Relationships Among Swimming Performance, Behavior, Water

Total Page:16

File Type:pdf, Size:1020Kb

Relationships Among Swimming Performance, Behavior, Water RELATIONSHIPS AMONG SWIMMING PERFORMANCE, BEHAVIOR, WATER VELOCITY, TEMPERATURE, AND BODY SIZE FOR SAUGER SANDER CANADENSIS AND LONGNOSE DACE RHINICHTHYS CATARACTAE by David Russell Dockery A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Fish and Wildlife Management MONTANA STATE UNIVERSITY Bozeman, Montana January 2015 ©COPYRIGHT by David Russell Dockery 2015 All Rights Reserved ii ACKNOWLEDGEMENTS This project would not be possible without the assistance, mentorship, hard work, and support of my graduate committee: Tom McMahon, Kevin Kappenman, Matt Blank, Megan Higgs, and Bob Bramblett. I would like to thank the staff at the Bozeman Fish Technology Center for their assistance in altering experimental conditions and feeding test fish. I would also like to thank Nick Pinkham and Chris Forrest for all their hard work on the project and their friendship. Thanks to my family and friends for their support, advice, and kindness through some difficult times. This project was the result of generous contributions and collaborations of the following organizations: the U.S. Fish and Wildlife Service (USFWS) Region Six Fish Passage Program, Plains and Prairie Potholes Landscape Conservation Cooperative of the USFWS, Bozeman Fish Technology Center USFWS, Western Transportation Institute of Montana State University (MSU), Ecology Department of MSU, Montana Fish, Wildlife and Parks, Wyoming Game and Fish Department, Montana Water Center, Turner Enterprises Incorporated, Gallatin National Forest U.S. Forest Service, and the Montana Chapter of the America Fisheries Society. I would like to thank Scott Roth who has been instrumental in securing funding for fish passage projects at the Bozeman Fish Technology Center and throughout Region six. I would also like to acknowledge the USFWS Pathways program, which provided me the opportunity to conduct this project, develop professionally, and make important connections within the USFWS. iii TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Literature Cited ................................................................................................................5 2. RELATIONSHIPS AMONG SWIMMING PERFORMANCE, BEHAVIOR, WATER VELOCITY, TEMPERATURE, AND BODY SIZE FOR SAUGER SANDER CANADENSIS .................................................................................................8 Abstract ............................................................................................................................8 Introduction ......................................................................................................................9 Methods..........................................................................................................................13 Study Design ..........................................................................................................13 Test Fish .................................................................................................................15 Passage and Sprint Tests .......................................................................................16 Usprint Test ...............................................................................................................19 Data Analysis .........................................................................................................20 Passage Test ...............................................................................................22 Sprint Test ..................................................................................................23 Usprint Test ...................................................................................................23 Results ............................................................................................................................24 Test Conditions ......................................................................................................24 Passage Test ..........................................................................................................25 Sprint Test ..............................................................................................................27 Usprint Test ...............................................................................................................27 Discussion ......................................................................................................................29 Tables .............................................................................................................................40 Figures............................................................................................................................43 Literature Cited ..............................................................................................................48 3. RELATIONSHIPS AMONG SWIMMING PERFORMANCE, BEHAVIOR, WATER VELOCITY, TEMPERATURE, AND BODY SIZE FOR LONGNOSE DACE RHINICHTHYS CATARACTAE .................................................56 Abstract ..........................................................................................................................56 Introduction ....................................................................................................................57 Methods..........................................................................................................................63 Study Design ..........................................................................................................63 Test Fish .................................................................................................................64 Passage and