure 7.5~is expected, since base attacks the molecule backside to the leaving group but frontside to the /3 hydrogen. Let us now turn to the experimental results to see if these predictions are borne out in fact. It has long been known that E2H reactions normally give preferentially anti elimination. For example, reaction of meso-stilbene dibromide with potassium ethoxide gives cis-bromostilbene (Reaction 7.39), whereas reaction of the D,L-dibromide gives the trans product (Reaction 7.40).lo2 A multitude of other examples exist-see, for example, note 64 (p. 355) and note 82 (p. 362). E2H reactions do, however, give syn elimination when: (1) an H-X di- hedral angle of 0" is achievable but one of 180" is not or, put another way, H and X can become syn-periplanar but not trans-periplanar ; (2) a syn hydrogen is much more reactive than the anti ones; (3) syn elimination is favored for steric reasons; and (4) an anionic base that remains coordinated with its cation, that, in turn, is coordinated with the leaving group, is used as catalyst. The very great importance of category 4 has only begun to be fully realized in the early 1970s. lo2 P. Pfeiffer, 2. Physik. Chem. Leibrig, 48, 40 (1904). 1,2-Elimination Reactions 371 An example of category 1 is found in the observation by Brown and Liu that eliminations from the rigid ring system 44, induced by the sodium salt of 2- cyclohexylcyclohexanol in triglyme, produces norborene (98 percent) but no 2-de~teronorbornene.~~~The dihedral angle between D and tosylate is O", but Crown ether present: No Yes that between H and tosylate is 120".
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/75818 Please be advised that this information was generated on 2018-07-08 and may be subject to change. SULFATION VIA SULFITE AND SULFATE DIESTERS AND SYNTHESIS OF BIOLOGICALLY RELEVANT ORGANOSULFATES Een wetenschappelijke proeve op het gebied van de Natuurwetenschappen, Wiskunde en Informatica Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S. C. J. J. Kortmann, volgens besluit van het college van decanen in het openbaar te verdedigen op vrijdag 9 oktober 2009 om 13:00 uur precies door Martijn Huibers geboren op 21 november 1978 te Arnhem Promotor: Prof. dr. Floris P. J. T. Rutjes Copromotor: Dr. Floris L. van Delft Manuscriptcommissie: Prof. dr. ir. Jan C. M. van Hest Prof. dr. Binne Zwanenburg Dr. Martin Ostendorf (Schering‐Plough) Paranimfen: Laurens Mellaard Eline van Roest Het in dit proefschrift beschreven onderzoek is uitgevoerd in het kader van het project “Use of sulfatases in the production of sulfatated carbohydrates and steroids”. Dit project is onderdeel van het Integration of Biosynthesis and Organic Synthesis (IBOS) programma, wat deel uitmaakt van het Advanced Chemical Technologies for Sustainability (ACTS) platform van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Cofinancierders zijn Schering‐Plough en Syncom. ISBN/EAN: 978‐94‐90122‐51‐5 Drukkerij: Gildeprint Drukkerijen, Enschede Omslagfoto: Martijn Huibers i.s.m. Maarten van Roest Omslagontwerp: Martijn Huibers en Gildeprint Drukkerijen Vermelding van een citaat (onderaan kernpagina's 1 tot en met 112) betekent niet per se dat de auteur van dit proefschrift zich daarbij aansluit, maar dat de uitspraak interessant is, prikkelend is, en/of betrekking heeft op de wetenschap in het algemeen of dit promotieonderzoek in het bijzonder.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0183866A1 Pohl Et Al
    US 2006O183866A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0183866A1 Pohl et al. (43) Pub. Date: Aug. 17, 2006 (54) BLOCKED MERCAPTOSILANE COUPLING (60) Provisional application No. 60/056,566, filed on Aug. AGENTS FOR FILLED RUBBERS 21, 1997. (76) Inventors: Eric R. Pohl, Mount Kisco, NY (US); Publication Classification Richard W. Cruse, Yorktown Heights, NY (US); Keith J. Weller, North (51) Int. Cl. Greenbush, NY (US); Robert J. CSF I32/00 (2006.01) Pickwell, Tonawanda, NY (US) (52) U.S. Cl. ...................... 525/326.1; 524/146; 524/167; 524/168; 524/173; 524/262: Correspondence Address: 524/265; 524/267: 524/302: DILWORTH & BARRESE, LLP 524/306; 524/307; 524/308; 333 EARLE OVINGTON BLVD. 524/309; 524/311:524/392: UNIONDALE, NY 11553 (US) 524/393; 524/401 (21) Appl. No.: 11/398,125 (57) ABSTRACT (22) Filed: Apr. 5, 2006 Blocked mercaptosilanes are provided in which the blocking Related U.S. Application Data group contains an unsaturated heteroatom or carbon chemi cally bound directly to sulfur via a single bond. This (60) Continuation of application No. 09/986,512, filed on blocking group optionally may be substituted with one or Nov. 9, 2001, which is a division of application No. more carboxylate ester or carboxylic acid functional groups. 09/284.841, filed on Apr. 21, 1999, now Pat. No. These silanes are used in manufacture of inorganic filled 6,414,061, filed as 371 of international application rubbers, with the silanes deblocked by a deblocking agent. No. PCT/US98/17391, filed on Aug.
