Oxidative Stress and Response to Thymidylate Synthase-Targeted Antimetabolites S

Total Page:16

File Type:pdf, Size:1020Kb

Oxidative Stress and Response to Thymidylate Synthase-Targeted Antimetabolites S Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2015/10/06/mol.115.099614.DC1 1521-0111/88/6/970–981$25.00 http://dx.doi.org/10.1124/mol.115.099614 MOLECULAR PHARMACOLOGY Mol Pharmacol 88:970–981, December 2015 Copyright ª 2015 by The American Society for Pharmacology and Experimental Therapeutics Oxidative Stress and Response to Thymidylate Synthase-Targeted Antimetabolites s Ufuk Ozer, Karen W. Barbour, Sarah A. Clinton, and Franklin G. Berger Department of Biological Sciences, and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina Received April 23, 2015; accepted October 5, 2015 Downloaded from ABSTRACT Thymidylate synthase (TYMS; EC 2.1.1.15) catalyzes the (NOX), which catalyzes one-electron reduction of O2 to generate d2 reductive methylation of 2ʹ-deoxyuridine-5ʹ-monophosphate superoxide (O2 ), is a significant source of increased ROS (dUMP) by N5,N10-methyhlenetetrahydrofolate, forming dTMP levels in drug-treated cells. However, gene expression profiling for the maintenance of DNA replication and repair. Inhibitors of revealed a number of other redox-related genes that may TYMS have been widely used in the treatment of neoplastic contribute to ROS generation. TYMS inhibitors also induce a disease. A number of fluoropyrimidine and folate analogs have protective response, including activation of the transcription molpharm.aspetjournals.org been developed that lead to inhibition of the enzyme, resulting in factor nuclear factor E2-related factor 2 (NRF2), a critical dTMP deficiency and cell death. In the current study, we have mediator of defense against oxidative and electrophilic stress. examined the role of oxidative stress in response to TYMS Our results show that exposure to TYMS inhibitors induces inhibitors. We observed that intracellular reactive oxygen spe- oxidative stress that leads to cell death, while simultaneously cies (ROS) concentrations are induced by these inhibitors and generating a protective response that may underlie resistance promote apoptosis. Activation of the enzyme NADPH oxidase against such death. 1995; Berger and Berger, 2006; Barbour and Berger, 2008). Introduction at ASPET Journals on September 26, 2021 Fluoropyrimidines such as 5-fluorouracil (FUra) and 5-fluoro- Thymidylate synthase (TYMS, EC 2.1.1.15) catalyzes the 2ʹ-deoxyuridine (FdUrd) are metabolized within cells to the reductive methylation of 2ʹ-deoxyuridine-5ʹ-monophosphate ʹ 5 10 potent TYMS inhibitor 5-fluoro-2 -deoxyuridylic acid and have (dUMP) by N N -methylenetetrahydrofolate (CH2H4PteGlu), been important in the therapy of a variety of cancers, in- to form dTMP and dihydrofolate (Carreras and Santi, 1995; cluding those of the ovary, breast, and gastrointestinal tract Berger and Berger, 2006). The enzyme is indispensable to (Chu et al., 2003; Longley et al., 2003). Folate-based inhibitors DNA synthesis and is therefore critical for replication and of TYMS have been designed on the basis of information from repair of the cellular genome in growing cells. As a conse- the structures of the natural substrates and the enzyme’s quence, it has been an attractive target at which chemother- active site cleft (Carreras and Santi, 1995; Bertino, 1997; apeutic drugs are directed (Chu et al., 2003; Longley et al., Takemura and Jackman, 1997). Indeed, these inhibitors were 2003; Wilson et al., 2014). Inhibitors of TYMS, including both among the first to be developed using such rationally based fluoropyrimidine and folate analogs, reduce de novo synthesis criteria. Several, including raltitrexed (RTX), LY231514 of dTMP, which leads to impaired DNA replication, genome [(2R)-2-[[4-[2-(2-amino-4-oxo-1,7-dihydropyrrolo[2,3-d]pyrimidin- damage, and programmed cell death (Carreras and Santi, 