United States Patent (19) 11) 4,180,636 Hirota Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11) 4,180,636 Hirota Et Al United States Patent (19) 11) 4,180,636 Hirota et al. 45) Dec. 25, 1979 54 PROCESS FOR POLYMERIZING OR CO-POLYMERIZING PROPYLENE FOREIGN PATENT DOCUMENTS 2230672 12/1972 Fed. Rep. of Germany ........... 526/125 (75. Inventors: Kiwami Hirota; Hideki Tamano; 2504036 8/1975 Fed. Rep. of Germany ........... 526/125 Shintaro Inazawa, all of Oita, Japan Primary Examiner-Edward J. Smith 73 Assignee: Showa Denko Kabushiki Kaisha, Attorney, Agent, or Firm-Sughrue, Rothwell, Mion, Tokyo, Japan Zinn and Macpeak (21) Appl. No.: 809,873 57 ABSTRACT A process for polymerizing or co-polymerizing propy (22 Filed: Jun, 24, 1977 lene in the presence of a catalyst consisting essentially 30 Foreign Application Priority Data of (A) a solid catalyst component which is prepared by Jun. 24, 1976 JP Japan ... ... 51-7383O contacting Jun. 28, 1976 JP Japan ... ... 5175427 (1) a copulverized material obtained by copulverizing Jun. 30, 1976 JP Japan ... 51-76533 a magnesium dihalide compound together with an Jul. 6, 1976 JP Japan ... ... 51-7945.5 acyl halide with Jul. 27, 1976 JP Japan ............................. ... 51-88708 (2) a mixture or addition-reaction product of a tetra Aug. 9, 1976 JP Japan .................................. 51-93948 valent titanium compound containing at least one halogen atom with at least one electron donor Aug. 10, 1976 JP Japan .................................. S1944-40 compound selected from the group consisting of 51) Int. Cl........................... C08F 4/02; C08F 10/06 organic compounds containing a P-O bond, or 52 U.S. C. ............................... 526/125; 252/429 B; ganic compounds containing an Si-O bond, ether 252/429 C; 526/143; 526/351; 526/906 compounds, nitrite ester compounds, sulfite ester 58) Field of Search ....................... 252/429 B, 429 C; compounds, alcohol compounds, phenol com 526/125, 143 pounds and naphthol compounds, (56) References Cited (B) a trialkyl aluminum compound, and (C) a carboxylic acid ester compound. U.S. PATENT DOCUMENTS 3,642,746 2/1972 Kashiwa et al. ..................... 526/125 30 Claims, 8 Drawing Figures U.S. Patent Dec. 25, 1979 Sheet 1 of 4 4,180,636 S ss S U.S. Patent Dec. 25, 1979 Sheet 2 of 4 4,180,636 S act / S2 7 C O // S 33 SR 3 S U.S. Patent Dec. 25, 1979 Sheet 3 of 4 4 9 180,636 |0 06 98 U.S. Patent Dec. 25, 1979 Sheet 4 of 4 4,180,636 02 ? ZO |0 06 G8 |0IH ZO |0 06 98 4,180,636 2 (D) a method which comprises pre-treating MX2 PROCESS FOR POLYMEREZING OR with an electron donor compound and then treating CO-POLYMERIZING PROPYLENE with a transition metal compound (with or without an Sior Sn halide compound) (Japanese Laid-Open Patent BACKGROUND OF THE INVENTION Publications Nos. 88983/74, 51378/74, 72383/74, 21989/75, and 13492/77), 1. Field of the Invention (E) a method which comprises copulverizing MX2, a This invention relates to a process for polymerizing transition metal compound and a silicon-containing or co-polymerizing propylene in the presence of a novel organic compound (Japanese Laid-Open Patent Publi catalyst system. 10 cations Nos. 86482/74, 55385/76, 55386/76, 55387/76, 2. Description of the Prior Art and 28889/76), It is well known that catalyst systems obtained from (F) a method which comprises copulverizing MX2, a halide compounds of transition metals (generally tita transition metal compound and an alcohol, ester, ke nium trichloride) and organometallic compounds (gen tone, aldehyde or the like (Japanese Laid-Open Patent erally organoaluminum compounds) are suitable as pol 5 Publication No. 55388/76), ymerization catalysts for preparing polymers of olefins (G) a method which comprises preparing a catalyst (especially propylene). Polymers prepared with such made from MX2 and a transition metal compound catalysts, however, do not have entirely satisfactory which has a surface of more than 3 m/g or whose stereoregularity. Hence, the resulting polymers have X-ray diffraction spectrum is broader than that of non relatively high amorphous contents, and their mechani 20 activated MX2 and a transition metal compound (Japa cal properties are inferior. Therefore, a step of remov nese laid-open patent publication) Nos. 9342/72 and ing the amorphous portion is required after polymeriza 16986-8/73), and tion, and in this case the degree of effective utilization of (H) a method which comprises supporting a titanium the starting olefins is reduced. Furthermore, these cata compound on MX2 pretreated with an electron donor lysts have low polymerization activities, and the poly 25 compound, and then treating the product with an or mers obtained with the catalyst contain so much cata ganic acid ester (Japanese Laid-Open Patent Publica lyst residue that, it is necessary to remove it from the tion No. 57789/76). iresulting polymer. The catalyst systems obtained in these known meth Many suggestions have therefore been made for cata ods are mainly a combination of an organo aluminum lysts which can afford highly stereoregular polymers. 