Osteology of the Late Jurassic Portuguese Sauropod Dinosaur Lusotitan Atalaiensis (Macronaria) and the Evolutionary History of Basal Titanosauriforms

Total Page:16

File Type:pdf, Size:1020Kb

Osteology of the Late Jurassic Portuguese Sauropod Dinosaur Lusotitan Atalaiensis (Macronaria) and the Evolutionary History of Basal Titanosauriforms bs_bs_banner Zoological Journal of the Linnean Society, 2013, 168, 98–206. With 30 figures Osteology of the Late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal titanosauriforms PHILIP D. MANNION1,2*, PAUL UPCHURCH3, ROSIE N. BARNES3 and OCTÁVIO MATEUS4,5 1Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK 2Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany 3Department of Earth Sciences, UCL, University College London, Gower Street, London WC1E 6BT, UK 4Department of Earth Sciences (CICEGE-FCT), Universidade Nova da Lisboa, 2829-516 Monte de Caparica, Portugal 5Museu da Lourinhã, Rua João Luís de Moura, 2530-157 Lourinhã, Portugal Received 20 July 2012; revised 24 January 2013; accepted for publication 12 February 2013 Titanosauriforms represent a diverse and globally distributed clade of neosauropod dinosaurs, but their inter- relationships remain poorly understood. Here we redescribe Lusotitan atalaiensis from the Late Jurassic Lourinhã Formation of Portugal, a taxon previously referred to Brachiosaurus. The lectotype includes cervical, dorsal, and caudal vertebrae, and elements from the forelimb, hindlimb, and pelvic girdle. Lusotitan is a valid taxon and can be diagnosed by six autapomorphies, including the presence of elongate postzygapophyses that project well beyond the posterior margin of the neural arch in anterior-to-middle caudal vertebrae. A new phylogenetic analysis, focused on elucidating the evolutionary relationships of basal titanosauriforms, is presented, comprising 63 taxa scored for 279 characters. Many of these characters are heavily revised or novel to our study, and a number of ingroup taxa have never previously been incorporated into a phylogenetic analysis. We treated quantitative characters as discrete and continuous data in two parallel analyses, and explored the effect of implied weighting. Although we recovered monophyletic brachiosaurid and somphospondylan sister clades within Titanosauriformes, their compositions were affected by alternative treatments of quantitative data and, especially, by the weighting of such data. This suggests that the treatment of quantitative data is important and the wrong decisions might lead to incorrect tree topologies. In particular, the diversity of Titanosauria was greatly increased by the use of implied weights. Our results support the generic separation of the contemporaneous taxa Brachiosaurus, Giraf- fatitan, and Lusotitan, with the latter recovered as either a brachiosaurid or the sister taxon to Titanosauriformes. Although Janenschia was recovered as a basal macronarian, outside Titanosauria, the sympatric Australodocus provides body fossil evidence for the pre-Cretaceous origin of titanosaurs. We recovered evidence for a sauropod with close affinities to the Chinese taxon Mamenchisaurus in the Late Jurassic Tendaguru beds of Africa, and present new information demonstrating the wider distribution of caudal pneumaticity within Titanosauria. The earliest known titanosauriform body fossils are from the late Oxfordian (Late Jurassic), although trackway evidence indicates a Middle Jurassic origin. Diversity increased throughout the Late Jurassic, and titanosauri- forms did not undergo a severe extinction across the Jurassic/Cretaceous boundary, in contrast to diplodocids and non-neosauropods. Titanosauriform diversity increased in the Barremian and Aptian–Albian as a result of radiations of derived somphospondylans and