Brain Correlates of Motor Complexity During Observed and Executed Actions Xinge Li1,2, Manon A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mirror Neuron System and Social Cognition Spring Quarter 2017 Tuth 11:00 - 12:20 Pm CSB 005
Department of Cognitive Science 0515 University of California, San Diego (858) 534-6771 La Jolla, CA 92093 COGS171: Mirror Neuron System and Social Cognition Spring Quarter 2017 TuTH 11:00 - 12:20 pm CSB 005 Instructor: J. A. Pineda, Ph.D. TA: TBN [email protected] Phone: 858-534-9754 SeCtion: F 9-9:50 am CSB 005 OffiCe Hours: M 9-11 am, CSB 107 (or by appointment) This class will examine the neuroanatomy, physiology, and funCtional Correlates of the human mirror neuron system and its putative role in soCial Cognition, e.g., aCtion understanding, empathy, and theory of mind. We will examine the developmental, neuroimaging, electrophysiologiCal, as well as clinical evidence for and against this hypothesis. All students will: 1. Write a CritiCal review or “thought” essay (no longer than 1 page) on the weeks labeled with an asterisk (Weeks 2,3,4,6,8,10) based on one of the required readings that week. See Class website (or ask instruCtor) for a sample of a CritiCal review. Essays are due on Tuesday of the assigned week - for a total of 6 essays, although only 5 will count towards grade (25%). 2. You will also be responsible for: • a term paper due at end of class (8-10 pages) on an issue relevant to mirroring and social cognition. You will work on this as a group of 3-4 students. See Class website for instruCtions on structure of proposal. (15%) • an oral presentation of the term paper (10-15 minutes). (10%) 3. Take the midterm (25%) and final (25%). -
(Mpfc-Lpmc) Affects Subjective Beauty but Not Ugliness
ORIGINAL RESEARCH published: 08 December 2015 doi: 10.3389/fnhum.2015.00654 Transcranial Direct Current Stimulation Over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but not Ugliness Koyo Nakamura1 and Hideaki Kawabata2* 1 Graduate School of Human Relations, Keio University, Tokyo, Japan, 2 Department of Psychology, Keio University, Tokyo, Japan Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the Edited by: subjective beauty and ugliness of abstract paintings before and after the application of Edward A. Vessel, tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, New York University, USA which induced temporal inhibition of neural excitability of the mPFC, led to a decrease Reviewed by: Zaira Cattaneo, in beauty ratings but not ugliness ratings. There were no changes in ratings of both University of Milano-Bicocca, Italy beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Andrea Antal, Results from our experiment indicate that the mPFC and the lPMC have a causal role University Medical Center Goettingen, Germany in generating the subjective experience of beauty, with beauty and ugliness evaluations Gerald Cupchik, constituting two distinct dimensions. -
Empathy, Mirror Neurons and SYNC
Mind Soc (2016) 15:1–25 DOI 10.1007/s11299-014-0160-x Empathy, mirror neurons and SYNC Ryszard Praszkier Received: 5 March 2014 / Accepted: 25 November 2014 / Published online: 14 December 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract This article explains how people synchronize their thoughts through empathetic relationships and points out the elementary neuronal mechanisms orchestrating this process. The many dimensions of empathy are discussed, as is the manner by which empathy affects health and disorders. A case study of teaching children empathy, with positive results, is presented. Mirror neurons, the recently discovered mechanism underlying empathy, are characterized, followed by a theory of brain-to-brain coupling. This neuro-tuning, seen as a kind of synchronization (SYNC) between brains and between individuals, takes various forms, including frequency aspects of language use and the understanding that develops regardless of the difference in spoken tongues. Going beyond individual- to-individual empathy and SYNC, the article explores the phenomenon of syn- chronization in groups and points out how synchronization increases group cooperation and performance. Keywords Empathy Á Mirror neurons Á Synchronization Á Social SYNC Á Embodied simulation Á Neuro-synchronization 1 Introduction We sometimes feel as if we just resonate with something or someone, and this feeling seems far beyond mere intellectual cognition. It happens in various situations, for example while watching a movie or connecting with people or groups. What is the mechanism of this ‘‘resonance’’? Let’s take the example of watching and feeling a film, as movies can affect us deeply, far more than we might realize at the time. -