30 compound (with or without an electron donor com One of the coinventors of the present invention already pound) and a complex compound in which either a suggested a catalyst system prepared from titanium magnesium compound or a titanium compound is trichloride or an eutectic mixture of it with aluminum treated with an electron donor compound. But, any of chloride treated by contact with an acyl halide, and an these catalyst systems (particularly, in polymerization organoaluminum compound (Japanese Laid-Open Pa 35 of propylene) are quite unsatisfactory in crystallinity of tent Publication No. 26487/72). This catalyst system has polymer. That is, the crystallinity (H.R.) as seen in the greatly improved polymerization activity and stereo examples of these prior arts is in the range of 87 to 93% specificity, but the activity is still not sufficient as to in terms of H.R. value taking into consideration the permit the omission of a step of removing the catalyst amount of non-crystalline polymers dissolved in the residue from the polymer. 40 polymerization solvent. Further, in the prior art, hydro On the other hand, various methods have been sug gen (as a chain transfer agent) is not used in the poly gested for supporting a transition metal compound merization. When it is used in order to obtain a polymer (mainly a titanium compound) on halide compound of a which has a practical M.F.I. value (i.e., 1 to 20 g/10 divalent metal, Mg and Mn, (to be referred to as "MX2'). min.), the H.R. value is reduced by 2 to 5%. Thus, when In recent years, it has been suggested to perform this 45 polypropylene is produced by the catalyst as proposed supporting by first treating MX2 with an electron donor above, and non-crystalline polymers are not removed at compound (e.g., by copulverization) and then treating it all their practical mechanical properties of the resulting with a transition metal compound (with or without polymer are quite unsatisfactory. another electron donor compound), or by simulta In addition, these known methods do not at all sug neously treating MX2, a transition metal compound and 50 gest a method as in the present invention in which a an electron donor compound. mixture or a reaction product of a titanium compound Typical examples of these methods include: and an electron donor compound is supported on a (A) a method which comprises pre-treating MX2 with magnesium dihalide compound copulverized with an an organic acid ester and a halogenated silicate were a acyl halide, and the resultant is then activated with an polysiloxane, and then with a transition metal com 55 organoaluminum compound an electron donor com pound and an organic acid ester (Japanese Laid-Open pound. It is an unexpected and excellent effect that in Patent Publication Nos. 108385/75, 20297/76, the practical MFI range, the H.R. value of the polymer 28189/76,92885/76, and 24293/77), produced with the thus obtained catalyst exhibits 94 to (B) a method which comprises pre-treating MX2 with 98%. It is therefore not too much to say that the pro a ketone, an aldehyde, an alcohol or the like, and then duction of polypropylene having the same practical reacting the product with a titanium compound (Japa properties as in commercially available polypropylene nese Laid-Open Patent Publications Nos. 90687/74, has first become possible by the process of the present 1 19980/74, and 8238/76), invention without removing its catalyst residue and (C) a method which comprises reacting an organo amorphous portion. magnesium compound with an Si-containing com 65 It is believed that a catalyst system prepared from a pound, and then treating the pre-treated product with a solid component resulting from the supporting of a transition metal compound (Japanese Laid-Open Patent titanium compound on a magnesium halide and an or Publication No. 133489/74), ganoaluminum compound (to be referred to as "catalyst 4,180,636 3 4. system A') has higher polymerization activity than the parative Examples 8, 16 and 42 and Reference Example conventional catalyst systems, and can possibly omit a 1 (shown in Table 13); , process to remove the catalyst residue from the result FIG. 7 is a diagram showing the relation between the ing polymer. However, the resulting polymer has a MFI values (g/10 min, on the axis of the abscissas) and relatively low crystallinity, and without removing an the HR values (%, on the axis of ordinates) of polypro amorphous polymer, it does not exhibit satisfactory pylene powders prepared in Examples 30 and 35. Con properties in practical use. Furthermore, since the poly parative Examples 43 and 42 and Reference Example 1 merization activity of this catalyst system per unit shown (in Table 14); amount of the carrier is not high enough, a relatively FIG.
