United States Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Feb. 18, 193E _ UNITED STATES PATENT OFFICE PROCESS FOR THE PRODUCTION OF AL ' ' LOYS OF THE ‘EARTH METALS WITH LEAD OR OTHER METALS I ‘Gustaf?ewton Kirsebom, Oslo, Norway, assignor to Calloy limited, London, England, an English . joint-stock company -' . No Drawing. Application December 22, 1932, snug: No. 648,443. \In Great Britain June 11, 9 Claims. (Cl. 75—1) This'invention irelatesto a new or improved pounds of the alkaline earth metals, fox-example method of process for the production of alkaline from the alkaline earth metal silicates. earth metals and alloys thereof with lead or other . In the process as set out above it must be v_ metals such as are hereinafter de?ned. understood that the term.“alkaline earth metals" I ere are certainmetals, especially lead, and includes not only calcium, strontium and barium, ' cadmium which do not readily alloy with alu but also magnesium and beryllium. minium when both are in a molten condition and Where cadmium is employed in place of lead v in the presence of each other, e. g., when molten the procedure is similar and when‘ the alloy of lead is added to a bath of molten aluminium (or cadmium with the alkaline earth metal has been .10 whenlead and aluminium are melted together) formed-on completion of the process-the cad 10 . these two metals will not form an alloy but will mium can be distilled off so that the process af form separate layers which are not substantially fords a ready means of preparing the alkaline ' soluble in each other; and this I utilize in the earth metals in substantially pure condition. process according to the present invention for Broadly stated therefore the present invention 15 the production of alloys of the alkalineearth is for a process for preparing the alkaline earth 15 metals with lead or cadmium or other metals of ‘metals and alloys thereof, which process com~ the kind which do not readily alloy withalumin prises the steps ‘of mixing together in the molten . ium. ‘ vcondition a metal which does not readily form an. In my co-pending application for U. S. Patent alloy with aluminium and an alloy with alumin 20 Serial No. '620,574~?led 2nd July, 1932, I have ium of the said alkaline earth metal or metals .20 . described a process for producing alloys of the and allowing the ‘melt to form into two, layers and alkaline earth metals with aluminium (e. g. cal separating the aluminium. ' . cium-aluminium alloy, strontium-aluminium al According to a further feature of my present ‘loy, etc.) by the reduction of compounds of alka invention the alkaline earth metals can be sep 25 line earth metals by aluminium and the pro arated from'the metal (e. g. lead or cadmium) 25 duction thereby of said alloys of aluminium; such ‘which does not readily alloywith aluminium as process being carried out by introducing one or ‘aforesaid; and this separation can be effected more compounds of the alkaline earth”metals in by the step of volatilizing off the volatile. metal pieces not less thanabout 1 mm. size into a bath from the alloy containing it whereby the alkaline 30 of molten aluminium thereby to reduce said com- . earth metal remains alone; and pure alkaline 30. pound or compounds and alloy said alkaline earth ‘ earth metal can thus be obtained. metal or metals with the aluminium. The invention will now be more speci?cally Now the. present invention is as f.o1l0wsi—- ‘ described with the aid of examples. \ I have found that alloys of the alkaline earth‘ In the case of lead:-— . 35 metals with lead and cadmium (or with other 3 (a) The aluminium alone may ?rst be placed 35 ' ' . metals which latter do ,not themselves readily in the heating chamber and melted; and after the alloy with aluminium under the conditions above alkaline earth metal oxides in pieces or lumps _ referred to) can be produced, readily and eco have been placed on the bath of molten alumin nomically by reducing a ‘compound of an alkaline ium and reduced and an alloypof alkaline earth 40 earth metal in a bath of molten aluminium (e. g‘. metal or metals and aluminium has thereby been 40 in the manner hereinbefore referred ' to) and, formed as aforesaid; thereupon lead in a molten either before, during, or after, introducing said ‘condition (or otherwise) is introduced into said compound of the alkaline earth metals into said bath of‘ molten aluminium alloy through which bath of molten aluminium, admixing or otherwise latter the lead will descend and settle below’... 