What Is a Microorganism? Introduction to Microorganisms

Total Page:16

File Type:pdf, Size:1020Kb

What Is a Microorganism? Introduction to Microorganisms National Park Service U.S. Department of the Interior Zion National Park What is a Microorganism? Introduction to Microorganisms NPS/MARC NEIDIG Contents Introduction 2 Background 2 Activities How Small is Small? 3 Mystery Microorganisms 4 Microorganisms Are Everywhere – Even in Zion National Park! 6 Glossary 8 References 8 Introduction This guide contains background information about what microorganisms are and directions for three activities that will help students better understand microorganisms and how they relate to everyday life and Zion National Park. The activities are most beneficial to students when completed in order. This guide is specifically designed for sixth grade classrooms, but the activities can be modified for students at other levels. Theme A microorganism is defined as a living thing Though they cannot be seen with the that is so small it must be viewed with a naked eye, there are millions of diverse microscope. Some microorganisms like viruses microorganisms living everywhere around us, are so small they can only be seen with special performing a variety of important functions. electron microscopes. Focus There are five different categories of This activity guide provides the definition, and microorganisms—bacteria, algae, protozoa, explores examples of microorganisms, and the fungi, and viruses—explained in further detail places microorganisms are found. in Mystery Microorganisms. Microorganisms cover almost all the kingdoms of life. Bacteria Activities and some algae are in the Monera kingdom (sometimes divided into the separate How Small is Small? Eubacteria and Archaebacteria kingdoms), By using a large scale, students will be able algae and protozoa are in the Protista model the size of specific microorganisms and kingdom, and fungi make up their own compare them with the size of a human hair. kingdom. There is ongoing debate about how Activity Materials to classify most microorganisms (for instance, Corresponding materials Mystery Microorganisms some scientists put some types of algae in the which may include images, Students will learn about the five categories of Plant kingdom while others do not). worksheets, and answer keys are available for each activity. microorganisms by classifying a set of species Microorganisms of all kinds can be found in Materials can be downloaded (their “Mystery Microorganisms”). from the lesson plan webpage, Zion National Park and southern Utah. In found here. many cases, these microorganisms can actually Microorganisms Are Everywhere – be seen at work, such as the fungi, algae, and Even in Zion National Park! bacteria that build up the fragile spires of Core Connections Students will use a description and photo biological soil crust, or the algae which gives to categorize a species of microorganism Utah Core Curriculum the Emerald Pools a green color. Sixth Grade Science and determine where it might live in Zion National Park. Microorganisms are also prevalent inside us. Standard 5: Students will understand that While we like to think of ourselves as being microorganisms range from Background made up of human cells, we are actually simple to complex, are found 90% microbial: there are 10 times more cells almost everywhere, and are from microorganisms in our bodies than both helpful and harmful. Just as there are millions of different species of plants and animals in the world, human cells. That means there are trillions Objective 1: Observe and there are millions of different species of of microorganisms living inside us every day. summarize information about microorganisms. Microorganisms can survive Most are helpful to us, such as bacteria that microorganisms. in environments where humans are unable help us digest our food. Scientists now think that a diversity of microorganisms inside of us Objective 3: Identify positive to live. Microorganisms exist throughout the and negative effects of world, from Antarctica to your kitchen, from help us resist many diseases. microorganisms and how inside animals, like humans, to the expansive science has developed positive uses for some microorganisms wilderness in Zion National Park. and overcome the negative effects of others. Zion National Park, April 2014 What is a Microorganism? 2 How Small is Small? 