APOE4 Is Associated with Differential Regional Vulnerability to Bioenergetic

Total Page:16

File Type:pdf, Size:1020Kb

APOE4 Is Associated with Differential Regional Vulnerability to Bioenergetic bioRxiv preprint doi: https://doi.org/10.1101/482422; this version posted December 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. APOE4 is Associated with Differential Regional Vulnerability to Bioenergetic Deficits in Aged APOE Mice Tal Nuriel1,2,*, Delfina Larrea1,3, David N. Guilfoyle4, Leila Pirhaji5, Kathleen Shannon6, Hirra Arain1,2, Archana Ashok1,2, Marta Pera1,3, Qiuying Chen7, Allissa A. Dillman8, Helen Y. Figueroa1,2, Mark R. Cookson8, Steven S. Gross7, Ernest Fraenkel5,9, Karen E. Duff1,2,10, †, and Estela Area-Gomez1,3, † 1Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th Street, New York, NY 10032, USA. 2Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY 10032, USA. 3Department of Neurology, Columbia University, 630 West 168th Street, New York, NY 10032, USA. 4Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, NY 10962, USA. 5Department of Biological Engineering, Massachusetts Institute of Technology, 350 Brookline Street, Cambridge, MA 02139, USA. 6Animal Facility, Nathan S. Kline Institute, Orangeburg, NY 10962, USA. 7Department of Pharmacology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA. 8Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, 20892 9Broad Institute, 415 Main Street, Cambridge, MA 02142, Cambridge, Massachusetts, 02139, USA. 10Division of Integrative Neuroscience in the Department of Psychiatry, New York State Psychiatric Institute, 630 West 168th Street, New York, NY 10032, USA. * Corresponding author: Tal Nuriel, email: [email protected] †These two authors contributed equally to this work and are co-senior authors. bioRxiv preprint doi: https://doi.org/10.1101/482422; this version posted December 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. ABSTRACT The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer’s disease (AD). However, the reason for the association between APOE4 and AD remains unclear. While much of the research has focused on the ability of the apoE4 protein to increase the aggregation and decrease the clearance of A, there is also an abundance of data showing that APOE4 negatively impacts many additional processes in the brain, including bioenergetics. In order to gain a more comprehensive understanding of the APOE4’s role in AD pathogenesis, we performed a multi-omic analysis of APOE4 vs. APOE3 expression in the entorhinal cortex (EC) and primary visual cortex (PVC) of aged APOE mice. These studies revealed region-specific alterations in several bioenergetic pathways, including oxidative phosphorylation (OxPhos), the TCA-cycle and fatty acid metabolism. Follow-up analysis utilizing the Seahorse platform revealed decreased mitochondrial respiration in the hippocampus and cortex of aged APOE4 vs. APOE3 mice, but not in the EC of these mice. Additional studies, as well as the original multi- omic data suggest that bioenergetic pathways in the EC of aged APOE mice may be differentially regulated by APOE4 expression. Given the importance of the EC as one of the first regions to be affected by AD pathology in humans, this differential bioenergetic regulation observed in the EC vs. other brain regions of aged APOE4 mice may play an important role in the pathogenesis of AD, particularly among APOE4 carriers. INTRODUCTION Possession of the ε4 allele of apolipoprotein E (APOE) is the major genetic risk factor for late-onset Alzheimer’s disease (AD). In normal physiology, the apoE protein plays a vital role in the transport of cholesterol and other lipids through the bloodstream, as well as within the brain (1-3). Although the three common isoforms of apoE (E2, E3 and E4) differ from each other by only two amino acids—apoE2 (Cys112, Cys158), apoE3 (Cys112, Arg158), apoE4 (Arg112, Arg158)—this small change in amino acid bioRxiv preprint doi: https://doi.org/10.1101/482422; this version posted December 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. sequence has a large effect on protein structure, causing the apoE4 protein to possess a more globular structure due to increased interaction between its N- and C-terminal domains. This difference in structure, in turn, affects the type of lipids that each isoform binds, as well as the affinity of each isoform for the numerous receptors that mediate the uptake of apoE and its cargo into cells (see