    [Show full text]
  • Oxidized Sulfur Functionalized Polymers Via Admet Polymerization
    OXIDIZED SULFUR FUNCTIONALIZED POLYMERS VIA ADMET POLYMERIZATION By TAYLOR WILLIAM GAINES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 © 2015 Taylor William Gaines To Mom and Steve ACKNOWLEDGMENTS There are so many who have been contributors to my success and I would like thank all of them. This doctorate involved not only the four years in graduate school, but everything in life up until the degree’s competition. I have always tried to remember life’s little lessons. I cannot mention everyone who deserves thanks; otherwise, this section would comprise the entire document. But I believe those mentioned below have had the most profound effect on my life and especially my education. I must start by first thanking my grandparents, Iris and Tony Pritchard, who were essential to my early upbringing in western North Carolina. These two were hardworking, small town, blue-collar, and family oriented. My grandfather was in the automotive repair industry, and my grandmother worked 47 years for the same furniture company. They grew up in the depression, knew the value of hard work, family, and how to make a little money go a long way. I can honestly say they never met a stranger, and they were kind to everyone. I am most appreciative of the values these two instilled in me, including dedication, the importance of family, and the value of hard work. They loved us unconditionally and spoiled my brother and me, probably too much at times.
    [Show full text]
  • Development of a Protecting Group for Sulfate Esters
    Development of a Protecting Group for Sulfate Esters. Andrew D. Proud. FIIJ The University of Edinburgh. II,9J C) Abstract: This work describes the development of a protecting group for sulfate monoesters in carbohydrates. After initial trial studies, the trifluoroethyl ester was selected as a suitable protecting group. The ester was formed from the sulfate by treatment with trifluorodiazoethane. This protection method is shown to be compatible with other common protecting groups used in carbohydrate chemistry. The protecting group is proven to be stable to the manipulations of many other protecting groups. The utility of monosaccharides incorporating protected sulfate esters in synthesis has been examined. It has been proven that they are useful and versatile building blocks in the synthesis of more complex structures. Selective cleavage of the trifluoroethyl ester was achieved with potassium tert-butoxide. The mechanism for this deprotection reaction has been studied and this investigation has led to the advancement of alternative deprotection methods. I declare that, this Thesis has been composed by m,yself and that the work is my own. Andrew David Proud. Acknowledgements: I would like to thank my supervisor Prof. Sabine Flitsch for her help and support throughout this project. I also wish to thank Dr. Jeremy Prodger, of GlaxoWelicome and Prof. Nick Turner of The University of Edinburgh for their many suggestions and useful advice. I wish to acknowledge the EPSRC and GlaxoWelicome for financial support. I wish to thank all the people that run the NMR and X-ray crystallography services at Edinburgh University but especially John Miller and Simon Parsons.