Sprint Tests .......................................................................................65 Data Analysis .................................................................................................................68 Passage Test ...............................................................................................69 iv TABLE OF CONTENTS – CONTINUED Sprint Test ..................................................................................................71 Results ............................................................................................................................71 Test Conditions ......................................................................................................71 Passage Test ..........................................................................................................73 Sprint Test ..............................................................................................................76 Discussion ......................................................................................................................77 Tables .............................................................................................................................87 Figures............................................................................................................................91 Literature Cited ..............................................................................................................96 4. CONCLUSIONS..........................................................................................................105 Literature Cited ............................................................................................................109 REFERENCES ................................................................................................................112 v LIST OF TABLES Table Page 2.1 Summary of test conditions and results for the nine velocity and temperature (T) treatment combinations during sauger passage testing in the experimental flume. Reynolds number (Re) is dimensionless. Mean velocity, Reynolds number, Dmax, and ground velocity are presented as mean ±1 SE (standard error). ...............40 2.2 Summary of hydraulic conditions and test results for the three temperature (T) treatments during sauger sprint testing in the experimental flume. Reynolds number (Re) is dimensionless. Trials represent the total number of trials performed within a given treatment. .........................................................................................................41 2.3 Summary of test results from the seven sauger Usprint temperature treatments. Results are split for the two groups. Temperature (T) recorded in °C and Usprint in cm/s. Trials represent the total number of trials performed within a given treatment ........................................................41 2.4 Coefficient estimates from the final linear mixed model describing the relationship between the maximum swimming velocity of sauger, as estimated in sprint tests, and temperature (°C), and fish length (cm) ..............42 2.5 Coefficient estimates from the final linear mixed model describing relationships between Usprint, as estimated in sauger swim chamber Usprint tests, temperature (°C), and fish length (cm). Data presented separately for group one (top) and group two (bottom) ...................................42 3.1 Summary of hydraulic conditions for the 12 velocity and temperature (T) treatment combinations during longnose dace passage testing in the experimental flume. Reynolds (Re) and Froude (Fr) numbers are dimensionless. Bottom velocity, mean velocity (measured
Recommended publications
  • Influence of Non-Native Trout on Native Non-Game Fish in Nebraska Headwater Streams" (2014)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Natural Resources Natural Resources, School of 5-2014 Influence of Non-Native Trout on Native Non- Game Fish in Nebraska Headwater Streams Kelly C. Turek University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/natresdiss Part of the Aquaculture and Fisheries Commons Turek, Kelly C., "Influence of Non-Native Trout on Native Non-Game Fish in Nebraska Headwater Streams" (2014). Dissertations & Theses in Natural Resources. 90. http://digitalcommons.unl.edu/natresdiss/90 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INFLUENCE OF NON-NATIVE TROUT ON NATIVE NON-GAME FISH IN NEBRASKA HEADWATER STREAMS By Kelly C. Turek A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Natural Resource Sciences Under the Supervision of Professors Mark A. Pegg and Kevin L. Pope Lincoln, Nebraska May, 2014 INFLUENCE OF NON-NATIVE TROUT ON NATIVE NON-GAME FISH IN NEBRASKA HEADWATER STREAMS Kelly C. Turek, M.S. University of Nebraska, 2014 Advisors: Mark A. Pegg and Kevin L. Pope Introduced, non-native trout may have detrimental competitive or predatory interactions with native fishes. However, few studies have experimentally examined interactions between introduced trout and native non-game species.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • Aquatic Fish Report