2. Have students examine a human hair (one can be passed around and/or students can Duration examine their own). Students can look 45 Minutes at how thin the hair is with and without magnifying glasses. Location Outside or inside area with a large open space 3. Go outside or into your open space, and use the meter stick to measure an area 1 Key Vocabulary meter long. Mark it with chalk, string, or tape (depending on your location). One NIH organism, microorganism, single-celled, algae, bacteria, fungi, protozoa, virus meter represents the 0.1 millimeter width of a hair using the scale of 10,000 :1. Objectives Students will be able to conceptualize the size 4. Using the information below, add different of microorganisms and give a definition of microorganisms to the ground or paper. what a microorganism is. Students can measure out the size and label the different cells and microorganisms: Method By using a large scale, students will be able Human red blood cell (.01 mm) = 10 cm model the size of specific microorganisms and Paramecium (protozoa) (0.2 mm) = 2 m PROYECTO AGUA compare them with the size of a human hair. The rod shape of E. coli can be Euglenoids (algae) (0.4 mm) = 4 m clearly seen under a scanning electron microscope. Background Scenedesmus (algae) (0.03 mm) = 30 cm Micrasterias americana algae at The average human hair is 0.1 millimeters E. coli bacteria (.002 mm) = 2 cm 400x magnification. wide, and barely discernable with the naked Staphylococcus bacteria eye. Microorganisms are many hundreds to (.0005 mm) = 0.5 cm thousands of times smaller and by definition can only be seen under a microscope. Polio virus (.00002) = .2 mm (a tiny dot) Most microorganisms consists of only one cell and they are known as single-celled 5. When finished measuring out all the organisms (in comparison, humans consist microorganisms, compare their sizes. of trillions of different cells). Different Notice how viruses are the smallest type species of microorganisms vary in size, shape, but other types vary in size depending on appearance, and way of surviving. the species. Students can draw their own reference models on paper to keep. The largest microorganisms are most fungi and many species of protozoa. Viruses are 6. Finish by asking students (verbally or in by far the smallest of all microorganisms. If writing) why scientists have to use models a virus was the size of a baseball, an average like this (because some microorganisms bacterium would be the size of a pitcher’s are too small to be seen under regular mound, and one single human cell would be microscopes and it is difficult to the size of the entire stadium! compare sizes and features of a variety of microorganisms because of their size). Materials • meter stick or ruler Extension • magnifying glass Have students research the size of other • marking material for ground (i.e. sidewalk microorganisms to compare size and practice chalk, markers, or string) math skills using the 10,000:1 scale. • a hair from a human head • 5 meters of butcher paper (if inside) Find large items to compare microorganisms to such as a pencil, a school bus, or a football Suggested Procedure field. For instance, if the 2,000 foot tall cliffs of 1. Introduce the idea of what microorganisms Zion Canyon were on the scale, they would be are and that they cannot be seen with the over 3,800 miles long, the distance from Las naked eye. Vegas to Chicago and back! Zion National Park, April 2014 What is a Microorganism? 3 Mystery they reproduce using spores, tiny, seed-like cells. Most fungi are multicellular, but others Microorganisms such as yeast are single-celled. Most cells of fungi are loosely connected through thread- Duration like filaments called hyphae. Fungi is plural, 45 Minutes fungus is singular. Location Protozoa: The name protozoa means “first Inside animal,” and describes this microorganism’s ability to move and hunt. Protozoa are ROBIN S Key Vocabulary members of the Protista kingdom. Ciliates, organism, microorganism, single-celled, algae, amoebae, and flagellates all are categories bacteria, fungi, protozoa, virus, producer, of protozoa and all are single-celled. Most decomposer protozoa do not cause disease but there are a few that cause harm to humans, including Objectives Plasmodium (malaria) and Giardia. These Students will be able to list the five different protozoa are considered parasites. Protozoa is types of microorganisms and share the specific plural, protozoan is singular. attributes of at least one type. Viruses: There is some debate on whether HHS Method viruses are actually organisms at all; that is, Students will learn about the five categories of whether they are alive or not. While they microorganisms by classifying a set of species have DNA or RNA and infect a host like (their “Mystery Microorganisms”) as one of other parasites, viruses have no true cells and the types of microorganisms. cannot reproduce on their own. Viruses is plural, virus is singular. Background Generally, there are five categories of Materials microorganisms (simpler definitions are • Mystery Microorganism Clues sheets located in the glossary for student use): • Large (8.5 x 11) envelopes NPS/BRYANNA PLOG Digital interpretation of Bacteria: These microorganisms are the Suggested Procedure rhinovirus. oldest living things on Earth, and have been 1. Prepare “mystery packets” ahead of time Aspergillus fumigatusas, a fungi, around an estimated 3 billion years (scientists visible under a microscope. using the Mystery Microorganism Clues have found fossils of cyanobacteria). They sheets. Print one set of each and put them Algae color the water green at come in a variety of shapes (spheres, rods, the Emerald Pools.