lithostrotians, respectively, but there was a severe drop (up to 40%) in species numbers at, or near, the Albian/Cenomanian boundary, representing a faunal turnover whereby basal titanosauriforms were replaced by derived titanosaurs, although this transition occurred in a spatiotemporally staggered fashion. © 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 98–206. doi: 10.1111/zoj.12029 *Corresponding author. E-mail: [email protected] Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyonlinelibrary.com/ onlineopen#OnlineOpen_Terms 98 © 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 98–206 LUSOTITAN AND TITANOSAURIFORM EVOLUTION 99 ADDITIONAL KEYWORDS: biogeography – continuous data – Cretaceous – Gondwana – implied weighting – Laurasia – Lourinhã – Mamenchisauridae – Mesozoic – phylogeny – pneumaticity – Titanosauria. INTRODUCTION Curry Rogers, 2005; Wilson, 2005a; Mannion & Calvo, 2011; Mannion et al., 2011b; Mannion & Otero, 2012), The Late Jurassic terrestrial fauna of Portugal com- a global distribution (McIntosh, 1990; Upchurch prises a diverse dinosaur assemblage (Lapparent & et al., 2004a; Cerda et al., 2012a), and a temporal Zbyszewski, 1957; Antunes & Mateus, 2003; Mateus, range extending from the Middle Jurassic through to 2006). Sauropods are represented by at least four the end-Cretaceous (Day et al., 2002, 2004; Upchurch taxa: a diplodocid (Dinheirosaurus lourinhanensis; & Martin, 2003; Upchurch et al., 2004a). However, Bonaparte & Mateus, 1999; Mannion et al., 2012), a the inter-relationships of titanosauriforms are poorly probable basal eusauropod (Lourinhasaurus alenque- understood, with little resolution or consensus (e.g. rensis; Lapparent & Zbyszewski, 1957; Dantas et al., Salgado et al., 1997; Sanz et al., 1999; Smith et al., 1998; Upchurch, Barrett & Dodson, 2004a), a turia- 2001; Wilson, 2002; Upchurch et al., 2004a; Curry saur (Mateus, 2009; Ortega et al., 2010; Mocho, Rogers, 2005; Calvo et al., 2007; Canudo, Royo-Torres Ortega & Royo-Torres, 2012; Mateus, Mannion & & Cuenca-Bescós, 2008; González Riga, Previtera Upchurch, in review), and Lusotitan atalaiensis. The & Pirrone, 2009; Hocknull et al., 2009; Ksepka & latter was originally considered a new species of Bra- Norell, 2010; Carballido et al., 2011a, b; Gallina chiosaurus (Lapparent & Zbyszewski, 1957) before & Apesteguía, 2011; Mannion, 2011; Mannion & being assigned to its own genus within Titanosauri- Upchurch, 2011; Santucci & Arruda-Campos, 2011; formes (Antunes & Mateus, 2003; Upchurch et al., Zaher et al., 2011; Royo-Torres, Alcalá & Cobos, 2012). 2004a), although it has never been fully described. Furthermore, most titanosauriform analyses have Brachiosaurus altithorax is known from the Late focused on titanosaurs, with only a small sample of Jurassic Morrison Formation of North America putative basal titanosauriforms included. The excep- (Riggs, 1903) and a second species, Brachiosaurus tion to this is a recent analysis by D’Emic (2012) that brancai, was described from the contemporaneous concentrated on basal forms: 25 ingroup taxa were Tendaguru Formation of Tanzania (Janensch, 1914). included, representing approximately 50% of putative A recent revision demonstrated numerous anatomical basal members of Titanosauriformes (see below). differences between these two titanosauriform species In this paper, we provide a detailed redescription and argued for their generic separation, proposing and new diagnosis of the Portuguese sauropod Luso- the new binomial Giraffatitan brancai for the African titan atalaiensis. This work represents part of a series taxon (Taylor, 2009). Chure et al. (2010; see also of papers in which we will revise the Late Jurassic Whitlock, 2011a) questioned this separation based on Portuguese sauropod fauna (see also