reviews by (1, 4)). Importantly, these isoform differences also have a major impact on the pathogenesis of late-onset AD. Although the APOE2, APOE3 and APOE4 alleles are present at a relative frequency of about 8%, 77% and 15% in the normal population (5, 6), the APOE4 allele is present at a relative frequency of 36-64% in AD patients (7-10), with individuals who possess one or two APOE4 alleles having a 3- or 12-fold increased risk of developing AD, respectively (11). Although a number of mechanisms have been proposed to help explain this APOE4-associated susceptibility to AD, the precise cause remains a source of debate. The prominent hypothesis is that this increase in AD risk is due to the ability of apoE4 to increase the aggregation and decrease the clearance of A (12-18). However, APOE4 expression has also been shown to have deleterious effects on numerous A-independent pathways, including lipid metabolism, tau pathology, bioenergetics, neuronal development, synaptic plasticity, the neuro-vasculature, and neuro- inflammation [see reviews by (19) and (20)], any number of which could play a pivotal role in the pathogenesis of AD among APOE4 carriers. In terms of APOE4’s effects on bioenergetics, a number of pivotal reports have demonstrated that APOE4 expression leads to widespread dysregulation of the brain’s bioenergetic capacity. For example, early reports by Eric Reiman and colleagues demonstrated that both young and old APOE4 carriers display decreased glucose utilization, as measured by fluorodeoxyglucose positron emission tomography (FDG- PET), in similar brain regions to that seen with AD patients (21-23). Additional reports detail the wide- range of bioenergetic insults that APOE4 expression can cause in the brain, including impaired insulin signaling (24, 25), reduced cerebral blood volume and cognitive function in response to a high fat diet (HFD) (26, 27), altered genetic expression of glucose-regulating enzymes and transporters (28, 29), and the generation of a toxic C-terminal fragment of apoE4 that can directly target electron transport chain (ETC) bioRxiv preprint doi: https://doi.org/10.1101/482422; this version posted December 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. complexes in the mitochondria (30-32). In order to study the diverse effects that APOE4 expression has in the brain, we performed an initial multi-omic study of differential APOE isoform expression in an AD-vulnerable vs. an AD-resistant brain region from aged APOE targeted replacement mice, which express human APOE in place of their mouse Apoe gene and do not develop overt AD pathology. The EC was chosen as our AD-vulnerable brain region because it is one of the first brain regions to develop AD-related tau pathology, in humans (33, 34), and also because the morphology of the EC has been shown to be specifically affected by APOE4 gene expression. (35, 36). The PVC was chosen as our AD-resistant region because it is relatively spared in AD (33, 37, 38). As described below, these studies revealed APOE4-specific alterations in the levels of numerous genes and small-molecules related to energy metabolism, which were explored further using the Seahorse platform. In agreement with previous data, this analysis revealed APOE4-associated deficits in mitochondrial respiration in several brain regions. However, contrary to what we observed in other brain regions, the EC displayed increases in oxidative metabolism in the context of APOE4 expression, suggesting that, under metabolic stress, brain region-specific counterbalancing mechanisms are in play in the EC of aged APOE4 mice. Additional studies and further mining of the multi-omic data was then used to elucidate this differential bioenergetic regulation in the EC of aged APOE4 mice, which may play a causative role in the pathogenesis of AD and may point to novel therapeutic interventions for preventing or slowing the disease. RESULTS Multi-omic analysis reveals differential expression of energy-related genes and metabolites in the EC of aged APOE4 mice In order to investigate the effects of APOE4 expression in an untargeted manner, we performed a multi- omic analysis (transcriptomics and metabolomics) on RNA and small-molecules extracted from an AD- vulnerable brain region (the EC) vs. an AD-resistant brain region (the PVC) of 14-15 month-old APOE bioRxiv preprint doi: https://doi.org/10.1101/482422; this version posted December 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.