    Aquatic Fish Report Acipenser fulvescens Lake St urgeon Class: Actinopterygii Order: Acipenseriformes Family: Acipenseridae Priority Score: 27 out of 100 Population Trend: Unknown Gobal Rank: G3G4 — Vulnerable (uncertain rank) State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Ouachita Mountains Arkansas Valley South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plains Acipenser fulvescens Lake Sturgeon 362 Aquatic Fish Report Ecobasins Mississippi River Alluvial Plain - Arkansas River Mississippi River Alluvial Plain - St. Francis River Mississippi River Alluvial Plain - White River Mississippi River Alluvial Plain (Lake Chicot) - Mississippi River Habitats Weight Natural Littoral: - Large Suitable Natural Pool: - Medium - Large Optimal Natural Shoal: - Medium - Large Obligate Problems Faced Threat: Biological alteration Source: Commercial harvest Threat: Biological alteration Source: Exotic species Threat: Biological alteration Source: Incidental take Threat: Habitat destruction Source: Channel alteration Threat: Hydrological alteration Source: Dam Data Gaps/Research Needs Continue to track incidental catches. Conservation Actions Importance Category Restore fish passage in dammed rivers. High Habitat Restoration/Improvement Restrict commercial harvest (Mississippi River High Population Management closed to harvest). Monitoring Strategies Monitor population distribution and abundance in large river faunal surveys in cooperation
    [Show full text]
  • The Presence of Salish Sucker and the Native Fish Fauna at Naval Radio Station Jim Creek, Washington
    STATE OF WASHINGTON October 2017 The Presence of Salish Sucker and the Native Fish Fauna at Naval Radio Station Jim Creek, Washington by Danny Garrett and Justin Spinelli Washington Department of Fish and Wildlife Fish Program Fish Management FPT 17-11 The Presence of Salish Sucker and the Native Fish Fauna at Naval Radio Station Jim Creek, Washington Danny Garrett and Justin Spinelli Washington Department of Fish and Wildlife Mill Creek, Washington Table of Contents List of Tables ................................................................................................................................................. ii List of Figures ............................................................................................................................................... iii Introduction .................................................................................................................................................. 1 Materials and Methods ................................................................................................................................. 2 Study Area ................................................................................................................................................. 2 Data Collection .......................................................................................................................................... 3 Salish Sucker Presence Study ...............................................................................................................
    [Show full text]
  • Reproductive Ecology and Habitat Preference of the Leopard Darter, Percina Pantherina
    REPRODUCTIVE ECOLOGY AND HABITAT PREFERENCE OF THE LEOPARD DARTER, PERCINA PANTHERINA By PAUL WILLIAM /~AMES Bachelor of Science University of Kansas Lawrence, Kansas 1981 ·4::er of Science ...1.issouri State University 3pringfield, Missouri 1983 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the·Degree of DOCTOR OF PHILOSOPHY July, 1989 . - ~· ,• ) "' Oklahoma State Univ. Lihra1 REPRODUCTIVE ECOLOGY AND HABITAT PREFERENCE OF THE LEOPARD DARTER, PERCINA PANTHERINA Thesis Approved: ii ACKNOWLEDGMENTS I wish to thank my advisor, Dr. o. Eugene Maughan, for giving me the opportunity to work on this project and for his encouragement throughout my graduate program. I would also like to thank the members of my graduate committee, Dr. William A. Drew, Dr. Anthony A. Echelle, Dr. Rudolph J. Miller, and Dr. Alexander v. Zale, for their professional and personal advice throughout the course of the study. I wish to extend my sincere gratitude to the u. s. Fish and Wildlife Service, the Oklahoma Department of Wildlife Conservation, and the Oklahoma Cooperative Fish and Wildlife Research Unit for providing financial and technical support for the study. I am especially grateful to Mr. Frank James of the Oklahoma Department of Wildlife Conservation's McCurtain County Wilderness Area for his friendship and hospitality during extended field trips. A sincere thanks goes to Rick Horton, Steve O'Donnell, and Todd Phillips for their help in the field and laboratory. A special thanks goes to Stuart Leon for helping with the development of many of the field and data analysis techniques used in this study.
    [Show full text]
  • Fishtraits: a Database on Ecological and Life-History Traits of Freshwater
    FishTraits database Traits References Allen, D. M., W. S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of saltmarsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42(1)37-50. [multiple species] Anderson, K. A., P. M. Rosenblum, and B. G. Whiteside. 1998. Controlled spawning of Longnose darters. The Progressive Fish-Culturist 60:137-145. [678] Barber, W. E., D. C. Williams, and W. L. Minckley. 1970. Biology of the Gila Spikedace, Meda fulgida, in Arizona. Copeia 1970(1):9-18. [485] Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, WI. Belk, M. C., J. B. Johnson, K. W. Wilson, M. E. Smith, and D. D. Houston. 2005. Variation in intrinsic individual growth rate among populations of leatherside chub (Snyderichthys copei Jordan & Gilbert): adaptation to temperature or length of growing season? Ecology of Freshwater Fish 14:177-184. [349] Bonner, T. H., J. M. Watson, and C. S. Williams. 2006. Threatened fishes of the world: Cyprinella proserpina Girard, 1857 (Cyprinidae). Environmental Biology of Fishes. In Press. [133] Bonnevier, K., K. Lindstrom, and C. St. Mary. 2003. Parental care and mate attraction in the Florida flagfish, Jordanella floridae. Behavorial Ecology and Sociobiology 53:358-363. [410] Bortone, S. A. 1989. Notropis melanostomus, a new speices of Cyprinid fish from the Blackwater-Yellow River drainage of northwest Florida. Copeia 1989(3):737-741. [575] Boschung, H.T., and R. L. Mayden. 2004. Fishes of Alabama. Smithsonian Books, Washington. [multiple species] 1 FishTraits database Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes.