Mannion et al., the sister-taxon relationship of the two species recov- 2012). We also present a new phylogenetic analysis, ered in Taylor’s (2009) phylogenetic analysis (see also consisting of revised and novel characters, focused on Royo-Torres, 2009). Following Taylor (2009), Ksepka elucidating the evolutionary relationships of basal & Norell (2010), Carballido et al. (2012), and D’Emic titanosauriforms. (2012, 2013) included Brachiosaurus and Giraffatitan as separate operational taxonomic units (OTUs). Ksepka & Norell (2010) recovered them in a polytomy with three North American Cretaceous taxa, INSTITUTIONAL ABBREVIATIONS Carballido et al. (2012) placed them in a polytomy CAMSM, Sedgwick Museum, University of Cam- with Somphospondyli, whereas Giraffatitan was bridge, UK; CM, Carnegie Museum of Natural recovered in a basal position to Brachiosaurus in the History, Pittsburgh, PA, USA; CPT, Museo de la Fun- analysis of D’Emic (2012, 2013). However, none of dación Conjunto Paleontológico de Teruel-Dinópolis, these analyses included Lusotitan; thus, we currently Aragón, Spain; DMNH, Denver Museum of Natural do not know how the Portuguese form is related to History, Denver, CO, USA; FMNH, Field Museum of these two taxa, or to other basal titanosauriforms. Natural History, Chicago, IL, USA; HMN, Humboldt Titanosauriformes represents the most diverse Museum für Naturkunde, Berlin, Germany; IVPP, clade of sauropod dinosaurs, with over 90 distinct Institute of Vertebrate Paleontology and Paleoanthro- species (Salgado, Coria & Calvo, 1997; Wilson & pology, Beijing, China; MACN, Museo Argentino de Upchurch, 2003, 2009; Upchurch et al., 2004a, 2011a; Ciencias Naturales ‘Bernardino Rivadavia’, Buenos © 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 98–206 100 P. D. MANNION ET AL. Aires, Argentina; MAPA, Museo Aragones de Paleon- centrum, one posterior dorsal neural spine, 21 caudal tología, Aragón, Spain; MCF, Museo ‘Carmen Funes’, vertebrae, thoracic rib fragments, one sacral rib, 12 Neuquén, Argentina;
Recommended publications
  • Overosaurus Paradasorum Gen. Et Sp. Nov. , a New Sauropod Dinosaur (Titanosauria: Lithostrotia) from the Late Cretaceous of Neuquén, Patagonia, Argentina
    Zootaxa 3683 (4): 357–376 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3683.4.2 http://zoobank.org/urn:lsid:zoobank.org:pub:C1C6988A-6E7B-449E-9CEF-376FC9B3DCA9 Overosaurus paradasorum gen. et sp. nov. , a new sauropod dinosaur (Titanosauria: Lithostrotia) from the Late Cretaceous of Neuquén, Patagonia, Argentina RODOLFO A. CORIA1,2,3, LEONARDO S. FILIPPI4, LUIS M. CHIAPPE3, RODOLFO GARCÍA1 & ANDREA B. ARCUCCI5 1Consejo Nacional de Investigaciones Cientificas y Técnicas - Instituto de Investigaciones en Paleobiología y Geología, Universidad Nacional de Río Negro, General Roca (8332), Argentina. E-mail: [email protected], [email protected] 2Subsecretaría de Cultura de Neuquén – Museo Carmen Funes, Plaza Huincul (8318), Argentina 3Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles (90000), USA. E-mail: [email protected] 4Museo Municipal “Argentino Urquiza”, Rincón de los Sauces (8319), Argentina. E-mail: [email protected] 5Area de Zoología, Facultad de Química, Farmacia y Bioquímica, Universidad Nacional de San Luis,San Luis (5700), Argentina. E-mail: [email protected] Abstract A new lithostrotian sauropod, the small-sized Overosaurus paradasorum n. gen et sp. from the Anacleto Formation (Cam- panian, Late Cretaceous, Neuquén Group, Patagonia, Argentina) is here described. The specimen (MAU-Pv-CO-439) consists of a fully articulated vertebral series from the 10th cervical to the 20th caudal vertebra, the last cervical ribs, several dorsal ribs in articulation with their respective vertebrae, the complete right ilium and fragments of the left ilium.