    [Show full text]
  • View PDF Version
    ChemComm View Article Online COMMUNICATION View Journal | View Issue Sulfation made simple: a strategy for synthesising sulfated molecules† Cite this: Chem. Commun., 2019, 55,4319 Daniel M. Gill,a Louise Maleb and Alan M. Jones *a Received 5th February 2019, Accepted 12th March 2019 DOI: 10.1039/c9cc01057b rsc.li/chemcomm The study of organosulfates is a burgeoning area in biology, yet there are significant challenges with their synthesis. We report the development of a tributylsulfoammonium betaine as a high yielding route to organosulfates. The optimised reaction conditions were Creative Commons Attribution 3.0 Unported Licence. interrogated with a diverse range of alcohols, including natural products and amino acids. Organosulfates play a variety of important roles in biology, from xenobiotic metabolism to the downstream signalling of steroidal Fig. 1 Examples of drug molecules containing organosulfates: heparin, s s sulfates in disease states.1 Sulfate groups on glycosaminoglycans sotradecol and avibactam ; a chemical tool compound (C3)anda metabolite of paracetamol. (GAGs) such as heparin, heparan sulfate and chondroitin sulfate, facilitate molecular interactions and protein ligand binding at the cellular surface,2 an area of interest in drug discovery.3 A variety of methods to prepare organosulfates are shown in This article is licensed under a Heparin (an anticoagulant),4 avibactams (a b-lactamase Chart 1. inhibitor),5 sotradecol (a treatment for varicose veins),6 the The preparation of organosulfate esters include a microwave 7 sulfate metabolite of paracetamol (an analgesic), and the assisted approach to the sulfation of alcohols, using Me3NSO3 and 8 15,16 Open Access Article. Published on 12 March 2019.
    [Show full text]
  • I a Study of the Basicities of Some Aryl Methyl Sulfoxides Ii a Study of the Hydrolysis of Arenesulfinamides in Basic Aqueous Ethanol
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1968 I A STUDY OF THE BASICITIES OF SOME ARYL METHYL SULFOXIDES II A STUDY OF THE HYDROLYSIS OF ARENESULFINAMIDES IN BASIC AQUEOUS ETHANOL JOSEPH BRIAN BIASOTTI Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation BIASOTTI, JOSEPH BRIAN, "I A STUDY OF THE BASICITIES OF SOME ARYL METHYL SULFOXIDES II A STUDY OF THE HYDROLYSIS OF ARENESULFINAMIDES IN BASIC AQUEOUS ETHANOL" (1968). Doctoral Dissertations. 871. https://scholars.unh.edu/dissertation/871 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received ^ ^ BIASOTTI, Joseph Brian, 1942- I. A STUDY OF THE BASICITIES OF SOME ARYL METHYL SULFOXIDES H. A STUDY OF THE HYDROLYSIS OF ARENESULFINAMIDES IN BASIC AQUEOUS ETHANOL. University of New Hampshire, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan I. A STUDY OF THE BASICITIES OF SOME ARYL METHYL SULFOXIDES . A STUDY OF THE HYDROLYSIS OF ARENESULFINAMIDES IN BASIC AQUEOUS ETHANOL j T b r i a n b i a s o t t i B. S., Boston College, 1964 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Graduate School Department of Chemistry June, 1968 ABSTRACT I.
    [Show full text]
  • (12) STANDARD PATENT (11) Application No. AU 2008255138 B2 (19) AUSTRALIAN PATENT OFFICE
    (12) STANDARD PATENT (11) Application No. AU 2008255138 B2 (19) AUSTRALIAN PATENT OFFICE (54) Title Therapeutic treatments for blood cell deficiencies (51) International Patent Classification(s) A61K 31/00 (2006.01) A61K 31/739 (2006.01) A61K 31/122 (2006.01) A61K 33/00 (2006.01) A61K 31/17 (2006.01) A61K 33/14 (2006.01) A61K 31/19 (2006.01) A61K 35/74 (2006.01) A61K 31/198 (2006.01) A61K 38/00 (2006.01) A61K 31/407 (2006.01) A61P 7/00 (2006.01) A61K 31/429 (2006.01) A61P 13/12 (2006.01) A61K 31/56 (2006.01) C07J 1/00 (2006.01) A61K 31/565 (2006.01) C07J 17/00 (2006.01) A61K 31/568 (2006.01) C07J 73/00 (2006.01) (21) Application No: 2008255138 (22) Date of Filing: 2008.12.04 (43) Publication Date: 2009.01.08 (43) Publication Journal Date: 2009.01.08 (44) Accepted Journal Date: 2011.02.24 (62) Divisional of: 2005237117 (71) Applicant(s) Harbor Biosciences, Inc. (72) Inventor(s) Prendergast, Patrick T.;Frincke, James Martin;Reading, Christopher L. (74) Agent / Attorney Griffith Hack, Level 3 509 St Kilda Road, Melbourne, VIC, 3004 (56) Related Art NL 99772 ABSTRACT The present invention provides a method to prevent a blood cell deficiency such as neutropenia or thrombocytopenia by administering to a subject an effective amount of a certain steroid. N:\Melboume\Cases\Patent\44000-44999\P44912.AU.2\Specis\P44912 AU-2 Specafication 2008-12-4.doc 4112108 AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Standard Patent Applicant (s) HOLLIS-EDEN PHARMACEUTICALS, INC.