Recommended publications
  • • Our Bodies Make All the Cholesterol We Need. • 85 % of Our Blood
    • Our bodies make all the cholesterol we need. • 85 % of our blood cholesterol level is endogenous • 15 % = dietary from meat, poultry, fish, seafood and dairy products. • It's possible for some people to eat foods high in cholesterol and still have low blood cholesterol levels. • Likewise, it's possible to eat foods low in cholesterol and have a high blood cholesterol level SYNTHESIS OF CHOLESTEROL • LOCATION • All tissues • Liver • Cortex of adrenal gland • Gonads • Smooth endoplasmic reticulum Cholesterol biosynthesis and degradation • Diet: only found in animal fat • Biosynthesis: primarily synthesized in the liver from acetyl-coA; biosynthesis is inhibited by LDL uptake • Degradation: only occurs in the liver • Cholesterol is only synthesized by animals • Although de novo synthesis of cholesterol occurs in/ by almost all tissues in humans, the capacity is greatest in liver, intestine, adrenal cortex, and reproductive tissues, including ovaries, testes, and placenta. • Most de novo synthesis occurs in the liver, where cholesterol is synthesized from acetyl-CoA in the cytoplasm. • Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. • Since cholesterol is not synthesized in plants; vegetables & fruits play a major role in low cholesterol diets. • As previously mentioned, cholesterol biosynthesis is necessary for membrane synthesis, and as a precursor for steroid synthesis including steroid hormone and vitamin D production, and bile acid synthesis, in the liver. • Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. • Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesize: de novo.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Modulating Hallmarks of Cholangiocarcinoma
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Fall 12-14-2018 Modulating Hallmarks of Cholangiocarcinoma Cody Wehrkamp University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Molecular Biology Commons Recommended Citation Wehrkamp, Cody, "Modulating Hallmarks of Cholangiocarcinoma" (2018). Theses & Dissertations. 337. https://digitalcommons.unmc.edu/etd/337 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. MODULATING HALLMARKS OF CHOLANGIOCARCINOMA by Cody J. Wehrkamp A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor Justin L. Mott University of Nebraska Medical Center Omaha, Nebraska November 2018 Supervisory Committee: Kaustubh Datta, Ph.D. Melissa Teoh‐Fitzgerald, Ph.D. Richard G. MacDonald, Ph.D. Acknowledgements This endeavor has led to scientific as well as personal growth for me. I am indebted to many for their knowledge, influence, and support along the way. To my mentor, Dr. Justin L. Mott, you have been an incomparable teacher and invaluable guide. You upheld for me the concept that science is intrepid, even when the experience is trying. Through my training, and now here at the end, I can say that it has been an honor to be your protégé. When you have shaped your future graduates to be and do great, I will be privileged to say that I was your first one.
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • 33 34 35 Lipid Synthesis Laptop
    BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates
    [Show full text]
  • Steroid Interference with Antifungal Activity of Polyene Antibiotics
    APPLIED MICROBIOLOGY, Nov., 1966 Vol. 14, No. 6 Copyright © 1966 American Society for Microbiology Printed in U.S.A. Steroid Interference with Antifungal Activity of Polyene Antibiotics WALTER A. ZYGMUNT AND PETER A. TAVORMINA Department of Microbiology and Natural Products Research, Mead Johnson & Company, Evansville, Indiana Received for publication 21 April 1966 ABSTRACT ZYGMUNT, WALTER A. (Mead Johnson & Co., Evansville, Ind.), AND PETER A. TAVORMINA. Steroid interference with antifungal activity of polyene antibiotics. Appl. Microbiol. 14:865-869. 1966.-Wide differences exist among the polyene antibiotics, nystatin, rimocidin, filipin, pimaricin, and amphotericin B, with ref- erence to steroid interference with their antifungal activities against Candida albicans. Of the numerous steroids tested, ergosterol was the only one which ef- fectively antagonized the antifungal activity of all five polyene antibiotics. The antifungal activities of nystatin and amphotericin B were the least subject to vitia- tion by the addition of steroids other than ergosterol, and those of filipin, rimo- cidin, and pimaricin were the most sensitive to interference. Attempts to delineate the structural requirements of steroids possessing polyene-neutralizing activity in growing cultures of C. albicans are discussed. The ultraviolet absorbance of certain antibiotic steroid combinations was also studied. It has been suggested (1, 9, 13) that the polyene While studying the effects of various steroids antibiotics become bound to the fungal cell mem- on the antimonilial activity of pimaricin, we brane and cause permeability changes with observed that ergostenol was almost as effective attendant depletion of essential cellular con- as the above A5-3/3-hydroxy steroids in antag- stituents. Loss of potassium and ammonium onizing pimaricin.