Basal Ganglia Anatomy, Physiology, and Function Ns201c
Basal Ganglia Anatomy, Physiology, and Function NS201c Human Basal Ganglia Anatomy Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN Analagous rodent basal ganglia nuclei Gross anatomy of the striatum: gateway to the basal ganglia rodent Dorsomedial striatum: -Inputs predominantly from mPFC, thalamus, VTA Dorsolateral striatum: -Inputs from sensorimotor cortex, thalamus, SNc Ventral striatum: Striatal subregions: Dorsomedial (caudate) -Inputs from vPFC, hippocampus, amygdala, Dorsolateral (putamen) thalamus, VTA Ventral (nucleus accumbens) Gross anatomy of the striatum: patch and matrix compartments Patch/Striosome: -substance P -mu-opioid receptor Matrix: -ChAT and AChE -somatostatin Microanatomy of the striatum: cell types Projection neurons: MSN: medium spiny neuron (GABA) •striatonigral projecting – ‘direct pathway’ •striatopallidal projecting – ‘indirect pathway’ Interneurons: FS: fast-spiking interneuron (GABA) LTS: low-threshold spiking interneuron (GABA) LA: large aspiny neuron (ACh) 30 um Cellular properties of striatal neurons Microanatomy of the striatum: striatal microcircuits • Feedforward inhibition (mediated by fast-spiking interneurons) • Lateral feedback inhibition (mediated by MSN collaterals) Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN The simplified ‘classical’ model of basal ganglia circuit function • Information encoded as firing rate • Basal ganglia circuit is linear and unidirectional • Dopamine exerts opposing effects on direct and indirect pathway MSNs Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum GPe GPi/SNr Dopamine + GABA Motor Thalamus SNc STN Direct pathway MSNs express: D1, M4 receptors, Sub. -
1 the Development of Empathy: How, When, and Why Nicole M. Mcdonald & Daniel S. Messinger University of Miami Department Of
1 The Development of Empathy: How, When, and Why Nicole M. McDonald & Daniel S. Messinger University of Miami Department of Psychology 5665 Ponce de Leon Dr. Coral Gables, FL 33146, USA 2 Empathy is a potential psychological motivator for helping others in distress. Empathy can be defined as the ability to feel or imagine another person’s emotional experience. The ability to empathize is an important part of social and emotional development, affecting an individual’s behavior toward others and the quality of social relationships. In this chapter, we begin by describing the development of empathy in children as they move toward becoming empathic adults. We then discuss biological and environmental processes that facilitate the development of empathy. Next, we discuss important social outcomes associated with empathic ability. Finally, we describe atypical empathy development, exploring the disorders of autism and psychopathy in an attempt to learn about the consequences of not having an intact ability to empathize. Development of Empathy in Children Early theorists suggested that young children were too egocentric or otherwise not cognitively able to experience empathy (Freud 1958; Piaget 1965). However, a multitude of studies have provided evidence that very young children are, in fact, capable of displaying a variety of rather sophisticated empathy related behaviors (Zahn-Waxler et al. 1979; Zahn-Waxler et al. 1992a; Zahn-Waxler et al. 1992b). Measuring constructs such as empathy in very young children does involve special challenges because of their limited verbal expressiveness. Nevertheless, young children also present a special opportunity to measure constructs such as empathy behaviorally, with less interference from concepts such as social desirability or skepticism. -
Function of Cerebral Cortex