Recommended publications
  • A-PDF Split DEMO : Purchase from to Remove the Watermark
    A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark Figure 7.5 (a) Transition state for E2H-syn elimination. (b) Transition state for E2H-anti elimination. (c) Transition state for E,C elimination. tion state similar to that shown in Figure 7.5~is expected, since base attacks the molecule backside to the leaving group but frontside to the /3 hydrogen. Let us now turn to the experimental results to see if these predictions are borne out in fact. It has long been known that E2H reactions normally give preferentially anti elimination. For example, reaction of meso-stilbene dibromide with potassium ethoxide gives cis-bromostilbene (Reaction 7.39), whereas reaction of the D,L-dibromide gives the trans product (Reaction 7.40).lo2 A multitude of other examples exist-see, for example, note 64 (p. 355) and note 82 (p. 362). E2H reactions do, however, give syn elimination when: (1) an H-X di- hedral angle of 0" is achievable but one of 180" is not or, put another way, H and X can become syn-periplanar but not trans-periplanar ; (2) a syn hydrogen is much more reactive than the anti ones; (3) syn elimination is favored for steric reasons; and (4) an anionic base that remains coordinated with its cation, that, in turn, is coordinated with the leaving group, is used as catalyst. The very great importance of category 4 has only begun to be fully realized in the early 1970s. lo2 P. Pfeiffer, 2. Physik. Chem. Leibrig, 48, 40 (1904). 1,2-Elimination Reactions 371 An example of category 1 is found in the observation by Brown and Liu that eliminations from the rigid ring system 44, induced by the sodium salt of 2- cyclohexylcyclohexanol in triglyme, produces norborene (98 percent) but no 2-de~teronorbornene.~~~The dihedral angle between D and tosylate is O", but Crown ether present: No Yes that between H and tosylate is 120".
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/75818 Please be advised that this information was generated on 2018-07-08 and may be subject to change. SULFATION VIA SULFITE AND SULFATE DIESTERS AND SYNTHESIS OF BIOLOGICALLY RELEVANT ORGANOSULFATES Een wetenschappelijke proeve op het gebied van de Natuurwetenschappen, Wiskunde en Informatica Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S. C. J. J. Kortmann, volgens besluit van het college van decanen in het openbaar te verdedigen op vrijdag 9 oktober 2009 om 13:00 uur precies door Martijn Huibers geboren op 21 november 1978 te Arnhem Promotor: Prof. dr. Floris P. J. T. Rutjes Copromotor: Dr. Floris L. van Delft Manuscriptcommissie: Prof. dr. ir. Jan C. M. van Hest Prof. dr. Binne Zwanenburg Dr. Martin Ostendorf (Schering‐Plough) Paranimfen: Laurens Mellaard Eline van Roest Het in dit proefschrift beschreven onderzoek is uitgevoerd in het kader van het project “Use of sulfatases in the production of sulfatated carbohydrates and steroids”. Dit project is onderdeel van het Integration of Biosynthesis and Organic Synthesis (IBOS) programma, wat deel uitmaakt van het Advanced Chemical Technologies for Sustainability (ACTS) platform van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO). Cofinancierders zijn Schering‐Plough en Syncom. ISBN/EAN: 978‐94‐90122‐51‐5 Drukkerij: Gildeprint Drukkerijen, Enschede Omslagfoto: Martijn Huibers i.s.m. Maarten van Roest Omslagontwerp: Martijn Huibers en Gildeprint Drukkerijen Vermelding van een citaat (onderaan kernpagina's 1 tot en met 112) betekent niet per se dat de auteur van dit proefschrift zich daarbij aansluit, maar dat de uitspraak interessant is, prikkelend is, en/of betrekking heeft op de wetenschap in het algemeen of dit promotieonderzoek in het bijzonder.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0183866A1 Pohl Et Al