    [Show full text]
  • Speckled Dace, Rhinichthys Osculus, in Canada, Prepared Under Contract with Environment and Climate Change Canada
    COSEWIC Assessment and Status Report on the Speckled Dace Rhinichthys osculus in Canada ENDANGERED 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the Speckled Dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 51 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Previous report(s): COSEWIC 2006. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 27 pp. (www.sararegistry.gc.ca/status/status_e.cfm). COSEWIC 2002. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 36 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Peden, A. 2002. COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada, in COSEWIC assessment and update status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-36 pp. Peden, A.E. 1980. COSEWIC status report on the speckled dace Rhinichthys osculus in Canada. Committee on the Status of Endangered Wildlife in Canada. 1-13 pp. Production note: COSEWIC would like to acknowledge Andrea Smith (Hutchinson Environmental Sciences Ltd.) for writing the status report on the Speckled Dace, Rhinichthys osculus, in Canada, prepared under contract with Environment and Climate Change Canada.
    [Show full text]
  • Environmental Assessment
    Job Number 012318 Tier 3 Categorical Exclusion Page 1 of 3 The Environmental Division reviewed the referenced project and has determined it falls within the definition of the Tier 3 Categorical Exclusion as defined by the ARDOT/FHWA Memorandum of Agreement on the processing of Categorical Exclusions. The following information is included for your review and, if acceptable, approval as the environmental documentation for this project. The proposed project would replace two bridges on Highway 7 over the Middle Fork of the Saline River in Garland County (Site 1) and Dry Run Creek in Perry County (Site 2), both within the boundary of the Ouachita National Forest. Total length of the project is approximately 0.5 mile. A project location map is enclosed. The existing roadway consists of two 11’ wide paved travel lanes with 2’ wide gravel shoulders at Site 1 and 2’ wide paved shoulders at Site 2. Existing right of way width averages 132’. Proposed improvements retain the two 11’ wide paved travel lanes, but increase the shoulder width to 6’ (2’ paved). The average proposed right of way width will be 187’ at Site 1 and 132’ at Site 2. Approximately 2.3 acres of additional permanent easement and 0.5 acre of temporary construction easement will be required for this project. To maintain traffic during construction, the Middle Fork Saline River bridge (Site 1) will be replaced using a temporary detour located 60’ east (downstream) of the existing bridge while the new bridge is constructed on the existing alignment. The Dry Run Creek bridge (Site 2) will be replaced approximately 80’ east (upstream) of the existing bridge.