FUNCTION OF CEREBRAL CORTEX Course: Neuropsychology CC-6 (M.A PSYCHOLOGY SEM II); Unit I By Dr. Priyanka Kumari Assistant Professor Institute of Psychological Research and Service Patna University Contact No.7654991023; E-mail- [email protected] The cerebral cortex—the thin outer covering of the brain-is the part of the brain responsible for our ability to reason, plan, remember, and imagine. Cerebral Cortex accounts for our impressive capacity to process and transform information. The cerebral cortex is only about one-eighth of an inch thick, but it contains billions of neurons, each connected to thousands of others. The predominance of cell bodies gives the cortex a brownish gray colour. Because of its appearance, the cortex is often referred to as gray matter. Beneath the cortex are myelin-sheathed axons connecting the neurons of the cortex with those of other parts of the brain. The large concentrations of myelin make this tissue look whitish and opaque, and hence it is often referred to as white matter. The cortex is divided into two nearly symmetrical halves, the cerebral hemispheres . Thus, many of the structures of the cerebral cortex appear in both the left and right cerebral hemispheres. The two hemispheres appear to be somewhat specialized in the functions they perform. The cerebral hemispheres are folded into many ridges and grooves, which greatly increase their surface area. Each hemisphere is usually described, on the basis of the largest of these grooves or fissures, as being divided into four distinct regions or lobes. The four lobes are: • Frontal, • Parietal, • Occipital, and • Temporal. -
Visual Recognition of Words Learned with Gestures Induces Motor
www.nature.com/scientificreports OPEN Visual recognition of words learned with gestures induces motor resonance in the forearm muscles Claudia Repetto1*, Brian Mathias2,3, Otto Weichselbaum4 & Manuela Macedonia4,5,6 According to theories of Embodied Cognition, memory for words is related to sensorimotor experiences collected during learning. At a neural level, words encoded with self-performed gestures are represented in distributed sensorimotor networks that resonate during word recognition. Here, we ask whether muscles involved in gesture execution also resonate during word recognition. Native German speakers encoded words by reading them (baseline condition) or by reading them in tandem with picture observation, gesture observation, or gesture observation and execution. Surface electromyogram (EMG) activity from both arms was recorded during the word recognition task and responses were detected using eye-tracking. The recognition of words encoded with self-performed gestures coincided with an increase in arm muscle EMG activity compared to the recognition of words learned under other conditions. This fnding suggests that sensorimotor networks resonate into the periphery and provides new evidence for a strongly embodied view of recognition memory. Traditional perspectives in cognitive science describe human behaviour as mediated by cognitive representations1. Such representations have been defned as mental structures that encode, store and process information arising from sensory-motor systems 2. According to these perspectives, information provided to perceptual systems about the environment is incomplete. As a result, the brain has the essential role of transforming this information into cognitive representations, which enable rapid and accurate behaviours. In recent years, embodied approaches have claimed that perception, action and the environment jointly contribute to cognitive processes3,4, highlighting a change in our understanding of the role of the body in cognition. -
The Prefrontal Cortex
Avens Publishing Group Inviting Innovations Open Access Review Article J Hum Anat Physiol July 2017 Volume:1, Issue:1 © All rights are reserved by Ogeturk. AvensJournal Publishing of Group Inviting Innovations Human Anatomy The Prefrontal Cortex: A Basic & Physiology Embryological, Histological, Anatomical, and Functional Ramazan Fazıl Akkoc and Murat Ogeturk* Department of Anatomy, Firat University, Turkey Guideline *Address for Correspondence Murat Ogeturk, Firat University, Faculty of Medicine, 23119 Elazig, Turkey, Tel: +90-424-2370000 (ext: 4654); Fax: +90-424-2379138; Keywords: Prefrontal cortex; Working memory; Frontal lobe E-Mail: [email protected] Abstract Submission: 24 May, 2017 Accepted: 