    US 2006O183866A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0183866A1 Pohl et al. (43) Pub. Date: Aug. 17, 2006 (54) BLOCKED MERCAPTOSILANE COUPLING (60) Provisional application No. 60/056,566, filed on Aug. AGENTS FOR FILLED RUBBERS 21, 1997. (76) Inventors: Eric R. Pohl, Mount Kisco, NY (US); Publication Classification Richard W. Cruse, Yorktown Heights, NY (US); Keith J. Weller, North (51) Int. Cl. Greenbush, NY (US); Robert J. CSF I32/00 (2006.01) Pickwell, Tonawanda, NY (US) (52) U.S. Cl. ...................... 525/326.1; 524/146; 524/167; 524/168; 524/173; 524/262: Correspondence Address: 524/265; 524/267: 524/302: DILWORTH & BARRESE, LLP 524/306; 524/307; 524/308; 333 EARLE OVINGTON BLVD. 524/309; 524/311:524/392: UNIONDALE, NY 11553 (US) 524/393; 524/401 (21) Appl. No.: 11/398,125 (57) ABSTRACT (22) Filed: Apr. 5, 2006 Blocked mercaptosilanes are provided in which the blocking Related U.S. Application Data group contains an unsaturated heteroatom or carbon chemi cally bound directly to sulfur via a single bond. This (60) Continuation of application No. 09/986,512, filed on blocking group optionally may be substituted with one or Nov. 9, 2001, which is a division of application No. more carboxylate ester or carboxylic acid functional groups. 09/284.841, filed on Apr. 21, 1999, now Pat. No. These silanes are used in manufacture of inorganic filled 6,414,061, filed as 371 of international application rubbers, with the silanes deblocked by a deblocking agent. No. PCT/US98/17391, filed on Aug.
    [Show full text]
  • Oxidized Sulfur Functionalized Polymers Via Admet Polymerization
    OXIDIZED SULFUR FUNCTIONALIZED POLYMERS VIA ADMET POLYMERIZATION By TAYLOR WILLIAM GAINES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2015 © 2015 Taylor William Gaines To Mom and Steve ACKNOWLEDGMENTS There are so many who have been contributors to my success and I would like thank all of them. This doctorate involved not only the four years in graduate school, but everything in life up until the degree’s competition. I have always tried to remember life’s little lessons. I cannot mention everyone who deserves thanks; otherwise, this section would comprise the entire document. But I believe those mentioned below have had the most profound effect on my life and especially my education. I must start by first thanking my grandparents, Iris and Tony Pritchard, who were essential to my early upbringing in western North Carolina. These two were hardworking, small town, blue-collar, and family oriented. My grandfather was in the automotive repair industry, and my grandmother worked 47 years for the same furniture company. They grew up in the depression, knew the value of hard work, family, and how to make a little money go a long way. I can honestly say they never met a stranger, and they were kind to everyone. I am most appreciative of the values these two instilled in me, including dedication, the importance of family, and the value of hard work. They loved us unconditionally and spoiled my brother and me, probably too much at times.