45 bringing-lead or cadmium‘?or other such metal ‘ same in the-heating chamber; or-*- - ' as aforesaid) in a molten condition into contact (b) ,The lead and aluminium may be, néatea with the molten aluminium alloy whereupon the (melted) together in a suitable heating chamber - alkaline earth metal leaves the aluminium and .or the lead may be heated (melted) ?rst and goes to the lead' or cadmium (or other such metal then ‘the aluminium; and thereafter the alkaline to as aforesaid) ‘and alloys with the lead (or other earth metal oxides in other than powder form, 50 such metal .as aforesaid). } ' ' 1. e. in pieces or lumps, introduced by placing It is to. be understood that'the alkaline earth ' said pieces or lumps on top of the molten alu (metals can be prepared-by they process of the , minium. ‘ present invention-not only from the alkaline ‘whereupon, whichever procedure is followed,‘ 65 earthv metal oxides but ‘also from other com itwillbefoundthatthealkalineearthmetal 2 2,031,486 or metals in the aluminium will have left the molten alloy and allowed to settle therethrough. latter and gone into the lead and in alloy there This enables the process to be carried out in one with. operation. (0) Or an alkaline earth metal alloy of alu I have carried out this operation in a graph minium may be melted down and molten lead ite crucible which was heated in a furnace of added' to the melt and thereupon the lead will usual type to the desired temperatures. extract the alkaline earth metal from the alu Any suitable type of furnace can be used for minium thus forming an alkaline earth metal the operation. alloy with the lead, which latter will sink to the I have found that a great recovery of the alka 10 bottom leaving the aluminium on top of the bath line earth metal or metals was obtained in the 10 substantially free from alkaline earth metal. lead, inthe case of extracting calcium from cal For example, I have in this way melted down cium-aluminium alloy by means of lead, viz. as a calcium aluminium alloy containing 10% cal much as ‘90% of the calcium went into the cium, viz. I have melted same at about 700-l000° lead, while not a trace of calcium was found in 15 C.; and, after having melted some lead at about the remaining aluminium. 15 350° C. I have added this molten lead to the I have further found that it is possible tov get alloy bath; and on pouring out this melt I found higher percentages of the alkaline earth metal that after cooling, there were present two differ into the lead by passing the total amount of the ent layers the top one consisting of substantially lead (or other such metal) to be passed once 20 pure aluminium and the bottom layer of lead (or more than once if desired) through the bath 20 containing 6.5% Ca and containing but small of molten aluminium alloy slowly and yell dis traces of ‘aluminium. tributed throughout the bath in order to obtain In a similar manner I have made strontium a better contact of the metals. lead from strontium-aluminium alloy by pour v25 A convenient way of securing good distribution ing molten lead over the molten strontium-alu of the lead throughout the bath is to add the 25 minium alloy, and in this way obtained a stron lead in granulated form to the molten bath. tium lead of a crystalline structure and analyz Furthermore (as aforesaid) the production of ing 5.3% strontium. the aluminium alloy is not confined to oxides of In a similar way I have produced barium the alkaline earth metals as starting materials 30 lead containing 3% barium. but other compounds may be used and in par 30 Similarly magnesium was introduced into lead ticular silicates. Thus if burnt magnesite rich from a magnesium-aluminium alloy containing in silica (l6 per'cent) is used, an aluminium up to 5% Mg; and a magnesium lead alloy ob magnesium-silicon alloy is produced. In the tained running up to 2% Mg. same way other alkaline earth silicates produce Also beryllium has been obtained in the lead the triple alloy of aluminium silicon and alka 35 or cadmium in this way. line earth metal. When this triple alloy is treat In the case of beryllium; the following is an ed with lead or cadmium the alkaline earth sili example of carrying my present invention into cide in the alloy is broken up, the alkaline earth practice:— metal going to the lead or cadmium and the sili To a molten bath of aluminium heated to about con remaining with the aluminium. 40 1100° C. I add thereto natural beryl (in lumps Where cadmium is employed in place of lead or pieces) which is a mineral consisting of a the temperature of the aluminium alloy bath is beryllium aluminium silicate with a formula lowered, for example, to 700°-800° C.