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Eukaryotic Microorganisms Algae and Protozoans 2
    Eukaryotic Microorganisms Algae and Protozoans 2 Eukaryotic Microorganisms . prominent members of ecosystems . useful as model systems and industry . some are major human pathogens . two groups . protists . fungi 3 Kingdom Protista . Algae - eukaryotic organisms, usually unicellular and colonial, that photosynthesize with chlorophyll a . Protozoa - unicellular eukaryotes that lack tissues and share similarities in cell structure, nutrition, life cycle, and biochemistry 4 Algae .Photosynthetic organisms .Microscopic forms are unicellular, colonial, filamentous .Macroscopic forms are colonial and multicellular .Contain chloroplasts with chlorophyll and other pigments .Cell wall .May or may not have flagella 5 6 Algae .Most are free-living in fresh and marine water – plankton .Provide basis of food web in most aquatic habitats .Produce large proportion of atmospheric O2 .Dinoflagellates can cause red tides and give off toxins that cause food poisoning with neurological symptoms .Classified according to types of pigments and cell wall .Used for cosmetics, food, and medical products 7 Protozoa Protozoa 9 .Diverse group of 65,000 species .Vary in shape, lack a cell wall .Most are unicellular; colonies are rare .Most are harmless, free-living in a moist habitat .Some are animal parasites and can be spread by insect vectors .All are heterotrophic – lack chloroplasts .Cytoplasm divided into ectoplasm and endoplasm .Feed by engulfing other microbes and organic matter Protozoa 10 .Most have locomotor structures – flagella, cilia, or pseudopods .Exist as trophozoite – motile feeding stage .Many can enter into a dormant resting stage when conditions are unfavorable for growth and feeding – cyst .All reproduce asexually, mitosis or multiple fission; many also reproduce sexually – conjugation Figure 5.27 11 Protozoan Identification 12 .
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • The Phagotrophic Origin of Eukaryotes and Phylogenetic Classification Of
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 297–354 DOI: 10.1099/ijs.0.02058-0 The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa Department of Zoology, T. Cavalier-Smith University of Oxford, South Parks Road, Oxford OX1 3PS, UK Tel: j44 1865 281065. Fax: j44 1865 281310. e-mail: tom.cavalier-smith!zoo.ox.ac.uk Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an α-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an α-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • Pusillus Poseidon's Guide to Protozoa
    Pusillus Poseidon’s guide to PROTOZOA GENERAL NOTES ABOUT PROTOZOANS Protozoa are also called protists. The word “protist” is the more general term and includes all types of single-celled eukaryotes, whereas “protozoa” is more often used to describe the protists that are animal-like (as opposed to plant-like or fungi-like). Protists are measured using units called microns. There are 1000 microns in one millimeter. A millimeter is the smallest unit on a metric ruler and can be estimated with your fingers: The traditional way of classifying protists is by the way they look (morphology), by the way they move (mo- tility), and how and what they eat. This gives us terms such as ciliates, flagellates, ameboids, and all those colors of algae. Recently, the classification system has been overhauled and has become immensely complicated. (Infor- mation about DNA is now the primary consideration for classification, rather than how a creature looks or acts.) If you research these creatures on Wikipedia, you will see this new system being used. Bear in mind, however, that the categories are constantly shifting as we learn more and more about protist DNA. Here is a visual overview that might help you understand the wide range of similarities and differences. Some organisms fit into more than one category and some don’t fit well into any category. Always remember that classification is an artificial construct made by humans. The organisms don’t know anything about it and they don’t care what we think! CILIATES Eats anything smaller than Blepharisma looks slightly pink because it Blepharisma itself, even smaller Bleph- makes a red pigment that senses light (simi- arismas.
    [Show full text]
  • The Ciliated Protozoa Characterization, Classification, and Guide to the Literature
    D. Lynn The Ciliated Protozoa Characterization, Classification, and Guide to the Literature ▶ Completely revised and updated ▶ Major chapter on The Ciliate Taxa ▶ Glossary with more than 700 terms ▶ Contains hundreds of illustrations ▶ Contains both Subject and Systematic indices The third edition of The Ciliated Protozoa continues the innovative approach of the previous two editions, thoroughly documenting the progress in our understanding of the evolutionary diversification of these widely distributed eukaryotic microorganisms. 3rd ed. 2008, XXXIII, 605 p. The Glossary is considerably revised and expanded, serving as an illustrated ‘subject index’ of more than 700 terms. An introduction to the phylum is followed by chapters on the 11 classes. Each class chapter contains 7 sections: Printed book Hardcover • taxonomic structure ▶ 279,99 € | £249.99 | $349.99 • life history and ecology ▶ *299,59 € (D) | 307,99 € (A) | CHF 330.50 • somatic structures • oral structures eBook • division and morphogenesis Available from your bookstore or • nuclei, sexuality, and life cycle other features ▶ springer.com/shop • The book includes new data on the ultrastructure of the somatic cortex of each class, MyCopy molecular phylogenetics, ecology, and on other important aspects of ciliate biology. These Printed eBook for just new data are used, along with a novel conceptual approach, to rationalize a new system ▶ € | $ 24.99 of classification for the phylum, presented in a major chapter on The CiliateTaxa. The book includes an up-to-date bibliography of approximately 3,000 citations to both the ‘classical’ ▶ springer.com/mycopy and recent literature, and both a Subject Index and a Systematic Index. This unique and timely book will serve as a comprehensive and authoritative reference work for students, teachers, and researchers who have an interest in the protozoa, and particularly the ciliates.