5-yl)ethyl]benzoyl]amino]pentanedioic acid], ZD9331 [(2S)-2-[[4-[(2,7-dimethyl-4-oxo-1H-quinazolin-6-yl)methyl-prop- This work was supported by the National Cancer Institute [Grant 2-ynylamino]-2-fluorobenzoyl]amino]-4-(2H-tetrazol-5-yl) CA44013]; and the National Institutes of Health Centers of Biomedical butanoic acid], and GW1843U89 [(S)-2-(5-(((3-methyl-1- Research Excellence program of the National Institute of General Medical oxo-1,2-dihydrobenzo[f]quinazolin-9-yl)methyl)amino)-1- Sciences [Grant GM103336]. The Microarray Core Facility receives partial support from South Carolina IDeA Networks of Biomedical Research oxoisoindolin-2-yl)pentanedioic acid], have advanced to clinical Excellence [Grant P20GM103499]. trials, and have demonstrated significant activity against a dx.doi.org/10.1124/mol.115.099614. s This article has supplemental material available at molpharm. variety of neoplasms (Bertino, 1997; Takemura and Jackman, aspetjournals.org. 1997). ABBREVIATIONS: APO, apocyanin; DCFDA, 2ʹ,7ʹ-dichlorodihydrofluorescein diacetate; DHE, dihydroethidium; DPI, diphenyleneiodonium; dThd, deoxythymidine; dUMP, 2ʹ-deoxyuridine-5ʹ-monophosphate; FdUrd, 5-fluoro-2ʹ-deoxyuridine; FDXR, ferredoxin reductase; FUra, 5-fluorouracil; GW1843U89, (S)-2-(5-(((3-methyl-1-oxo-1,2-dihydrobenzo[f]quinazolin-9-yl)methyl)amino)-1-oxoisoindolin-2-yl)pentanedioic acid; LY231514, (2R)- 2-[[4-[2-(2-amino-4-oxo-1,7-dihydropyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]amino]pentanedioic acid; NAC, N-acetylcysteine; NOX, NADPH d2 oxidase; NRF2, nuclear factor E2-related factor 2; O2 , superoxide; qRT-PCR, quantitative reverse-transcription polymerase chain reaction; ROS, reactive oxygen species; RTX, raltitrexed; siRNAs, small interfering RNAs; TYMS, thymidylate synthase; VAS, VAS-2870, VAS-2870, 3-benzyl- 7-(2-benzoxazolyl)thio-1,2,3-triazolo(4,5-d)pyrimidine; ZD9331, (2S)-2-[[4-[(2,7-dimethyl-4-oxo-1H-quinazolin-6-yl)methyl-prop-2-ynylamino]-2-flu- orobenzoyl]amino]-4-(2H-tetrazol-5-yl)butanoic acid. 970 Oxidative Stress and Thymidylate Synthase Inhibitors 971 The mechanism by which dTMP deficiencies lead to the For measurement of ROS by flow cytometry, cells were grown to death of cells exposed to TYMS inhibitors is of central interest. 80% confluence in 60-mm plates and incubated in fluorescence- Over a decade ago, Hwang et al. (Hwang et al., 2001) demon- activated cell-sorting staining buffer (phosphate-buffered saline with strated that induction of reactive oxygen species (ROS) in 1% bovine serum albumin) at 37°C for 15 minutes in 50 nM DCFDA or FUra-treated cells results from increased expression of the DHE. After incubation, cells were washed twice with fluorescence- activated cell-sorting buffer and analyzed by flow cytometry (FC 500; mitochondrial enzyme ferredoxin reductase (FDXR), and is Beckman Coulter, Fort Collins, CO). A shift to the right indicates required for p53-dependent apoptotic response to drug. Stud- increased ROS levels. ies by Liu and Chen (2002) similarly suggested that FDXR Measurement of Apoptotic Cell Death. Cells were treated with promotes ROS-mediated apoptosis in response to FUra in TYMS inhibitors and inhibitory agents at the indicated concentrations a p53-dependent fashion. Despite these interesting studies for 48 hours. Apoptotic indices were determined by TUNEL assays as well as others showing increased ROS levels after expo- using the In Situ Cell Death Detection Kit, POD (Roche Applied sure to FUra (Akhdar et al., 2009; Matsunaga et al., 2010; Science, Indianapolis, IN). Cells were stained according to the Lamberti et al., 2012), we still lack a detailed mechanistic manufacturer’s instructions, counterstained with hematoxylin, and understanding of how exposure to TYMS inhibitors alters viewed under a light microscope at 400Â magnification. Apoptotic the intracellular redox environment, and how cells respond nuclei were counted manually, based on staining and morphology, and to such