11 July, 2017 The prefrontal cortex (PFC) unites, processes and controls the Published: 19 August, 2017 information coming from cortex and subcortical structures, and Copyright: © 2017 Akkoc RF. This is an open access article distributed decides and executes goal-oriented behavior. A major function of PFC under the Creative Commons Attribution License, which permits is to maintain the attention. Furthermore, it has many other functions unrestricted use, distribution, and reproduction in any medium, provided including working memory, problem solving, graciousness, memory, the original work is properly cited. and intellectuality. PFC is well developed in humans and localized to the anterior of the frontal lobe. This article presents a systematic review and detailed summary of embryology, histology, anatomy, functions and lesions of PFC. I. Lamina zonalis: Contains few Cajal horizontal cells. The axons of Martinotti cells located at deep layers, the last branches of the apical dendrites of pyramidal cells, and the last branches Introduction of the afferent nerve fibers extend to this lamina. -
Neuroaesthetics of Art Vision: an Experimental Approach to the Sense of Beauty
Cl n l of i ica a l T rn r u ia o l s J ISSN: 2167-0870 Journal of Clinical Trials Research Article Neuroaesthetics of Art Vision: An Experimental Approach to the Sense of Beauty Maddalena Coccagna1, PietroAvanzini2, Mariagrazia Portera4, Giovanni Vecchiato2, Maddalena Fabbri Destro2, AlessandroVittorio Sironi3,9, Fabrizio Salvi8, Andrea Gatti5, Filippo Domenicali5, Raffaella Folgieri3,6, Annalisa Banzi3, Caselli Elisabetta1, Luca Lanzoni1, Volta Antonella1, Matteo Bisi1, Silvia Cesari1, Arianna Vivarelli1, Giorgio Balboni Pier1, Giuseppe Santangelo Camillo1, Giovanni Sassu7, Sante Mazzacane1* 1Department of CIAS Interdepartmental Research Center, University of Ferrara, Ferrara, Italy;2Department of CNR Neuroscience Institute, Parma, Italy;3Department of CESPEB Neuroaesthetics Laboratory, University Bicocca, Milan, Italy;4Department of Letters and Philosophy, University of Florence, Italy;5Department of Humanistic Studies, University of Ferrara, Ferrara, Italy;6Department of Philosophy Piero Martinetti, University La Statale, Milan, Italy;7Department of Musei Arte Antica, Ferrara, Italy;8Department of Neurological Sciences, Bellaria Hospital, Bologna, Italy;9Department of Centre of the history of Biomedical Thought, University Bicocca, Milan, Italy ABSTRACT Objective: NEVArt research aims to study the correlation between a set of neurophysiological/emotional reactions and the level of aesthetic appreciation of around 500 experimental subjects, during the observation of 18 different paintings from the XVI-XVIII century, in a real museum context. Methods: Several bio-signals have been recorded to evaluate the participants’ reactions during the observation of paintings. Among them: (a) neurovegetative, motor and emotional biosignals were recorded using wearable tools for EEG (electroencephalogram), ECG (electrocardiogram) and EDA (electrodermal activity); (b) gaze pattern during the observation of art works, while (c) data of the participants (age, gender, education, familiarity with art, etc.) and their explicit judgments about paintings have been obtained. -
The Neocortex of Cetartiodactyls. II. Neuronal Morphology of the Visual and Motor Cortices in the Giraffe (Giraffa Camelopardalis)
Brain Struct Funct (2015) 220:2851–2872 DOI 10.1007/s00429-014-0830-9 ORIGINAL ARTICLE The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis) Bob Jacobs • Tessa Harland • Deborah Kennedy • Matthew Schall • Bridget Wicinski • Camilla Butti • Patrick R. Hof • Chet C. Sherwood • Paul R. Manger Received: 11 May 2014 / Accepted: 21 June 2014 / Published online: 22 July 2014 Ó Springer-Verlag Berlin Heidelberg 2014 Abstract The present quantitative study extends our of aspiny neurons in giraffes appeared to be similar to investigation of cetartiodactyls by exploring the neuronal that of other eutherian mammals. For cross-species morphology in the giraffe (Giraffa camelopardalis) neo- comparison of neuron morphology, giraffe pyramidal cortex. Here, we investigate giraffe primary visual and neurons were compared to those quantified with the same motor cortices