    [Show full text]
  • Oldest Known Dinosaurian Nesting Site and Reproductive Biology of the Early Jurassic Sauropodomorph Massospondylus
    Oldest known dinosaurian nesting site and reproductive biology of the Early Jurassic sauropodomorph Massospondylus Robert R. Reisza,1, David C. Evansb, Eric M. Robertsc, Hans-Dieter Suesd, and Adam M. Yatese aDepartment of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; bRoyal Ontario Museum, Toronto, ON M5S 2C6, Canada; cSchool of Earth and Environmental Sciences, James Cook University, Townsville, 4811 QLD, Australia; dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013; and eBernard Price Institute for Palaeontological Research, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa Edited by Steven M. Stanley, University of Hawaii, Honolulu, HI, and approved December 16, 2011 (received for review June 10, 2011) The extensive Early Jurassic continental strata of southern Africa clutches and recognition of the earliest known dinosaurian nesting have yielded an exceptional record of dinosaurs that includes complex at the Rooidraai locality. scores of partial to complete skeletons of the sauropodomorph Massospondylus, ranging from embryos to large adults. In 1976 an Results incomplete egg clutch including in ovo embryos of this dinosaur, Our work at the Rooidraai locality has yielded multiple in situ the oldest known example in the fossil record, was collected from clutches of eggs as well as fragmentary eggshell and bones, all from a road-cut talus, but its exact provenance was uncertain. An exca- a 2-m-thick interval of muddy siltstone 25 m from the top of the vation program at the site started in 2006 has yielded multiple in Lower Jurassic Upper Elliot Formation (“Stormberg Group,” situ egg clutches, documenting the oldest known dinosaurian Karoo Supergroup) (11).
    [Show full text]
  • Saurian Safari a Walk in the Jurassic Park
    Dinosaur Safari Junior Introduction: The rules are a simplified variant Of the Saurian Safari rules developed by Chris Peers and originally published by HLBS publishing 2002, this an instructional aid used for the Smithsonian Summer camp program. The rules were developed for grades K – 5 but fun with older age groups. The instructor will act as a Game Master (GM) and will be responsible for preparing the character sheets and setting up the map. This custom version is for a fast moving with minimal book keeping or rolling on charts. Game time recommended for 45 – 60 minutes per scenario. A. Preparation: The GM will have printer character sheets and a six-sided die (D6) and a ten-sided die (D10). Each gamer will need a figure and character sheet. A large vinyl hex map crossed with a river is used for the camp. 1. Setup map. The GM will set up the hex map. Terrain types are forest, river or swamp, clear or hills. Follow guidelines for map set up listed for the scenario. The goal is represent the environment of the period. SAURIAN SAFARI JR: CHARACTER SHEET Name: Shooting Skill: (D6x10 + 40) Agility: (D6+ 4) Weapon: Range: Penetration: Damage: Trophies: Species Taken Other Information 2. Help gamers create a character. GM will to help gamers. Calculate the following and record on sheet. For name write gamers name. For Shooting skill roll 1 D6 multiple by 10 and add 40. For Agility roll D6 and add 4. Chose one weapon. Dinosaur Gun. Penetration 12 Damage 8 Nitro Express, double barrel, -5 subtracted from character accuracy.
    [Show full text]
  • Valérie Martin, Varavudh Suteethorn & Eric Buffetaut, Description of the Type and Referred Material of Phuwiangosaurus
    ORYCTOS, V ol . 2 : 39 - 91, Décembre 1999 DESCRIPTION OF THE TYPE AND REFERRED MATERIAL OF PHUWIANGOSAURUS SIRINDHORNAE MARTIN, BUFFETAUT AND SUTEETHORN, 1994, A SAUROPOD FROM THE LOWER CRETACEOUS OF THAILAND Valérie MARTIN 1, Varavudh SUTEETHORN 2 and Eric BUFFETAUT 3 1 Musée des Dinosaures, 11260 Espéraza, France 2 Geological Survey Division, Department of Mineral Resources, Rama VI Road, 10400 Bangkok, Thailand 3 CNRS (UMR 5561), 16 cour du Liégat, 75013 Paris, France Abstract : The type specimen of P. sirindhornae Martin, Buffetaut and Suteethorn, 1994 is an incomplete, partly articulated, skeleton discovered in the Phu Wiang area of northeastern Thailand). Most of the abundant sauropod material from the Sao Khua Formation (Early Cretaceous), collected on the Khorat Plateau, in northeastern Thailand, is referable to this species. Phuwiangosaurus is a middle-sized sauropod, which is clearly different from the Jurassic Chinese sauropods (Euhelopodidae). On the basis of a few jaw elements and teeth, P. sirindhornae may be considered as an early representative of the family Nemegtosauridae. Key words : Sauropoda, Osteology, Early Cretaceous, Thailand Description du type et du matériel rapporté de Phuwiangosaurus sirindhornae Martin, Buffetaut et Suteethorn, 1994, un sauropode du Crétacé inférieur de Thaïlande Résumé : Le spécimen type de Phuwiangosaurus sirindhornae est un squelette incomplet, partiellement articulé, découvert dans la région de Phu Wiang (Nord-Est de la Thaïlande). Phuwiangosaurus est un sauropode de taille moyenne (15 à 20 m de longueur) très différent des sauropodes du Jurassique chinois. La majeure partie de l’abondant matériel de sauropodes, récolté sur le Plateau de Khorat (Formation Sao Khua, Crétacé inférieur), est rap - portée à cette espèce.
