Understanding Mania in Bipolar Disorder: Perspectives on Causation and Pathogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study
International Journal of Environmental Research and Public Health Article Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study Hsin-Chien Chen 1,* , Chih-Hung Wang 1,2 , Wu-Chien Chien 3,4 , Chi-Hsiang Chung 3,4, Cheng-Ping Shih 1, Yi-Chun Lin 1,2, I-Hsun Li 5,6, Yuan-Yung Lin 1,2 and Chao-Yin Kuo 1 1 Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (C.-H.W.); [email protected] (C.-P.S.); [email protected] (Y.-C.L.); [email protected] (Y.-Y.L.); [email protected] (C.-Y.K.) 2 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan 3 School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; [email protected] (W.-C.C.); [email protected] (C.-H.C.) 4 Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan 5 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; [email protected] 6 School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan * Correspondence: [email protected]; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193 Received: 31 July 2020; Accepted: 28 August 2020; Published: 31 August 2020 Abstract: The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL. -
Author Index (Print)
PHYSICAL REVIEW B VOLUME 58, NUMBER 10 1 SEPTEMBER 1998-II Cumulative Author Index All authors of papers published so far in the current volume are listed alphabetically with the issue and page numbers following the dash. A more complete index, with the full title listed with each ®rst author's name and subsequent authors cross-referenced, is published in the last issue of the volume. A cumulative author and subject index covering Physical Review A through E, Physical Review Letters, and Reviews of Modern Physics is published annually under separate cover. AaraÄo Reis, F. D. A.Ð͑1͒ 394 Ancilotto, FrancescoÐ͑8͒ 5085 Awaga, KunioÐ͑5͒ 2438 Abarra, E. N.Ð͑9͒ 5672 Anders, S.Ð͑9͒ 5825; ͑10͒ 6639 Awschalom, D. D.Ð͑8͒ R4238 Abbate, M.Ð͑7͒ 3755 Andersen, N. H.Ð͑10͒ 6291 AxnaÈs, J.Ð͑10͒ 6628 Abd-Elmeguid, M. M.Ð͑1͒ 254 Andersen, O. K.Ð͑1͒ 522; ͑2͒ 1025 Ayaz, YuÈkselÐ͑4͒ 2001 Abe, K.Ð͑5͒ 2513 Andersson, M.Ð͑10͒ 6580 Aydinol, M. K.Ð͑6͒ 2975 Abelson, J. R.Ð͑8͒ 4803 Andersson, Per H.Ð͑9͒ 5230 Azevedo, A.Ð͑1͒ 101 Abliz, M.Ð͑9͒ 5205 Ando, K.Ð͑3͒ 1100; ͑4͒ 1912 Aziz, M. J.Ð͑8͒ 4579 Abolfath, M.Ð͑4͒ 2013 Ando, TsuneyaÐ͑3͒ 1485 Aziz, Michael J.Ð͑1͒ 189 Abraha, KamsulÐ͑2͒ 897 Ando, YoichiÐ͑6͒ R2913 Abrahams, ElihuÐ͑2͒ R559 AndraÈ, W.Ð͑10͒ 6346 Baars, T.Ð͑4͒ R1750 Abramo, Maria C.Ð͑5͒ 2372 AndreÂ, G.Ð͑2͒ 847 Baberschke, K.Ð͑9͒ 5611, 5701 Abrikosov, A. A.Ð͑5͒ 2788 Andreev, AntonÐ͑9͒ 5149 Bacherler, Th.Ð͑3͒ 1633 Abrikosov, I. A.Ð͑7͒ 3613 Andrei, N.Ð͑6͒ R2921 Bachlechner, M. E.Ð͑4͒ 1887 Abrosimov, N. -
A Case Study on Addressing Abuse of a Safe and Effective Drug David C
Spangler et al. Substance Abuse Treatment, Prevention, and Policy (2016) 11:22 DOI 10.1186/s13011-016-0067-0 DEBATE Open Access Dextromethorphan: a case study on addressing abuse of a safe and effective drug David C. Spangler1, Catherine M. Loyd1* and Emily E. Skor1,2 Abstract Background: Dextromethorphan is a safe, effective cough suppressant, available without a prescription in the United States since 1958. Due to a perceived prevalence of abuse of dextromethorphan by teens, in 2007 the Drug Enforcement Administration requested the Food and Drug Administration evaluate whether dextromethorphan should be recommended for scheduling under the Controlled Substances Act. The Food and Drug Administration held an Advisory Committee meeting in 2010 to provide a scientific and medical evaluation of dextromethorphan and its abuse potential. Discussion: To address reports of abuse, particularly by teens in the United States, the Consumer Healthcare Products Association initiated an abuse mitigation plan in 2010 with specific goals related to awareness of the behavior, perception of risk, social disapproval, and access to the products. In identifying abuse interventions, experts acknowledge that substance abuse among teens is a highly complex behavior and indicate that the best course of action is to address prevention by focusing on the factors that impact teen behavior. Conclusion: It is noteworthy that the annual prevalence of over-the-counter cough medicine abuse has sharply decreased since 2010. While a true cause-and-effect relationship cannot be assured, the Consumer Healthcare Products Association and its member companies believe that the increased awareness of the issue since the 2010 Food and Drug Administration Advisory Committee meeting, and the subsequent implementation of a well-delivered and targeted abuse mitigation plan that addressed the levers influencing teen decisions is contributing to the observed reduction in abuse. -