    [Show full text]
  • Development of a Protecting Group for Sulfate Esters
    Development of a Protecting Group for Sulfate Esters. Andrew D. Proud. FIIJ The University of Edinburgh. II,9J C) Abstract: This work describes the development of a protecting group for sulfate monoesters in carbohydrates. After initial trial studies, the trifluoroethyl ester was selected as a suitable protecting group. The ester was formed from the sulfate by treatment with trifluorodiazoethane. This protection method is shown to be compatible with other common protecting groups used in carbohydrate chemistry. The protecting group is proven to be stable to the manipulations of many other protecting groups. The utility of monosaccharides incorporating protected sulfate esters in synthesis has been examined. It has been proven that they are useful and versatile building blocks in the synthesis of more complex structures. Selective cleavage of the trifluoroethyl ester was achieved with potassium tert-butoxide. The mechanism for this deprotection reaction has been studied and this investigation has led to the advancement of alternative deprotection methods. I declare that, this Thesis has been composed by m,yself and that the work is my own. Andrew David Proud. Acknowledgements: I would like to thank my supervisor Prof. Sabine Flitsch for her help and support throughout this project. I also wish to thank Dr. Jeremy Prodger, of GlaxoWelicome and Prof. Nick Turner of The University of Edinburgh for their many suggestions and useful advice. I wish to acknowledge the EPSRC and GlaxoWelicome for financial support. I wish to thank all the people that run the NMR and X-ray crystallography services at Edinburgh University but especially John Miller and Simon Parsons.
    [Show full text]
  • View PDF Version
    ChemComm View Article Online COMMUNICATION View Journal | View Issue Sulfation made simple: a strategy for synthesising sulfated molecules† Cite this: Chem. Commun., 2019, 55,4319 Daniel M. Gill,a Louise Maleb and Alan M. Jones *a Received 5th February 2019, Accepted 12th March 2019 DOI: 10.1039/c9cc01057b rsc.li/chemcomm The study of organosulfates is a burgeoning area in biology, yet there are significant challenges with their synthesis. We report the development of a tributylsulfoammonium betaine as a high yielding route to organosulfates. The optimised reaction conditions were Creative Commons Attribution 3.0 Unported Licence. interrogated with a diverse range of alcohols, including natural products and amino acids. Organosulfates play a variety of important roles in biology, from xenobiotic metabolism to the downstream signalling of steroidal Fig. 1 Examples of drug molecules containing organosulfates: heparin, s s sulfates in disease states.1 Sulfate groups on glycosaminoglycans sotradecol and avibactam ; a chemical tool compound (C3)anda metabolite of paracetamol. (GAGs) such as heparin, heparan sulfate and chondroitin sulfate, facilitate molecular interactions and protein ligand binding at the cellular surface,2 an area of interest in drug discovery.3 A variety of methods to prepare organosulfates are shown in This article is licensed under a Heparin (an anticoagulant),4 avibactams (a b-lactamase Chart 1. inhibitor),5 sotradecol (a treatment for varicose veins),6 the The preparation of organosulfate esters include a microwave 7 sulfate metabolite of paracetamol (an analgesic), and the assisted approach to the sulfation of alcohols, using Me3NSO3 and 8 15,16 Open Access Article. Published on 12 March 2019.
    [Show full text]
  • I a Study of the Basicities of Some Aryl Methyl Sulfoxides Ii a Study of the Hydrolysis of Arenesulfinamides in Basic Aqueous Ethanol
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1968 I A STUDY OF THE BASICITIES OF SOME ARYL METHYL SULFOXIDES II A STUDY OF THE HYDROLYSIS OF ARENESULFINAMIDES IN BASIC AQUEOUS ETHANOL JOSEPH BRIAN BIASOTTI Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation BIASOTTI, JOSEPH BRIAN, "I A STUDY OF THE BASICITIES OF SOME ARYL METHYL SULFOXIDES II A STUDY OF THE HYDROLYSIS OF ARENESULFINAMIDES IN BASIC AQUEOUS ETHANOL" (1968). Doctoral Dissertations. 871. https://scholars.unh.edu/dissertation/871 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received ^ ^ BIASOTTI, Joseph Brian, 1942- I. A STUDY OF THE BASICITIES OF SOME ARYL METHYL SULFOXIDES H. A STUDY OF THE HYDROLYSIS OF ARENESULFINAMIDES IN BASIC AQUEOUS ETHANOL. University of New Hampshire, Ph.D., 1968 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan I. A STUDY OF THE BASICITIES OF SOME ARYL METHYL SULFOXIDES . A STUDY OF THE HYDROLYSIS OF ARENESULFINAMIDES IN BASIC AQUEOUS ETHANOL j T b r i a n b i a s o t t i B. S., Boston College, 1964 A THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Graduate School Department of Chemistry June, 1968 ABSTRACT I.