    [Show full text]
  • Dino Cards Project D E F List B
    Daanosaurus Efraasia Dacentrurus Einiosaurus "Dachongosaurus" – nomen nudum Ekrixinatosaurus Daemonosaurus Elachistosuchus – a rhynchocephalian Dahalokely Elaltitan Dakosaurus – a metriorhynchid crocodilian Elaphrosaurus Dakotadon Elmisaurus Dakotaraptor Elopteryx - nomen dubium Daliansaurus Elosaurus – junior synonym of Brontosaurus "Damalasaurus" – nomen nudum Elrhazosaurus Dandakosaurus - nomen dubium "Elvisaurus" – nomen nudum; Cryolophosaurus Danubiosaurus – junior synonym of Struthiosaurus Emausaurus "Daptosaurus" – nomen nudum; early manuscript name for Deinonychus Embasaurus - theropoda incertae sedis Darwinsaurus - possible junior synonym of Huxleysaurus Enigmosaurus Dashanpusaurus Eoabelisaurus Daspletosaurus Eobrontosaurus – junior synonym of Brontosaurus Dasygnathoides – a non-dinosaurian archosaur, junior synonym Eocarcharia of Ornithosuchus Eoceratops – junior synonym of Chasmosaurus "Dasygnathus" – preoccupied name, now known as Dasygnathoides Eocursor Datanglong Eodromaeus Datonglong "Eohadrosaurus" – nomen nudum; Eolambia Datousaurus Eolambia Daurosaurus – synonym of Kulindadromeus Eomamenchisaurus Daxiatitan Eoplophysis - Dinosauria indet. Deinocheirus Eoraptor Deinodon – possibly Gorgosaurus Eosinopteryx - Avialae Deinonychus Eotrachodon Delapparentia - probable junior synonym of Iguanodon Eotriceratops Deltadromeus Eotyrannus Demandasaurus Eousdryosaurus Denversaurus Epachthosaurus Deuterosaurus – a therapsid Epanterias – may be Allosaurus Diabloceratops "Ephoenosaurus" – nomen nudum; Machimosaurus (a crocodilian) Diamantinasaurus
    [Show full text]
  • The Princeton Field Guide to Dinosaurs, Second Edition
    MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • Massospondylus Carinatus Owen 1854 (Dinosauria: Sauropodomorpha) from the Lower Jurassic of South Africa: Proposed Conservation of Usage by Designation of a Neotype
    Massospondylus carinatus Owen 1854 (Dinosauria: Sauropodomorpha) from the Lower Jurassic of South Africa: Proposed conservation of usage by designation of a neotype Adam M. Yates1* & Paul M. Barrett2 1Bernard Price Institute for Palaeontological Research, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa 2Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. Received 17 February 2010. Accepted 12 November 2010 The purpose of this article is to preserve the usage of the binomen Massospondylus carinatus by designating a neotype specimen. Massospondylus is the most abundant basal sauropodomorph dinosaur from the Early Jurassic strata of southern Africa. This taxon forms the basis for an extensive palaeobiological literature and is the eponym of Massospondylidae and the nominal taxon of a biostratigraphical unit in current usage, the ‘Massospondylus Range Zone’. The syntype series of M. carinatus (five disarticulated and broken vertebrae) was destroyed during World War II, but plaster casts and illustrations of the material survive. Nonetheless, these materials cannot act as type material for this taxon under the rules of the ICZN Code. In order to avoid nomenclatural instability, we hereby designate BP/1/4934 (a skull and largely complete postcranial skeleton) as the neotype of Massospondylus carinatus. Keywords: Dinosauria, Sauropodomorpha, Massospondylidae, Massospondylus, Massospondylus carinatus, neotype, South Africa, upper Elliot Formation, Early Jurassic. INTRODUCTION same taxon, possibly even the same individual, as at least Richard Owen described and named Massospondylus some of the syntype series of Massospondylus carinatus. carinatus (1854, p. 97) with carinatus as the type species of Their initial separation from Massospondylus carinatus the genus by monotypy.