alterations. Currently, we have examined ROS- the apoptotic index was calculated as the ratio of apoptotic/total cells. At least 1000 cells from several microscopic fields were counted in each Downloaded from mediated oxidative stress and its function in apoptotic cell determination. death induced by TYMS inhibitors. We have identified the NADPH Oxidase Activity Assay. For each reaction, 105 cells superoxide-generating enzyme NADPH oxidase (NOX) as an were suspended in 500 ml reaction buffer [50 mM phosphate buffer important source of increased ROS levels during drug expo- (pH 7.0), 1 mM EGTA, 150 mM sucrose]. NADPH oxidase activity was sure. In addition, we have found that cells mount a protective detected by lucigenin-derived chemiluminescence with 100 mM response that includes activation of the transcription factor NADPH as substrate and 5 mM lucigenin. Cells were incubated at nuclear factor E2-related factor 2 (NRF2) and its downstream 37°C for 10 minutes. Chemiluminescence was measured using a molpharm.aspetjournals.org target genes, which may diminish the cytotoxic impact of luminometer (Promega, Madison WI) and expressed as arbitrary light 5 TYMS inhibitors. units per 10 cells. RNA Extraction and Quantitative Reverse-Transcription Materials and Methods Polymerase Chain Reaction. Total RNA was isolated using RNeasy Mini Kit (Qiagen, Germantown, MD) with the addition of Reagents. FUra, FdUrd, deoxythymidine (dThd), folinic acid, RNase Free DNase (Qiagen) to eliminate contaminating genomic and N-acetylcysteine (NAC) were purchased from Sigma-Aldrich DNA. The RNA concentration was determined by measuring the (St. Louis, MO). RTX was obtained from AstraZeneca (Macclesfield, absorbance at 260 nm and 280 nm (NanoDrop ND-1000 Spectropho- Cheshire, UK). Diphenyleneiodonium
Recommended publications
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • Haem Oxygenase Is Synthetically Lethal with the Tumour Suppressor Fumarate Hydratase
    LETTER doi:10.1038/nature10363 Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase Christian Frezza1, Liang Zheng1, Ori Folger2, Kartik N. Rajagopalan3, Elaine D. MacKenzie1, Livnat Jerby2, Massimo Micaroni4, Barbara Chaneton1, Julie Adam5, Ann Hedley1, Gabriela Kalna1, Ian P. M. Tomlinson6, Patrick J. Pollard5, Dave G. Watson7, Ralph J. Deberardinis3, Tomer Shlomi8*, Eytan Ruppin2,9* & Eyal Gottlieb1 Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid majority of fumarate was unlabelled (m10), indicating that glucose is cycle (TCA cycle) that catalyses the hydration of fumarate into a minor source of carbon for the TCA cycle in both Fh1fl/fl and Fh12/2 malate. Germline mutations of FH are responsible for hereditary cells (Fig. 1e). On the other hand, when cells were incubated with 13C- leiomyomatosis and renal-cell cancer (HLRCC)1. It has previously glutamine most of the fumarate was labelled (Fig. 1f). In Fh12/2 cells been demonstrated that the absence of FH leads to the accumula- cultured with uniformly labelled glutamine (Fig. 1f), the vast majority of tion of fumarate, which activates hypoxia-inducible factors (HIFs) the labelled fumarate contained all four carbon atoms derived from at normal oxygen tensions2–4. However, so far no mechanism that glutamine (m14). By contrast, in Fh1fl/fl cells, the fumarate pool con- explains the ability of cells to survive without a functional TCA tained substantial fractions of molecules with fewer than four 13C atoms cycle has been provided. Here we use newly characterized genetically due to processing of fumarate beyond the Fh1 step. The lack of these modified kidney mouse cells in which Fh1 has been deleted, and products in Fh12/2 cells confirms that no accessory pathway exists in apply a newly developed computer model of the metabolism of these these cells to circumvent the loss of Fh1 enzymatic activity, indicating a cells to predict and experimentally validate a linear metabolic path- true blockade of the cycle.