    [Show full text]
  • (12) STANDARD PATENT (11) Application No. AU 2008255138 B2 (19) AUSTRALIAN PATENT OFFICE
    (12) STANDARD PATENT (11) Application No. AU 2008255138 B2 (19) AUSTRALIAN PATENT OFFICE (54) Title Therapeutic treatments for blood cell deficiencies (51) International Patent Classification(s) A61K 31/00 (2006.01) A61K 31/739 (2006.01) A61K 31/122 (2006.01) A61K 33/00 (2006.01) A61K 31/17 (2006.01) A61K 33/14 (2006.01) A61K 31/19 (2006.01) A61K 35/74 (2006.01) A61K 31/198 (2006.01) A61K 38/00 (2006.01) A61K 31/407 (2006.01) A61P 7/00 (2006.01) A61K 31/429 (2006.01) A61P 13/12 (2006.01) A61K 31/56 (2006.01) C07J 1/00 (2006.01) A61K 31/565 (2006.01) C07J 17/00 (2006.01) A61K 31/568 (2006.01) C07J 73/00 (2006.01) (21) Application No: 2008255138 (22) Date of Filing: 2008.12.04 (43) Publication Date: 2009.01.08 (43) Publication Journal Date: 2009.01.08 (44) Accepted Journal Date: 2011.02.24 (62) Divisional of: 2005237117 (71) Applicant(s) Harbor Biosciences, Inc. (72) Inventor(s) Prendergast, Patrick T.;Frincke, James Martin;Reading, Christopher L. (74) Agent / Attorney Griffith Hack, Level 3 509 St Kilda Road, Melbourne, VIC, 3004 (56) Related Art NL 99772 ABSTRACT The present invention provides a method to prevent a blood cell deficiency such as neutropenia or thrombocytopenia by administering to a subject an effective amount of a certain steroid. N:\Melboume\Cases\Patent\44000-44999\P44912.AU.2\Specis\P44912 AU-2 Specafication 2008-12-4.doc 4112108 AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Standard Patent Applicant (s) HOLLIS-EDEN PHARMACEUTICALS, INC.
    [Show full text]
  • Dwhu 4Xdolw\ $Vvhvvphqw Ri 8Sshu 0Lvvlvvlssl
    Q U G 4 : DX D O 1DWLRQDO:DWHU4XDOLW\$VVHVVPHQW3URJUDP HW L U \W 4Ã $Ã X V OD H WL V Ã\ P QL H DÃ Q Q ÃW $Ã IR :DWHU4XDOLW\$VVHVVPHQWRI J 3Ã LU D F WU OX RÃ XW ÃI U KW 8SSHU0LVVLVVLSSL5LYHU%DVLQ OD H $Ã 8Ã HU S D HS Ã U IR 0Ã DQG:LVFRQVLQ¦*URXQG:DW Ã 6 L HK V EU VL X LV QU S $JULFXOWXUDO$UHDRI6KHUEXUQ H LS &Ã 5Ã R L X HY Q U \W %Ã QHVRWD D 0Ã V L QL Q H 0Ã RV QL DW Q H :DWHU5HVRXUFHV,QYHVWLJDWLRQV5HSRUW¥ Ã RV W ÃD QD G :Ã L FV R VQ QL ¦ 86'HSDUWPHQWRIWKH,QWHULRU 86*HRORJLFDO6XUYH\ :DWHU4XDOLW\$VVHVVPHQWRI3DUWRIWKH 8SSHU0LVVLVVLSSL5LYHU%DVLQ0LQQHVRWD DQG:LVFRQVLQ¦*URXQG:DWHU4XDOLW\LQDQ $JULFXOWXUDO$UHDRI6KHUEXUQH&RXQW\0LQQH VRWD %\-DPHV)5XKO$OLVRQ/)RQJ3DXO(+DQVRQDQG:LOOLDP-$QGUHZV :DWHU5HVRXUFHV,QYHVWLJDWLRQV5HSRUW¥ 1DWLRQDO:DWHU4XDOLW\$VVHVVPHQW3URJUDP 86'HSDUWPHQWRIWKH,QWHULRU %UXFH%DEELWW6HFUHWDU\ 86*HRORJLFDO6XUYH\ &KDUOHV**URDW'LUHFWRU 8VHRIWUDGHSURGXFWRUILUPQDPHVLQWKLVUHSRUWLVIRULGHQWLILFDWLRQSXUSRVHVRQO\DQGGRHVQRW FRQVWLWXWHHQGRUVHPHQWE\WKH86*RYHUQPHQW 0RXQGV9LHZ0LQQHVRWD )RUDGGLWLRQDOLQIRUPDWLRQZULWHWR 'LVWULFW&KLHI 86*HRORJLFDO6XUYH\:5' :RRGDOH'ULYH 0RXQGV9LHZ01 &RSLHVRIWKLVUHSRUWFDQEHSXUFKDVHGIURP 86*HRORJLFDO6XUYH\ %UDQFKRI,QIRUPDWLRQ6HUYLFHV %R[ )HGHUDO&HQWHU 'HQYHU&2 ,QIRUPDWLRQUHJDUGLQJWKH1DWLRQDO:DWHU4XDOLW\$VVHVVPHQW3URJUDP 1$:4$ LVDYDLODEOHRQWKH,QWHUQHWYLDWKH:RUOG:LGH:HE <RXPD\FRQQHFWWRWKH1$:4$+RPH3DJHXVLQJWKH8QLYHUVDO5HVRXUFH/RFDWRU 85/ DW KWWSZZZUYDUHVHUXVJVJRYQDZTDQDZTDBKRPHKWPO <RXPD\DOVRFRQQHFWWRWKH8SSHU0LVVLVVLSSL5LYHU%DVLQ1$:4$+RPH3DJHDW KWWSZZZPQFUXVJVJRYXPLVLQGH[KWPO )RUPRUHLQIRUPDWLRQRQDOO86*6UHSRUWVDQGSURGXFWV