Recommended publications
  • 1201: Introduction to Aluminium As an Engineering Material
    TALAT Lecture 1201 Introduction to Aluminium as an Engineering Material 23 pages, 26 figures (also available as overheads) Basic Level prepared by M H Jacobs * Interdisciplinary Research Centre in Materials The University of Birmingham, UK Objectives To provide an introduction to metallurgical concepts necessary to understand how structural features of aluminium alloys are influenced by alloy composition, processing and heat treatment, and the basic affects of these parameters on the mechanical properties, and hence engineering applications, of the alloys. It is assumed that the reader has some elementary knowledge of physics, chemistry and mathematics. Date of Issue: 1999 EAA - European Aluminium Association 1201 Introduction to Aluminium as an Engineering Material Contents (26 figures) 1201 Introduction to Aluminium as an Engineering Material _____________________ 2 1201.01. Basic mechanical and physical properties__________________________________ 3 1201.01.01 Background _______________________________________________________________ 3 1201.01.02 Commercially pure aluminium ______________________________________________ 4 1201.02 Crystal structure and defects _____________________________________________ 6 1201.02.01 Crystals and atomic bonding __________________________________________________ 6 1201.02.02 Atomic structure of aluminium ______________________________________________ 8 1201.02.03 Crystal structures _________________________________________________________ 8 1201.02.04 Some comments on crystal structures of materials
    [Show full text]
  • The Development of the Periodic Table and Its Consequences Citation: J
    Firenze University Press www.fupress.com/substantia The Development of the Periodic Table and its Consequences Citation: J. Emsley (2019) The Devel- opment of the Periodic Table and its Consequences. Substantia 3(2) Suppl. 5: 15-27. doi: 10.13128/Substantia-297 John Emsley Copyright: © 2019 J. Emsley. This is Alameda Lodge, 23a Alameda Road, Ampthill, MK45 2LA, UK an open access, peer-reviewed article E-mail: [email protected] published by Firenze University Press (http://www.fupress.com/substantia) and distributed under the terms of the Abstract. Chemistry is fortunate among the sciences in having an icon that is instant- Creative Commons Attribution License, ly recognisable around the world: the periodic table. The United Nations has deemed which permits unrestricted use, distri- 2019 to be the International Year of the Periodic Table, in commemoration of the 150th bution, and reproduction in any medi- anniversary of the first paper in which it appeared. That had been written by a Russian um, provided the original author and chemist, Dmitri Mendeleev, and was published in May 1869. Since then, there have source are credited. been many versions of the table, but one format has come to be the most widely used Data Availability Statement: All rel- and is to be seen everywhere. The route to this preferred form of the table makes an evant data are within the paper and its interesting story. Supporting Information files. Keywords. Periodic table, Mendeleev, Newlands, Deming, Seaborg. Competing Interests: The Author(s) declare(s) no conflict of interest. INTRODUCTION There are hundreds of periodic tables but the one that is widely repro- duced has the approval of the International Union of Pure and Applied Chemistry (IUPAC) and is shown in Fig.1.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys
    International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys 1525 Wilson Boulevard, Arlington, VA 22209 www.aluminum.org With Support for On-line Access From: Aluminum Extruders Council Australian Aluminium Council Ltd. European Aluminium Association Japan Aluminium Association Alro S.A, R omania Revised: January 2015 Supersedes: February 2009 © Copyright 2015, The Aluminum Association, Inc. Unauthorized reproduction and sale by photocopy or any other method is illegal . Use of the Information The Aluminum Association has used its best efforts in compiling the information contained in this publication. Although the Association believes that its compilation procedures are reliable, it does not warrant, either expressly or impliedly, the accuracy or completeness of this information. The Aluminum Association assumes no responsibility or liability for the use of the information herein. All Aluminum Association published standards, data, specifications and other material are reviewed at least every five years and revised, reaffirmed or withdrawn. Users are advised to contact The Aluminum Association to ascertain whether the information in this publication has been superseded in the interim between publication and proposed use. CONTENTS Page FOREWORD ........................................................................................................... i SIGNATORIES TO THE DECLARATION OF ACCORD ..................................... ii-iii REGISTERED DESIGNATIONS AND CHEMICAL COMPOSITION
    [Show full text]
  • Opinion of the Scientific Committee on Consumer Safety on O
    SCCS/1613/19 Final Opinion Version S Scientific Committee on Consumer Safety SCCS OPINION ON the safety of aluminium in cosmetic products Submission II The SCCS adopted this document at its plenary meeting on 03-04 March 2020 SCCS/1613/19 Final Opinion Opinion on the safety of aluminium in cosmetic products – submission II ___________________________________________________________________________________________ ACKNOWLEDGMENTS Members of the Working Group are acknowledged for their valuable contribution to this Opinion. The members of the Working Group are: For the preliminary and the final versions SCCS members Dr U. Bernauer Dr L. Bodin (Rapporteur) Prof. Q. Chaudhry (SCCS Chair) Prof. P.J. Coenraads (SCCS Vice-Chair and Chairperson of the WG) Prof. M. Dusinska Dr J. Ezendam Dr E. Gaffet Prof. C. L. Galli Dr B. Granum Prof. E. Panteri Prof. V. Rogiers (SCCS Vice-Chair) Dr Ch. Rousselle Dr M. Stepnik Prof. T. Vanhaecke Dr S. Wijnhoven SCCS external experts Dr A. Koutsodimou Dr A. Simonnard Prof. W. Uter All Declarations of Working Group members are available on the following webpage: http://ec.europa.eu/health/scientific_committees/experts/declarations/sccs_en.htm This Opinion has been subject to a commenting period of a minimum eight weeks after its initial publication (from 16 December 2019 until 17 February 2020). Comments received during this time period are considered by the SCCS. For this Opinion, some changes occurred, in particular in sections 1, 3.2, 3.3.4.5, 3.3.8.1, 3.5, as well as in related discussion parts and conclusion (question 1). The list of references has also been updated.