    [Show full text]
  • ©Ferrata Storti Foundation
    Original Articles T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response Peter Van Loo,1,2,3 Thomas Tousseyn,4 Vera Vanhentenrijk,4 Daan Dierickx,5 Agnieszka Malecka,6 Isabelle Vanden Bempt,4 Gregor Verhoef,5 Jan Delabie,6 Peter Marynen,1,2 Patrick Matthys,7 and Chris De Wolf-Peeters4 1Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; 2Department of Human Genetics, K.U.Leuven, Leuven, Belgium; 3Bioinformatics Group, Department of Electrical Engineering, K.U.Leuven, Leuven, Belgium; 4Department of Pathology, University Hospitals K.U.Leuven, Leuven, Belgium; 5Department of Hematology, University Hospitals K.U.Leuven, Leuven, Belgium; 6Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway, and 7Department of Microbiology and Immunology, Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium Citation: Van Loo P, Tousseyn T, Vanhentenrijk V, Dierickx D, Malecka A, Vanden Bempt I, Verhoef G, Delabie J, Marynen P, Matthys P, and De Wolf-Peeters C. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolero- genic host immune response. Haematologica. 2010;95:440-448. doi:10.3324/haematol.2009.009647 The Online Supplementary Tables S1-5 are in separate PDF files Supplementary Design and Methods One microgram of total RNA was reverse transcribed using random primers and SuperScript II (Invitrogen, Merelbeke, Validation of microarray results by real-time quantitative Belgium), as recommended by the manufacturer. Relative reverse transcriptase polymerase chain reaction quantification was subsequently performed using the compar- Ten genes measured by microarray gene expression profil- ative CT method (see User Bulletin #2: Relative Quantitation ing were validated by real-time quantitative reverse transcrip- of Gene Expression, Applied Biosystems).
    [Show full text]
  • Recombinant Human Biliverdin Reductase B/BLVRB
    Recombinant Human Biliverdin Reductase B/BLVRB Catalog Number: 6568-BR DESCRIPTION Source E. coli­derived human Biliverdin Reductase B/BLVRB protein Ala2­Gln206, with an N­terminal Met and 6­His tag Accession # P30043 N­terminal Sequence N­terminus confirmed by detection of His tag using Western analysis. Analysis Predicted Molecular 23 kDa Mass SPECIFICATIONS SDS­PAGE 23­25 kDa, reducing conditions Activity Measured by the reduction of riboflavin 5'­monophosphate (FMN) using NADPH as the cofactor. The specific activity is >225 pmol/min/μg, as measured under the described conditions. Endotoxin Level <1.0 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS­PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining. Formulation Supplied as a 0.2 μm filtered solution in Tris, NaCl, Brij and Glycerol. See Certificate of Analysis for details. Activity Assay Protocol Materials l Assay Buffer: 100 mM Sodium Acetate, pH 5.0 l Recombinant Human Biliverdin Reductase B/BLVRB (rhBLVRB) (Catalog # 6568­BR) l Riboflavin 5’­monophosphate sodium salt dihydrate (FMN) (Sigma, Catalog # F6750), 10 mM in deionized water l β­Nicotinamide adenine dinucleotide phosphate reduced, tetrasodium salt (β­NADPH) (Sigma, Catalog # N7505), 10 mM in deionized water l UV Plate (Costar, Catalog # 3635) l Plate Reader (Model: SpectraMax Plus by Molecular Devices) or equivalent Assay 1. Dilute rhBLVRB to 40 ng/μL in Assay Buffer. 2. Prepare a Reaction Mixture by combining FMN and β­NADPH in Assay Buffer to a concentration of 400 μM for each. 3. Load 50 μL of 40 ng/μL rhBLVRB into the microplate, and start the reaction by adding 50 μL of Reaction Mixture.
    [Show full text]
  • Kidney V-Atpase-Rich Cell Proteome Database
    A comprehensive list of the proteins that are expressed in V-ATPase-rich cells harvested from the kidneys based on the isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-EGFP mice, which express EGFP under the control of the promoter of the V-ATPase-B1 subunit. In these mice, type A and B intercalated cells and connecting segment principal cells of the kidney express EGFP. The protein identification was performed by LC-MS/MS using an LTQ tandem mass spectrometer (Thermo Fisher Scientific). For questions or comments please contact Sylvie Breton ([email protected]) or Mark A. Knepper ([email protected]).