    [Show full text]
  • Reactions of 1-Triptycyl Carbinol and Bis-(1-Triptycyl)-Carbinol
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1993 Reactions of 1-Triptycyl Carbinol and Bis-(1-Triptycyl)-Carbinol Bryce Arthur Milleville Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Chemistry Commons Recommended Citation Milleville, Bryce Arthur, "Reactions of 1-Triptycyl Carbinol and Bis-(1-Triptycyl)-Carbinol" (1993). Master's Theses. 3940. https://ecommons.luc.edu/luc_theses/3940 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1993 Bryce Arthur Milleville REACTIONS OF 1-TRIPTYCYL CARBINOL AND BIS-(1-TRIPTYCYL)-CARBINOL by Bryce Arthur Milleville A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Master of Science January 1993 ACKNOWLEDGMENTS In every endeavor there are individuals involved that contribute to it's completion, I would like to particularly thank and acknowledge the following persons: Dr. David Crumrine, without whose guidance, assistance, helpfulness, and understanding this investigation would not have been consummated; my wife Maryann, and, my parents, for instilling the necessary perseverance to complete this thesis; and AKZO Chemicals for providing the necessary resources and time required for this investigation. ii VITA The author, Bryce Arthur Milleville, is the son of Arthur William Milleville and Myra Elizabeth Milleville.
    [Show full text]
  • Enzymatic Reactions Involving the Heteroatoms from Organic Substrates
    Anais da Academia Brasileira de Ciências (2018) 90(1 Suppl. 1): 943-992 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170741 www.scielo.br/aabc | www.fb.com/aabcjournal Enzymatic reactions involving the heteroatoms from organic substrates CATERINA G.C. MARQUES NETTO1,2, DAYVSON J. PALMEIRA1, PATRÍCIA B. BRONDANI3 and LEANDRO H. ANDRADE1 1Departamento de Química Fundamental, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil 2Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, s/n, Km 235, 13565-905 São Carlos, SP, Brazil 3Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Rua João Pessoa, 2750, 89036-256 Blumenau, SC, Brazil Manuscript received on September 20, 2017; accepted for publication on January 1, 2018 ABSTRACT Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates. Key words: heteroatom, biocatalysis, enzymes, biotransformation. INTRODUCTION see: Gao et al. 2015, Applegate and Berkowitz 2015, Guan et al. 2015, Wallace and Balskus 2014, Enzymes act as Nature’s machinery to obtain Anobom et al. 2014, Fesko and Gruber-Khadjawi new molecules through energetically favorable 2013, Matsuda 2013) or organometallic protocols reactions.
    [Show full text]