    [Show full text]
  • (Dinosauria, Sauropoda) from the Early Cretaceous of Transbaikalia, Russia
    FULL COMMUNICATION PALAEONTOLOGY A new lithostrotian titanosaur (Dinosauria, Sauropoda) from the Early Cretaceous of Transbaikalia, Russia Alexander Averianov a, b and Pavel Skutschas c a Zoological Institute, Russian Academy of Sciences, Universitetskaya nab., 1, St. Petersburg, 199034, Russian Federation; [email protected], [email protected] b Department of Sedimentary Geology, Institute of Earth Sciences, Saint Petersburg State Univer- sity, 16th Liniya V. O., 29, St. Petersburg, 199178, Russian Federation c Department of Vertebrate Zoology, Saint Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russian Federation; [email protected] Address correspondence and requests for materials to Alexander Averianov Abstract Tengrisaurus starkovi, gen. et sp. nov., is described based on three caudal verte- brae from the Lower Cretaceous (Barremian?) Murtoi Formation at Mogoito locality, near Gusinoe Lake in Buryatia, Russia. The new taxon is characterized by strongly procoelous anterior and middle caudal vertebrae, with strongly developed pre-epi- pophyses, highly pneumatic neural spine, and solid bone structure of the centrum. The reweighted phylogenetic analysis places the new taxon as a non-saltasau- rid lithostrotian titanosaur (Sauropoda). This is one of the oldest fossil records of Lithostrotia and Titanosauria, which suggests a long and unexplored evolution of titanosaurs in the Early Cretaceous of Asia. Keywords: Dinosauria, Sauropoda, Titanosauria, Lithostrotia, Early Cretaceous, Transbaikalia, Russia Citation: Averianov, A. and Skutschas, P. 2017. A new lithostrotian titanosaur (Dinosauria, Introduction Sauropoda) from the Early Cretaceous of Transbaikalia, Russia. Bio. Comm. 62(1): 6–18. The first Russian dinosaur, the theropod “Allosaurus” sibiricus, was found in the doi: 10.21638/11701/spbu03.2017.102 Lower Cretaceous strata of Transbaikalia (Riabinin, 1914; Ivanov, 1940).
    [Show full text]
  • Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
    Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur.
    [Show full text]
  • A Stable Isotopic Investigation of Resource Partitioning Among Neosauropod Dinosaurs of the Upper Jurassic Morrison Formation
    A stable isotopic investigation of resource partitioning among neosauropod dinosaurs of the Upper Jurassic Morrison Formation Benjamin T. Breeden, III SID: 110305422 [email protected] GEOL394H University of Maryland, College Park, Department of Geology 29 April 2011 Advisors: Dr. Thomas R. Holtz1, Jr., Dr. Alan Jay Kaufman1, and Dr. Matthew T. Carrano2 1: University of Maryland, College Park, Department of Geology 2: National Museum of Natural History, Department of Paleobiology ABSTRACT For more than a century, morphological studies have been used to attempt to understand the partitioning of resources in the Morrison Fauna, particularly between members of the two major clades of neosauropod (long-necked, megaherbivorous) dinosaurs: Diplodocidae and Macronaria. While it is generally accepted that most macronarians fed 3-5m above the ground, the feeding habits of diplodocids are somewhat more enigmatic; it is not clear whether diplodocids fed higher or lower than macronarians. While many studies exploring sauropod resource portioning have focused on differences in the morphologies of the two groups, few have utilized geochemical evidence. Stable isotope geochemistry has become an increasingly common and reliable means of investigating paleoecological questions, and due to the resistance of tooth enamel to diagenetic alteration, fossil teeth can provide invaluable paleoecological and behavioral data that would be otherwise unobtainable. Studies in the Ituri Rainforest in the Democratic Republic of the Congo, have shown that stable isotope ratios measured in the teeth of herbivores reflect the heights at which these animals fed in the forest due to isotopic variation in plants with height caused by differences in humidity at the forest floor and the top of the forest exposed to the atmosphere.
    [Show full text]