    [Show full text]
  • Dwhu 4Xdolw\ $Vvhvvphqw Ri 8Sshu 0Lvvlvvlssl
    Q U G 4 : DX D O 1DWLRQDO:DWHU4XDOLW\$VVHVVPHQW3URJUDP HW L U \W 4Ã $Ã X V OD H WL V Ã\ P QL H DÃ Q Q ÃW $Ã IR :DWHU4XDOLW\$VVHVVPHQWRI J 3Ã LU D F WU OX RÃ XW ÃI U KW 8SSHU0LVVLVVLSSL5LYHU%DVLQ OD H $Ã 8Ã HU S D HS Ã U IR 0Ã DQG:LVFRQVLQ¦*URXQG:DW Ã 6 L HK V EU VL X LV QU S $JULFXOWXUDO$UHDRI6KHUEXUQ H LS &Ã 5Ã R L X HY Q U \W %Ã QHVRWD D 0Ã V L QL Q H 0Ã RV QL DW Q H :DWHU5HVRXUFHV,QYHVWLJDWLRQV5HSRUW¥ Ã RV W ÃD QD G :Ã L FV R VQ QL ¦ 86'HSDUWPHQWRIWKH,QWHULRU 86*HRORJLFDO6XUYH\ :DWHU4XDOLW\$VVHVVPHQWRI3DUWRIWKH 8SSHU0LVVLVVLSSL5LYHU%DVLQ0LQQHVRWD DQG:LVFRQVLQ¦*URXQG:DWHU4XDOLW\LQDQ $JULFXOWXUDO$UHDRI6KHUEXUQH&RXQW\0LQQH VRWD %\-DPHV)5XKO$OLVRQ/)RQJ3DXO(+DQVRQDQG:LOOLDP-$QGUHZV :DWHU5HVRXUFHV,QYHVWLJDWLRQV5HSRUW¥ 1DWLRQDO:DWHU4XDOLW\$VVHVVPHQW3URJUDP 86'HSDUWPHQWRIWKH,QWHULRU %UXFH%DEELWW6HFUHWDU\ 86*HRORJLFDO6XUYH\ &KDUOHV**URDW'LUHFWRU 8VHRIWUDGHSURGXFWRUILUPQDPHVLQWKLVUHSRUWLVIRULGHQWLILFDWLRQSXUSRVHVRQO\DQGGRHVQRW FRQVWLWXWHHQGRUVHPHQWE\WKH86*RYHUQPHQW 0RXQGV9LHZ0LQQHVRWD )RUDGGLWLRQDOLQIRUPDWLRQZULWHWR 'LVWULFW&KLHI 86*HRORJLFDO6XUYH\:5' :RRGDOH'ULYH 0RXQGV9LHZ01 &RSLHVRIWKLVUHSRUWFDQEHSXUFKDVHGIURP 86*HRORJLFDO6XUYH\ %UDQFKRI,QIRUPDWLRQ6HUYLFHV %R[ )HGHUDO&HQWHU 'HQYHU&2 ,QIRUPDWLRQUHJDUGLQJWKH1DWLRQDO:DWHU4XDOLW\$VVHVVPHQW3URJUDP 1$:4$ LVDYDLODEOHRQWKH,QWHUQHWYLDWKH:RUOG:LGH:HE <RXPD\FRQQHFWWRWKH1$:4$+RPH3DJHXVLQJWKH8QLYHUVDO5HVRXUFH/RFDWRU 85/ DW KWWSZZZUYDUHVHUXVJVJRYQDZTDQDZTDBKRPHKWPO <RXPD\DOVRFRQQHFWWRWKH8SSHU0LVVLVVLSSL5LYHU%DVLQ1$:4$+RPH3DJHDW KWWSZZZPQFUXVJVJRYXPLVLQGH[KWPO )RUPRUHLQIRUPDWLRQRQDOO86*6UHSRUWVDQGSURGXFWV
    [Show full text]
  • Reactions of 1-Triptycyl Carbinol and Bis-(1-Triptycyl)-Carbinol
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1993 Reactions of 1-Triptycyl Carbinol and Bis-(1-Triptycyl)-Carbinol Bryce Arthur Milleville Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Chemistry Commons Recommended Citation Milleville, Bryce Arthur, "Reactions of 1-Triptycyl Carbinol and Bis-(1-Triptycyl)-Carbinol" (1993). Master's Theses. 3940. https://ecommons.luc.edu/luc_theses/3940 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1993 Bryce Arthur Milleville REACTIONS OF 1-TRIPTYCYL CARBINOL AND BIS-(1-TRIPTYCYL)-CARBINOL by Bryce Arthur Milleville A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Master of Science January 1993 ACKNOWLEDGMENTS In every endeavor there are individuals involved that