Lithium Stimulates Glutamate "Release" and Inositol 1,4,5
Proc. Nat!. Acad. Sci. USA Vol. 91, pp. 8358-8362, August 1994 Neurobiology Lithium stimulates glutamate "release" and inositol 1,4,5-trisphosphate accumulation via activation of the N-methyl-D-aspartate receptor in monkey and mouse cerebral cortex slices (manic depression/bipolar disorder/primates) JOHN F. DIXON, GEORGYI V. Los, AND LOWELL E. HOKIN* Department of Pharmacology, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706 Communicated by Henry Lardy, May 9, 1994 (received for review February 18, 1994) ABSTRACT Beginning at therapeutic concentrations (1- showed lithium-stimulated increases in Ins(1,4,5)P3 and 1.5 mM), the anti-manic-depressive drug lithium stimulated inositol 1,3,4,5-tetrakisphosphate (2). the release of glutamate, a major excitatory neurotransmitter In the case of rhesus monkey, neither inositol nor an in the brain, in monkey cerebral cortex slices in a time- and agonist was required to demonstrate lithium-stimulated ac- concentration-dependent manner, and this was associated with cumulation of Ins(1,4,5)P3 (3). This suggested that an endog- increased inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] accumu- enous neurotransmitter was involved in the lithium effect. lation. (±)-3-(2-Carboxypiperazin-4-yl)propyl-1-phosphoric We show here that, beginning at therapeutic concentrations, acid (CPP), dizocilpine (MK-801), ketamine, and Mg2+- lithium stimulated the release ofglutamate in rhesus monkey antagonists to the N-methyl-D-aspartate (NMDA) recep- and mouse cerebral cortex slices, and this in turn increased tor/channel complex selectively inhibited lithium-stimulated accumulation of Ins(1,4,5)P3 via activation of the N-methyl- Ins(t,4,5)P3 accumulation. -
The German Surname Atlas Project ± Computer-Based Surname Geography Kathrin Dräger Mirjam Schmuck Germany
Kathrin Dräger, Mirjam Schmuck, Germany 319 The German Surname Atlas Project ± Computer-Based Surname Geography Kathrin Dräger Mirjam Schmuck Germany Abstract The German Surname Atlas (Deutscher Familiennamenatlas, DFA) project is presented below. The surname maps are based on German fixed network telephone lines (in 2005) with German postal districts as graticules. In our project, we use this data to explore the areal variation in lexical (e.g., Schröder/Schneider µtailor¶) as well as phonological (e.g., Hauser/Häuser/Heuser) and morphological (e.g., patronyms such as Petersen/Peters/Peter) aspects of German surnames. German surnames emerged quite early on and preserve linguistic material which is up to 900 years old. This enables us to draw conclusions from today¶s areal distribution, e.g., on medieval dialect variation, writing traditions and cultural life. Containing not only German surnames but also foreign names, our huge database opens up possibilities for new areas of research, such as surnames and migration. Due to the close contact with Slavonic languages (original Slavonic population in the east, former eastern territories, migration), original Slavonic surnames make up the largest part of the foreign names (e.g., ±ski 16,386 types/293,474 tokens). Various adaptations from Slavonic to German and vice versa occurred. These included graphical (e.g., Dobschinski < Dobrzynski) as well as morphological adaptations (hybrid forms: e.g., Fuhrmanski) and folk-etymological reinterpretations (e.g., Rehsack < Czech Reåak). *** 1. The German surname system In the German speech area, people generally started to use an addition to their given names from the eleventh to the sixteenth century, some even later. -
Janssen Research & Development, LLC Advisory Committee Briefing
Janssen Research & Development, LLC Advisory Committee Briefing Document Esketamine Nasal Spray for Patients with Treatment-resistant Depression JNJ-54135419 (esketamine) Status: Approved Date: 16 January 2019 Prepared by: Janssen Research & Development, LLC EDMS number: EDMS-ERI-171521650, 1.0 ADVISORY COMMITTEE BRIEFING MATERIALS: AVAILABLE FOR PUBLIC RELEASE 1 Status: Approved, Date: 16 January 2019 JNJ-54135419 (esketamine) Treatment-resistant Depression Advisory Committee Briefing Document GUIDE FOR REVIEWERS This briefing document provides 3 levels of review with increasing levels of detail: The Executive Overview (Section 1, starting on page 11) provides a narrative summarizing the disease, need for novel treatments, key development program characteristics for esketamine nasal spray, study results, and conclusions. References are made to the respective supporting sections in the core document. The core document (Section 2 to Section 11, starting on page 30) includes detailed summaries and discussion in support of the Executive Overview. The appendices (starting on page 180) provide additional or more detailed information to complement brief descriptions provided in sections of the core document (e.g., demographic and baseline characteristics of the study populations, additional efficacy analyses in the Phase 3 studies, statistical methods). These appendices are referenced in the core document when relevant. This review structure allows review at varying levels of detail; however, reviewers who read at multiple levels will necessarily -
Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss
Supplemental Material can be found at: /content/suppl/2020/12/18/73.1.202.DC1.html 1521-0081/73/1/202–277$35.00 https://doi.org/10.1124/pharmrev.120.000056 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:202–277, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: MICHAEL NADER Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanismss Antonio Inserra, Danilo De Gregorio, and Gabriella Gobbi Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada Abstract ...................................................................................205 Significance Statement. ..................................................................205 I. Introduction . ..............................................................................205 A. Review Outline ........................................................................205 B. Psychiatric Disorders and the Need for Novel Pharmacotherapies .......................206 C. Psychedelic Compounds as Novel Therapeutics in Psychiatry: Overview and Comparison with Current Available Treatments . .....................................206 D. Classical or Serotonergic Psychedelics versus Nonclassical Psychedelics: Definition ......208 Downloaded from E. Dissociative Anesthetics................................................................209 F. Empathogens-Entactogens . ............................................................209 -
Development of Allosteric Modulators of Gpcrs for Treatment of CNS Disorders Hilary Highfield Nickols A, P
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neurobiology of Disease 61 (2014) 55–71 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Review Development of allosteric modulators of GPCRs for treatment of CNS disorders Hilary Highfield Nickols a, P. Jeffrey Conn b,⁎ a Division of Neuropathology, Department of Pathology, Microbiology and Immunology, Vanderbilt University, USA b Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA article info abstract Article history: The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy Received 25 July 2013 with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Tradition- Revised 13 September 2013 al drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind en- Accepted 17 September 2013 dogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor Available online 27 September 2013 function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than Keywords: Allosteric modulator orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological CNS modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with pos- Drug discovery itive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as “bitopic” ligands that GPCR interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug Metabotropic glutamate receptor selectivity and potentially decreased adverse side effects. -
The Effects of Ketamine on Dopaminergic Function: Meta-Analysis and Review of the Implications for Neuropsychiatric Disorders
OPEN Molecular Psychiatry (2018) 23, 59–69 www.nature.com/mp REVIEW The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders M Kokkinou1,2, AH Ashok1,2,3 and OD Howes1,2,3 Ketamine is a non-competitive antagonist at the N-methyl-D-aspartate receptor. It has recently been found to have antidepressant effects and is a drug of abuse, suggesting it may have dopaminergic effects. To examine the effect of ketamine on the dopamine systems, we carried out a systematic review and meta-analysis of dopamine measures in the rodent, human and primate brain following acute and chronic ketamine administration relative to a drug-free baseline or control condition. Systematic search of PubMed and PsychInfo electronic databases yielded 40 original peer-reviewed studies. There were sufficient rodent studies of the acute effects of ketamine at sub-anaesthetic doses for meta-analysis. Acute ketamine administration in rodents is associated with significantly increased dopamine levels in the cortex (Hedge’s g = 1.33, Po0.01), striatum (Hedge’s g = 0.57, Po0.05) and the nucleus accumbens (Hedge’s g = 1.30, Po0.05) compared to control conditions, and 62–180% increases in dopamine neuron population activity. Sub-analysis indicated elevations were more marked in in vivo (g = 1.93) than ex vivo (g = 0.50) studies. There were not enough studies for meta-analysis in other brain regions studied (hippocampus, ventral pallidum and cerebellum), or of the effects of chronic ketamine administration, although consistent increases in cortical dopamine levels (from 88 to 180%) were reported in the latter studies. -