    [Show full text]
  • ASM Aluminum-Silicon
    © 2004 ASM International. All Rights Reserved. www.asminternational.org Aluminum-Silicon Casting Alloys: Atlas of Microfractographs (#06993G) CHAPTER 1 Introduction to Aluminum-Silicon Casting Alloys COMMERCIAL CAST ALUMINUM-SILICON alloys are alloys can be hypoeutectic, hypereutectic, or eutectic, as can be polyphase materials of composed microstructure belonging to the seen on the equilibrium phase diagram (Fig. 1.1a). The properties Aluminum Association classification series 3xx.x for aluminum- of a specific alloy can be attributed to the individual physical silicon plus copper and/or magnesium alloys and 4xx.x aluminum- properties of its main phase components (␣-aluminum solid so- silicon alloys. They are designated by standards such as CEN EN lution and silicon crystals) and to the volume fraction and mor- 1706, “Aluminum andAluminumAlloys. Castings. Chemical Com- phology of these components. position and Mechanical Properties,” and are designated in ASTM standards according to the method of casting: 1.1 Properties of ␣-Aluminum Solid Solution • ASTM B 26/B 26M, “Specification for Aluminum-Alloy Sand Casting” The ␣-aluminum solid solution is the matrix of cast aluminum- • ASTM B 85, “Specification for Aluminum-Alloy Die Casting” silicon. It crystallizes in the form of nonfaceted dendrites, on the • ASTM B 108, “Specification for Aluminum-Alloy Permanent basis of crystallographic lattice of aluminum. This is a face- Mold Casting” centered cubic (fcc) lattice system, noted by the symbol A1, with coordination number of 12, and with four atoms in one elementary Their use as structural materials is determined by their physical cell (Ref 1–3). Lattice A1 is one of the closest packed structures, properties (primarily influenced by their chemical composition) with a very high filling factor of 0.74 (Fig.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Periodic Table P J STEWART / SCIENCE PHOTO LIBRARY PHOTO SCIENCE / STEWART J P
    Periodic table P J STEWART / SCIENCE PHOTO LIBRARY PHOTO SCIENCE / STEWART J P 46 | Chemistry World | March 2009 www.chemistryworld.org Periodic change The periodic table, cherished by generations of chemists, has steadily evolved over time. Eric Scerri is among those now calling for drastic change The periodic table has become recurrences as vertical columns or something of a style icon while In short groups. remaining indispensable to chemists. In its original form The notion of chemical reactivity Over the years the table has had the periodic table was is something of a vague one. To make to change to accommodate new relatively simple. Over this idea more precise, the periodic elements. But some scientists the years, extra elements table pioneers focused on the propose giving the table a makeover have been added and the maximum valence of each element while others call for drastic changes layout of the transition and looked for similarities among to its core structure. elements altered these quantities (see Mendeleev’s More than 1000 periodic systems Some call for drastic table, p48). have been published since the table rearrangements, The method works very well for Russian chemist Dimitri Mendeleev perhaps placing hydrogen the elements up to atomic weight developed the mature periodic with the halogens. 55 (manganese) after which point system – the most fundamental A new block may be it starts to fall apart. Although natural system of classification needed when chemists there seems to be a repetition in the ever devised. (Not to mention the can make elements in highest valence of aluminium and hundreds if not thousands of new the g-block, starting at scandium (3), silicon and titanium systems that have appeared since the element 121 (4), phosphorus and vanadium (5), advent of the internet.) and chlorine and manganese (7), Such a proliferation prompts this is not the case with potassium questions as to whether some tables and iron.