from perfusion-fixed brains of three su- methodology in African elephants and some cetaceans badults stained with a modified rapid Golgi technique. (e.g., bottlenose dolphin, minke whale, humpback whale). Neurons (n = 244) were quantified on a computer-assis- Across species, the giraffe (and cetaceans) exhibited less ted microscopy system. Qualitatively, the giraffe neo- widely bifurcating apical dendrites compared to ele- cortex contained an array of complex spiny neurons that phants. Quantitative dendritic measures revealed that the included both ‘‘typical’’ pyramidal neuron morphology elephant and humpback whale had more extensive den- and ‘‘atypical’’ spiny neurons in terms of morphology drites than giraffes, whereas the minke whale and bot- and/or orientation. In general, the neocortex exhibited a tlenose dolphin had less extensive dendritic arbors. -
Down but Not out in Posterior Cingulate Cortex: Deactivation Yet Functional Coupling with Prefrontal Cortex During Demanding Semantic Cognition
NeuroImage 141 (2016) 366–377 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Down but not out in posterior cingulate cortex: Deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition Katya Krieger-Redwood ⁎, Elizabeth Jefferies, Theodoros Karapanagiotidis, Robert Seymour, Adonany Nunes, Jit Wei Aaron Ang, Vierra Majernikova, Giovanna Mollo, Jonathan Smallwood Department of Psychology/York Neuroimaging Centre, University of York, Heslington, York, United Kingdom article info abstract Article history: The posterior cingulate cortex (pCC) often deactivates during complex tasks, and at rest is often only weakly cor- Received 30 March 2016 related with regions that play a general role in the control of cognition. These observations led to the hypothesis Accepted 29 July 2016 that pCC contributes to automatic aspects of memory retrieval and cognition. Recent work, however, has sug- Available online 30 July 2016 gested that the pCC may support both automatic and controlled forms of memory processing and may do so by changing its communication with regions that are important in the control of cognition across multiple do- Keywords: mains. The current study examined these alternative views by characterising the functional coupling of the Posterior cingulate cortex Dorsolateral prefrontal cortex pCC in easy semantic decisions (based on strong global associations) and in harder semantic tasks (matching Semantic control words on the basis of specific non-dominant features). Increasingly difficult semantic decisions led to the expect- Executive ed pattern of deactivation in the pCC; however, psychophysiological interaction analysis revealed that, under Rest these conditions, the pCC exhibited greater connectivity with dorsolateral prefrontal cortex (PFC), relative to Connectivity both easier semantic decisions and to a period of rest. -
Reading Action Word Affects the Visual Perception of Biological Motion Christel Bidet-Ildei, Laurent Sparrow, Yann Coello
Reading action word affects the visual perception of biological motion Christel Bidet-Ildei, Laurent Sparrow, Yann Coello To cite this version: Christel Bidet-Ildei, Laurent Sparrow, Yann Coello. Reading action word affects the visual perception of biological motion. Acta Psychologica, Elsevier, 2011, 137 (3), pp.330 - 334. 10.1016/j.actpsy.2011.04.001. hal-01773532 HAL Id: hal-01773532 https://hal.archives-ouvertes.fr/hal-01773532 Submitted on 17 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reading action word affects the visual perception of biological motion Christel Bidet-Ildei 1,2 , Laurent Sparrow 1, Yann Coello 1 1 URECA (EA 1059), University of Lille-Nord de France, 2 CeRCA, UMR-CNRS 6234, University of Poitiers. Corresponding author: Pr Yann Coello. Email: [email protected] Running title: Biological motion perception Keywords: Perception; Vision; Biological motion; Motor cognition, Language; Priming; Point-light display. Mailing Address: Pr. Yann COELLO URECA Université Charles De Gaulle – Lille3 BP 60149 59653 Villeneuve d'Ascq cedex, France Tel: +33.3.20.41.64.46 Fax: +33.3.20.41.60.32 Email: [email protected] 1 Abstract In the present study, we investigate whether reading an action-word can influence subsequent visual perception of biological motion.