Advisory Council on the Misuse of Drugs Chair: Professor Les Iversen Secretary: Rachel Fowler 3Rd Floor Seacole Building 2
ACMD Advisory Council on the Misuse of Drugs Chair: Professor Les Iversen Secretary: Rachel Fowler 3rd Floor Seacole Building 2. Marsham Street London SW1P 4DF 020 7035 0454 Email: [email protected] Rt Hon. Theresa May MP Home Office 2 Marsham Street London SW1P 4DF 18th October 2012 Dear Home Secretary, In March 2012 the ACMD advised that methoxetamine be subject to a temporary class drug order. Methoxetamine was marketed as a legal alternative to ketamine until a temporary class drug order was implemented in April 2012. As is now required, the ACMD has followed its initial assessment with a consideration of methoxetamine in the context of the Misuse of Drugs Act 1971; I enclose the report with this letter. The chemical structure of methoxetamine bears a close resemblance to that of both ketamine and phencyclidine (PCP, „Angel Dust‟, a class A drug), which both produce well- documented and serious adverse effects following both acute and chronic usage. Users report that the effects of methoxetamine are similar to those of ketamine, however, some users report that the effects are of longer duration.The harmful effects reported include severe dissociation, cardiovascular symptoms, paranoid thoughts and unpleasant hallucinations. The first analytically confirmed series reported by Guy‟s and St Thomas‟ NHS Foundation Trust, London in 2011, was of three individuals who presented having self-reported use of methoxetamine. All three presented with a ketamine-like dissociative state, but also had significant stimulant effects with agitation and cardiovascular effects including tachycardia and hypertension. Toxicological screening of serum samples confirmed methoxetamine use in two of the cases. -
Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters
1521-0103/359/1/159–170$25.00 http://dx.doi.org/10.1124/jpet.116.235838 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 359:159–170, October 2016 U.S. Government work not protected by U.S. copyright Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters Adem Can,1 Panos Zanos,1 Ruin Moaddel, Hye Jin Kang, Katinia S. S. Dossou, Irving W. Wainer, Joseph F. Cheer, Douglas O. Frost, Xi-Ping Huang, and Todd D. Gould Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.) Received June 14, 2016; accepted July 27, 2016 ABSTRACT Following administration at subanesthetic doses, (R,S)-ketamine mesolimbic DA release and decay using fast-scan cyclic (ketamine) induces rapid and robust relief from symptoms of voltammetry following acute administration of subanesthetic depression in treatment-refractory depressed patients. Previous doses of ketamine (2, 10, and 50 mg/kg, i.p.). -
PETITION List 04-30-13 Columns
PETITION TO FREE LYNNE STEWART: SAVE HER LIFE – RELEASE HER NOW! • 1 Signatories as of 04/30/13 Arian A., Brooklyn, New York Ilana Abramovitch, Brooklyn, New York Clare A., Redondo Beach, California Alexis Abrams, Los Angeles, California K. A., Mexico Danielle Abrams, Ann Arbor, Michigan Kassim S. A., Malaysia Danielle Abrams, Brooklyn, New York N. A., Philadelphia, Pennsylvania Geoffrey Abrams, New York, New York Tristan A., Fort Mill, South Carolina Nicholas Abramson, Shady, New York Cory a'Ghobhainn, Los Angeles, California Elizabeth Abrantes, Cambridge, Canada Tajwar Aamir, Lawrenceville, New Jersey Alberto P. Abreus, Cliffside Park, New Jersey Rashid Abass, Malabar, Port Elizabeth, South Salma Abu Ayyash, Boston, Massachusetts Africa Cheryle Abul-Husn, Crown Point, Indiana Jamshed Abbas, Vancouver, Canada Fadia Abulhajj, Minneapolis, Minnesota Mansoor Abbas, Southington, Connecticut Janne Abullarade, Seattle, Washington Andrew Abbey, Pleasanton, California Maher Abunamous, North Bergen, New Jersey Andrea Abbott, Oceanport, New Jersey Meredith Aby, Minneapolis, Minnesota Laura Abbott, Woodstock, New York Alexander Ace, New York, New York Asad Abdallah, Houston, Texas Leela Acharya, Toronto, Canada Samiha Abdeldjebar, Corsham, United Kingdom Dennis Acker, Los Angeles, California Mohammad Abdelhadi, North Bergen, New Jersey Judith Ackerman, New York, New York Abdifatah Abdi, Minneapolis, Minnesota Marilyn Ackerman, Brooklyn, New York Hamdiya Fatimah Abdul-Aleem, Charlotte, North Eddie Acosta, Silver Spring, Maryland Carolina Maria Acosta,