    [Show full text]
  • How to Use This Checklist
    How To Use This Checklist JAWLESS FISHES: SUPERCLASS AGNATHA Pikes: Family Esocidae LAMPREYS: CLASS CEPHALASPIDOMORPHI __ Grass Pickerel Esox americanus O Lampreys: Family Petromyzontidae __ Northern Pike Esox lucius O; Lake Erie and Hinckley Lake; The information presented in this checklist reflects our __ Silver Lamprey Ichthyomyzon unicuspis h current understanding of the status of fishes within Cleveland formerly common __ American brook Lamprey Lampetra appendix R; __ Muskellunge Esox masquinongy R; Lake Erie; Metroparks. You can add to our understanding by being a Chagrin River formerly common knowledgeable observer. Record your observations and __ *Sea Lamprey Petromyzon marinus O; Lake Erie; Minnows: Family Cyprinidae contact a naturalist if you find something that may be of formerly common; native to Atlantic Coast __ Golden Shiner Notemigonus crysoleucas C interest. JAWED FISHES: SUPERCLASS __ Redside Dace Clinostomus elongatus O GNATHOSTOMATA __ Southern Redbelly Dace Phoxinus erythrogaster R Species are listed taxonomically. Each species is listed with a BONY FISHES: CLASS OSTEICHTHYES __ Creek Chub Semotilus atromaculatus C common name, a scientific name and a note about its Sturgeons: Family Acipenseridae __ Hornyhead Chub Nocomis biguttatus h; formerly in occurrence within Cleveland Metroparks. Check off species __ Lake Sturgeon Acipenser fulvescens h; Lake Erie; Cuyahoga and Chagrin River drainages. that you identify in Cleveland Metroparks. Ohio endangered __ River Chub Nocomis micropogon C; Chagrin River; O Gars: Family
    [Show full text]
  • Brook Floater ( Alasmidonta Varicosa)
    COSEWIC Assessment and Status Report on the Brook Floater Alasmidonta varicosa in Canada SPECIAL CONCERN 2009 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2009. COSEWIC assessment and status report on the Brook Floater Alasmidonta varicosa in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 79 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Katherine A. Bredin and André L. Martel for writing the status report on the Brook Floater Alasmidonta varicosa in Canada, prepared under contract with Environment Canada, overseen and edited by Janice Smith and Dr. Dwayne Lepitzki, COSEWIC Molluscs Specialist Subcommittee Co-chairs For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’alasmidonte renflée (Alasmidonta varicosa) au Canada. Cover photo: Brook Floater — Provided by the author. Her Majesty the Queen in Right of Canada, 2009. Catalogue No. CW69-14/580-2009E-PDF ISBN 978-1-100-12944-0 Recycled paper COSEWIC Assessment Summary Assessment Summary – April 2009 Common name Brook Floater Scientific name Alasmidonta varicosa Status Special Concern Reason for designation A medium-sized freshwater mussel that is confined to 15 widely scattered watersheds in Nova Scotia and New Brunswick. This mussel was never abundant, usually representing only 1-5% of the total freshwater mussel fauna present.
    [Show full text]
  • Rio Grande Chub (Gila Pandora) UNDER the ENDANGERED SPECIES ACT
    PETITION TO LIST THE Rio Grande Chub (Gila pandora) UNDER THE ENDANGERED SPECIES ACT Photo of Rio Grande Chub (Gila pandora) by Chad Thomas, Texas State University – San Marcos Petition Submitted to the U.S. Secretary of the Interior acting through the U.S. Fish and Wildlife Service Petitioner: WildEarth Guardians 1536 Wynkoop Street, Suite 301 Denver, Colorado 80202 505-490-5141 Address correspondence to: Taylor Jones [email protected] September 27, 2013 Petition prepared by: Kevin Blake, Michael Daugherty, Michael Howard, and Brian O’Neill, Student Attorneys, and Michael C. Soules, Supervising Attorney Getches-Green Natural Resources and Environmental Law Clinic University of Colorado Law School Wolf Law Building, UCB 404 Boulder, CO 80309-0404 I. INTRODUCTION WildEarth Guardians (“Guardians”) respectfully requests that the Secretary of Interior, acting through the U.S. Fish and Wildlife Service (“FWS”), list the Rio Grande Chub (Gila pandora) (“Chub”) as “threatened” or “endangered” under the Endangered Species Act (“ESA”). See 16 U.S.C. §§ 1531-1544. Guardians also requests that FWS designate critical habitat throughout the species’ historical range. The Chub is a small fish located primarily in the Rio Grande Basin in Colorado and New Mexico, with an isolated population in Texas. Rees et al. 2005 at 9. Its historic range has been reduced by 75%. Id. Having been extirpated from the main stem of the Rio Grande, the Chub lives only in a few select tributaries. Id. The species is at high risk for future population declines; isolated populations are more susceptible to catastrophic events because recolonization from nearby populations is unlikely.
    [Show full text]