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Aluminium Industry Fact Sheet 6 Aluminium - the Metal
    UK Aluminium Industry Fact Sheet 6 Aluminium - The Metal UK Aluminium Industry Fact Sheet 6 : Aluminium - The Metal+44(0)121 601 6363 www.alfed.org.uk 1 In France between 1855 and 1886, Henri Sainte- Introduction Claire Deville developed a chemical production More aluminium is produced each year than process for aluminium production, which together any other non-ferrous metal. For this reason, it with some other subtle variations in other European is difficult to believe that aluminium was only countries, formed the basis for production of discovered some 200 years ago and has been aluminium as a high-cost, luxury metal in limited produced in industrial quantities for only the last quantities. 120+ years. In 1886, “the great leap forward” for the aluminium Aluminium is the third most abundant element in industry occurred. In this year, Charles Martin the earth’s crust. So, why has it not been used Hall in the United States of America and Paul for centuries, as has gold or copper? The main L T Heroult in France, each perfected, quite answer is that it is never found in its natural form independently, the electrolytic method for as a pure metal. Aluminium is always locked in, or producing aluminium from aluminium oxide mixed with, other elements. Aluminium occurs in (alumina). Their success was compounded in most rocks, vegetation, soils etc., in this combined 1888 by the German Karl Bayer improving a cheap form as very stable chemical compounds such as production method for alumina from bauxite ore. alumino-silicates. Almost overnight the price of aluminium plunged The Ten Most Naturally Abundant Elements from $18 to $4.50 per kg.
    [Show full text]
  • Compounds of the Metals Beryllium, Magnesium
    C01F COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS (metal hydrides [N: monoborane, diborane or addition complexes thereof] C01B6/00; salts of oxyacids of halogens C01B11/00; peroxides, salts of peroxyacids C01B15/00; sulfides or polysulfides of magnesium, calcium, strontium, or barium C01B17/42; thiosulfates, dithionites, polythionates C01B17/64; compounds containing selenium or tellurium C01B19/00; binary compounds of nitrogen with metals C01B21/06; azides C01B21/08; [N: compounds other than ammonia or cyanogen containing nitrogen and non-metals and optionally metals C01B21/082; amides or imides of silicon C01B21/087]; metal [N: imides or] amides C01B21/092, [N: C01B21/0923]; nitrites C01B21/50; [N: compounds of noble gases C01B23/0005]; phosphides C01B25/08; salts of oxyacids of phosphorus C01B25/16; carbides C01B31/30; compounds containing silicon C01B33/00; compounds containing boron C01B35/00; compounds having molecular sieve properties but not having base-exchange properties C01B37/00; compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites, C01B39/00;cyanides C01C3/08; salts of cyanic acid C01C3/14; salts of cyanamide C01C3/16; thiocyanates C01C3/20; [N: double sulfates of magnesium with sodium or potassium C01D5/12; with other alkali metals C01D15/00, C01D17/00]) Definition statement This subclass/group covers: All compounds of Be,Mg,Al,Ca,Sr,Ba,Ra,Th or rare earth metals except those compounds which are classified in C01G because of application of the last appropriate place rule. So, in principle does this subclass comprise all Al-compounds with elements as such being part of C01B-C01D, e.g.
    [Show full text]
  • M E R S a D E Mercury Safety Deposit
    M E R S A D E MERCURY SAFETY DEPOSIT LIFE Project Number <LIFE06 ENV/ES/PRE/03> LIFE PROJECT NAME <MERSADE> Task 1 State of Art T1.3 y T1.4 Literature review concerning corrosion problems in mercury and stabilisation of liquid Hg Status Report Reporting Period: October 2006 – January 2007 Report Authors: Dres: A. Conde, J. de Damborenea, M. A. Arenas, F. A. López, F. J. Alguacil and A. López-Delgado. Date of Issue: 15.02.2007 1 M E R S A D E MERCURY SAFETY DEPOSIT TASK 1. State of the art Subtask. 1.3. Literature review concerning to mercury corrosion Introduction Concerns about corrosion of metals exposed to liquid metal environments dates from the earliest days of metals processing, when it became necessary to handle and contain molten metals. Liquid metals serve as high-temperature reducing agents in the production of meals and because their excellent heat-transfer properties, liquid metals have been used or considered as coolants in a variety of power producing system. Examples of such use are molten sodium for liquid metal fast breeder reactors and central receiver solar station as well as liquid lithium for fusion and space nuclear reactors. More recently liquid mercury has been selected as the target for the spallation neutron source (SNS). Whenever the handling of liquid metals is required, either in specific uses as discussed previously or as melts during processing, a compatible containment material must be selected. The forms in which liquid metal corrosion are manifested can be divided in several categories: Dissolution processes- in its simplest form, or through compound or complex formation with one or more impurities in the liquid metal- Impurity and interstitial reactions Alloying Compound reduction If an element of the metal or alloy is soluble in the liquid metal, dissolution will occur until the liquid metal is saturated.
    [Show full text]