    [Show full text]
  • Protein T1 C1 Accession No. Description
    Protein T1 C1 Accession No. Description SW:143B_HUMAN + + P31946 14-3-3 protein beta/alpha (protein kinase c inhibitor protein-1) (kcip-1) (protein 1054). 14-3-3 protein epsilon (mitochondrial import stimulation factor l subunit) (protein SW:143E_HUMAN + + P42655 P29360 Q63631 kinase c inhibitor protein-1) (kcip-1) (14-3-3e). SW:143S_HUMAN + - P31947 14-3-3 protein sigma (stratifin) (epithelial cell marker protein 1). SW:143T_HUMAN + - P27348 14-3-3 protein tau (14-3-3 protein theta) (14-3-3 protein t-cell) (hs1 protein). 14-3-3 protein zeta/delta (protein kinase c inhibitor protein-1) (kcip-1) (factor SW:143Z_HUMAN + + P29312 P29213 activating exoenzyme s) (fas). P01889 Q29638 Q29681 Q29854 Q29861 Q31613 hla class i histocompatibility antigen, b-7 alpha chain precursor (mhc class i antigen SW:1B07_HUMAN + - Q9GIX1 Q9TP95 b*7). hla class i histocompatibility antigen, b-14 alpha chain precursor (mhc class i antigen SW:1B14_HUMAN + - P30462 O02862 P30463 b*14). P30479 O19595 Q29848 hla class i histocompatibility antigen, b-41 alpha chain precursor (mhc class i antigen SW:1B41_HUMAN + - Q9MY79 Q9MY94 b*41) (bw-41). hla class i histocompatibility antigen, b-42 alpha chain precursor (mhc class i antigen SW:1B42_HUMAN + - P30480 P79555 b*42). P30488 O19615 O19624 O19641 O19783 O46702 hla class i histocompatibility antigen, b-50 alpha chain precursor (mhc class i antigen SW:1B50_HUMAN + - O78172 Q9TQG1 b*50) (bw-50) (b-21). hla class i histocompatibility antigen, b-54 alpha chain precursor (mhc class i antigen SW:1B54_HUMAN + - P30492 Q9TPQ9 b*54) (bw-54) (bw-22). P30495 O19758 P30496 hla class i histocompatibility antigen, b-56 alpha chain precursor (mhc class i antigen SW:1B56_HUMAN - + P79490 Q9GIM3 Q9GJ17 b*56) (bw-56) (bw-22).
    [Show full text]
  • Detection of Host Pathways Universally Inhibited After Plasmodium Yoelii
    www.nature.com/scientificreports OPEN Detection of host pathways universally inhibited after Plasmodium yoelii infection for Received: 8 June 2018 Accepted: 26 September 2018 immune intervention Published: xx xx xxxx Lu Xia1,2, Jian Wu1, Sittiporn Pattaradilokrat1,3, Keyla Tumas1, Xiao He1, Yu-chih Peng1, Ruili Huang4, Timothy G. Myers5, Carole A. Long1, Rongfu Wang6 & Xin-zhuan Su1 Malaria is a disease with diverse symptoms depending on host immune status and pathogenicity of Plasmodium parasites. The continuous parasite growth within a host suggests mechanisms of immune evasion by the parasite and/or immune inhibition in response to infection. To identify pathways commonly inhibited after malaria infection, we infected C57BL/6 mice with four Plasmodium yoelii strains causing diferent disease phenotypes and 24 progeny of a genetic cross. mRNAs from mouse spleens day 1 and/or day 4 post infection (p.i.) were hybridized to a mouse microarray to identify activated or inhibited pathways, upstream regulators, and host genes playing an important role in malaria infection. Strong interferon responses were observed after infection with the N67 strain, whereas initial inhibition and later activation of hematopoietic pathways were found after infection with 17XNL parasite, showing unique responses to individual parasite strains. Inhibitions of pathways such as Th1 activation, dendritic cell (DC) maturation, and NFAT immune regulation were observed in mice infected with all the parasite strains day 4 p.i., suggesting universally inhibited immune pathways. As a proof of principle, treatment of N67-infected mice with antibodies against T cell receptors OX40 or CD28 to activate the inhibited pathways enhanced host survival.