contribute to it's completion, I would like to particularly thank and acknowledge the following persons: Dr. David Crumrine, without whose guidance, assistance, helpfulness, and understanding this investigation would not have been consummated; my wife Maryann, and, my parents, for instilling the necessary perseverance to complete this thesis; and AKZO Chemicals for providing the necessary resources and time required for this investigation. ii VITA The author, Bryce Arthur Milleville, is the son of Arthur William Milleville and Myra Elizabeth Milleville.
    [Show full text]
  • United States Patent (19) 11) 4,180,636 Hirota Et Al
    United States Patent (19) 11) 4,180,636 Hirota et al. 45) Dec. 25, 1979 54 PROCESS FOR POLYMERIZING OR CO-POLYMERIZING PROPYLENE FOREIGN PATENT DOCUMENTS 2230672 12/1972 Fed. Rep. of Germany ........... 526/125 (75. Inventors: Kiwami Hirota; Hideki Tamano; 2504036 8/1975 Fed. Rep. of Germany ........... 526/125 Shintaro Inazawa, all of Oita, Japan Primary Examiner-Edward J. Smith 73 Assignee: Showa Denko Kabushiki Kaisha, Attorney, Agent, or Firm-Sughrue, Rothwell, Mion, Tokyo, Japan Zinn and Macpeak (21) Appl. No.: 809,873 57 ABSTRACT A process for polymerizing or co-polymerizing propy (22 Filed: Jun, 24, 1977 lene in the presence of a catalyst consisting essentially 30 Foreign Application Priority Data of (A) a solid catalyst component which is prepared by Jun. 24, 1976 JP Japan ... ... 51-7383O contacting Jun. 28, 1976 JP Japan ... ... 5175427 (1) a copulverized material obtained by copulverizing Jun. 30, 1976 JP Japan ... 51-76533 a magnesium dihalide compound together with an Jul. 6, 1976 JP Japan ... ... 51-7945.5 acyl halide with Jul. 27, 1976 JP Japan ............................. ... 51-88708 (2) a mixture or addition-reaction product of a tetra Aug. 9, 1976 JP Japan .................................. 51-93948 valent titanium compound containing at least one halogen atom with at least one electron donor Aug. 10, 1976 JP Japan .................................. S1944-40 compound selected from the group consisting of 51) Int. Cl........................... C08F 4/02; C08F 10/06 organic compounds containing a P-O bond, or 52 U.S. C. ............................... 526/125; 252/429 B; ganic compounds containing an Si-O bond, ether 252/429 C; 526/143; 526/351; 526/906 compounds, nitrite ester compounds, sulfite ester 58) Field of Search ......................
    [Show full text]