    [Show full text]
  • Transcriptomic and Proteomic Profiling Provides Insight Into
    BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes.
    [Show full text]
  • Supplementary Table 8. Cpcp PPI Network Details for Significantly Changed Proteins, As Identified in 3.2, Underlying Each of the Five Functional Domains
    Supplementary Table 8. cPCP PPI network details for significantly changed proteins, as identified in 3.2, underlying each of the five functional domains. The network nodes represent each significant protein, followed by the list of interactors. Note that identifiers were converted to gene names to facilitate PPI database queries. Functional Domain Node Interactors Development and Park7 Rack1 differentiation Kcnma1 Atp6v1a Ywhae Ywhaz Pgls Hsd3b7 Development and Prdx6 Ncoa3 differentiation Pla2g4a Sufu Ncf2 Gstp1 Grin2b Ywhae Pgls Hsd3b7 Development and Atp1a2 Kcnma1 differentiation Vamp2 Development and Cntn1 Prnp differentiation Ywhaz Clstn1 Dlg4 App Ywhae Ywhab Development and Rac1 Pak1 differentiation Cdc42 Rhoa Dlg4 Ctnnb1 Mapk9 Mapk8 Pik3cb Sod1 Rrad Epb41l2 Nono Ltbp1 Evi5 Rbm39 Aplp2 Smurf2 Grin1 Grin2b Xiap Chn2 Cav1 Cybb Pgls Ywhae Development and Hbb-b1 Atp5b differentiation Hba Kcnma1 Got1 Aldoa Ywhaz Pgls Hsd3b4 Hsd3b7 Ywhae Development and Myh6 Mybpc3 differentiation Prkce Ywhae Development and Amph Capn2 differentiation Ap2a2 Dnm1 Dnm3 Dnm2 Atp6v1a Ywhab Development and Dnm3 Bin1 differentiation Amph Pacsin1 Grb2 Ywhae Bsn Development and Eef2 Ywhaz differentiation Rpgrip1l Atp6v1a Nphp1 Iqcb1 Ezh2 Ywhae Ywhab Pgls Hsd3b7 Hsd3b4 Development and Gnai1 Dlg4 differentiation Development and Gnao1 Dlg4 differentiation Vamp2 App Ywhae Ywhab Development and Psmd3 Rpgrip1l differentiation Psmd4 Hmga2 Development and Thy1 Syp differentiation Atp6v1a App Ywhae Ywhaz Ywhab Hsd3b7 Hsd3b4 Development and Tubb2a Ywhaz differentiation Nphp4
    [Show full text]
  • TXNDC9 (C-8): Sc-514770
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . TXNDC9 (C-8): sc-514770 BACKGROUND APPLICATIONS Thioredoxins comprise a family of small proteins that, by catalyzing the TXNDC9 (C-8) is recommended for detection of TXNDC9 of mouse, rat and oxidation of disulfide bonds, participate in redox reactions throughout the human origin by Western Blotting (starting dilution 1:100, dilution range cell. Proteins that contain thioredoxin domains do not necessarily convey 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein the oxidative properties of thioredoxins, but generally function as disulfide (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution isomerases that enzymatically rearrange disulfide bonds found in various range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution proteins. TXNDC9 (thioredoxin domain-containing protein 9), also known range 1:30-1:3000). as APACD (ATP-binding protein associated with cell differentiation), is a Suitable for use as control antibody for TXNDC9 siRNA (h): sc-94867, 226 amino acid protein that contains one thioredoxin domain and may be TXNDC9 siRNA (m): sc-154824, TXNDC9 shRNA Plasmid (h): sc-94867-SH, involved in cell differentiation events. The gene encoding TXNDC9 maps TXNDC9 shRNA Plasmid (m): sc-154824-SH, TXNDC9 shRNA (h) Lentiviral to human chromosome 2q11.2, which houses over 1,400 genes and com - Particles: sc-94867-V and TXNDC9 shRNA (m) Lentiviral Particles: prises nearly 8% of the human genome. Harlequin icthyosis, a rare and mor - sc-154824- V. bid skin deformity, is associated with mutations in the ABCA12 gene, while the lipid metabolic disorder sitosterolemia is associated with defects in the Molecular Weight of TXNDC9: 27 kDa.
    [Show full text]