    [Show full text]
  • Supplemental Figures 04 12 2017
    Jung et al. 1 SUPPLEMENTAL FIGURES 2 3 Supplemental Figure 1. Clinical relevance of natural product methyltransferases (NPMTs) in brain disorders. (A) 4 Table summarizing characteristics of 11 NPMTs using data derived from the TCGA GBM and Rembrandt datasets for 5 relative expression levels and survival. In addition, published studies of the 11 NPMTs are summarized. (B) The 1 Jung et al. 6 expression levels of 10 NPMTs in glioblastoma versus non‐tumor brain are displayed in a heatmap, ranked by 7 significance and expression levels. *, p<0.05; **, p<0.01; ***, p<0.001. 8 2 Jung et al. 9 10 Supplemental Figure 2. Anatomical distribution of methyltransferase and metabolic signatures within 11 glioblastomas. The Ivy GAP dataset was downloaded and interrogated by histological structure for NNMT, NAMPT, 12 DNMT mRNA expression and selected gene expression signatures. The results are displayed on a heatmap. The 13 sample size of each histological region as indicated on the figure. 14 3 Jung et al. 15 16 Supplemental Figure 3. Altered expression of nicotinamide and nicotinate metabolism‐related enzymes in 17 glioblastoma. (A) Heatmap (fold change of expression) of whole 25 enzymes in the KEGG nicotinate and 18 nicotinamide metabolism gene set were analyzed in indicated glioblastoma expression datasets with Oncomine. 4 Jung et al. 19 Color bar intensity indicates percentile of fold change in glioblastoma relative to normal brain. (B) Nicotinamide and 20 nicotinate and methionine salvage pathways are displayed with the relative expression levels in glioblastoma 21 specimens in the TCGA GBM dataset indicated. 22 5 Jung et al. 23 24 Supplementary Figure 4.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • A Study of Coenzyme a Metabolism and Function in Mammalian Cells
    A Study of Coenzyme A Metabolism and Function in Mammalian Cells A Study of Coenzyme A Metabolism and Function in Mammalian Cells Pascale Monteil A thesis submitted to the University College London in fulfilment with the requirements for the degree of Doctor of Philosophy. London, March 2013 Research Department of Structural and Molecular Biology University College London Gower Street London, WC1E 6BT United Kingdom 1 A Study of Coenzyme A Metabolism and Function in Mammalian Cells Declaration I, Pascale Monteil, declare that all the work presented in this thesis is the result of my own work. The work presented here does not constitute part of any other thesis. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. The work herein was carried out while I was a graduate research student at University College London Research Department of Structural and Molecular Biology under the supervision of Professor Ivan Gout. Mass Spectrometry work was carried out by N. Totty, Cancer Research UK. Pascale Monteil 2 A Study of Coenzyme A Metabolism and Function in Mammalian Cells Abstract CoA is well established as a metabolic cofactor in numerous oxidative and biosynthetic pathways. The levels of CoA usually remain within a tight range, however these have been shown to change in response to nutritional state, fibrate drugs and several pathological conditions. Although the mechanisms that alter CoA levels are not fully understood, the fluctuations in CoA can influence the cellular processes it regulates. The regulatory roles of CoA have mainly been studied in the context of feedback/ feed forward regulation of metabolic pathways or enzymes, yet very little is known about its role as a regulator of cellular function.
    [Show full text]
  • Recombinant Human Biliverdin Reductase B/BLVRB Protein Catalog Number: BVR0901
    Recombinant human Biliverdin Reductase B/BLVRB protein Catalog Number: BVR0901 PRODUCT INPORMATION Expression system E.coli Domain 1-206aa UniProt No. P30043 NCBI Accession No. NP_000704.1 Alternative Names BLVRB, FLR, BVRB, SDR43u1, MGC117413, Biliverdin reductase B, Biliverdin IX beta reductase, BVR B, Flavin reductase, Flavin reductase (NADPH), FR, GHBP, Green heme binding protein, MGC117413, NADPH dependent diaphorase, NADPH flavin reductase. PRODUCT SPECIFICATION Molecular Weight 22.1 kDa (206aa) confirmed by MALDI-TOF Concentration 1mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.5) containing 10% glycerol, 1mM DTT Purity > 95% by SDS-PAGE Tag Non-Tagged Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description Biliverdin reductase B (BLVRB) is an enzyme (EC 1. 3. 1. 24) that converts biliverdin to bilirubin, converting a double-bond between the second and third pyrrole ring into a single-bond. BLVRB is found that major erythrocytic heme catabolic pathway in humans and most mammalian species. Biliverdin reductase is abundantly expressed in kidney, spleen, liver and brain as well as at lower levels in the thymus and minimal 1 Recombinant human Biliverdin Reductase B/BLVRB protein Catalog Number: BVR0901 levels being detected in testis. Recombinant BLVRB protein was expressed in E. coli and purified by using conventional chromatography techniques. Amino acid Sequence MAVKKIAIFG ATGQTGLTTL AQAVQAGYEV TVLVRDSSRL PSEGPRPAHV VVGDVLQAAD VDKTVAGQDA VIVLLGTRND LSPTTVMSEG ARNIVAAMKA HGVDKVVACT SAFLLWDPTK VPPRLQAVTD DHIRMHKVLR ESGLKYVAVM PPHIGDQPLT GAYTVTLDGR GPSRVISKHD LGHFMLRCLT TDEYDGHSTY PSHQYQ General References L.
    [Show full text]