    [Show full text]
  • "Plasmodium". In: Encyclopedia of Life Sciences (ELS)
    Plasmodium Advanced article Lawrence H Bannister, King’s College London, London, UK Article Contents . Introduction and Description of Plasmodium Irwin W Sherman, University of California, Riverside, California, USA . Plasmodium Hosts Based in part on the previous version of this Encyclopedia of Life Sciences . Life Cycle (ELS) article, Plasmodium by Irwin W Sherman. Asexual Blood Stages . Intracellular Asexual Blood Parasite Stages . Sexual Stages . Mosquito Asexual Stages . Pre-erythrocytic Stages . Metabolism . The Plasmodium Genome . Motility . Recent History of Plasmodium Research . Evolution of Plasmodium . Conclusion Online posting date: 15th December 2009 Plasmodium is a genus of parasitic protozoa which infect Introduction and Description of erythrocytes of vertebrates and cause malaria. Their life cycle alternates between mosquito and vertebrate hosts. Plasmodium Parasites enter the bloodstream after a mosquito bite, Parasites of the genus Plasmodium are protozoans which and multiply sequentially within liver cells and erythro- invade and multiply within erythrocytes of vertebrates, and cytes before becoming male or female sexual forms. When are transmitted by mosquitoes. The motile invasive stages ingested by a mosquito, these fuse, then the parasite (merozoite, ookinete and sporozoite) are elongate, uni- multiplies again to form more invasive stages which are nucleate cells able to enter cells or pass through tissues, transmitted back in the insect’s saliva to a vertebrate. All using specialized secretory and locomotory organelles.
    [Show full text]
  • Lab Exercise: Diversity of Eukaryotic Microbes OBJECTIVES
    Lab Exercise: Diversity of Eukaryotic Microbes OBJECTIVES 1. To observe representatives of major types of microbes. 2. To cultivate select representatives of major types of microbes. 3. Understand key characteristics of the different eukaryotic microbes and groups found within these Kingdoms. INTRODUCTION Eukaryotic organisms have a nucleus in a membrane. They are typically more complex than prokaryotic organisms. They make up the Domain Eukarya and include the major kingdoms of Protista, Fungi, Plantae and Animalia. Protista is a diverse group that includes many different types of organisms, divided into the animal-like protists, or protozoa, and the plant-like protists, or algae. Protozoa are examples of Protistans that we will survey in this lab. Fungi are a kingdom of organisms that may be unicellular or multicellar, yeasts or molds. All fungi absorb their nutrients from their environment. Animals are multicelluar organisms that ingest their nutrients. This lab will be presented in three parts, one focusing on Protozoa, one on Fungi and one on Helminths (parasitic worms of the animal kingdom). Protozoa These are unicelluar eukaryotes. They do not have cell walls, but do have a membrane called a pellicle surrounding the cell. They have a nucleus and membrane bound organelles. They typically form cysts, a hardy dormant life-form that allows survival of harsh environments. Protozoa are classified into four phyla or groups based on their means of locomotion: • Flagellates (or phylum Mastigophora) • Amoebae (or phylum Sarcodina) • Sporozoans (or phylum Apicomplexa) and • Ciliates (or phylum Ciliophora). Flagellates have flagella for locomotion. Amoebae move by use of a pseudopod. Ciliates move with the aid of multiple cilia.
    [Show full text]
  • ZOOLOGY Biology of Parasitism Plasmodium: Morphology and Life Cycle Development Team
    Paper No.: 08 Biology of Parasitism Module : 10 Plasmodium: Morphology and Life Cycle Development Team Principal Investigator: Prof. Neeta Sehgal Head, Department of Zoology, University of Delhi Paper Coordinator: Dr. Pawan Malhotra ICGEB, New Delhi Content Writer: Dr. Gauri Mishra Swami Shraddhanand College, University of Delhi Content Reviewer: Prof. Virender Kumar Bhasin Department of Zoology, University of Delhi 1 Biology of Parasitism ZOOLOGY Plasmodium: Morphology and Life Cycle Description of Module Subject Name ZOOLOGY Paper Name Biology of Parasitism Module Name/Title Plasmodium: Morphology and Life Cycle Module Id 10; Morphology and Life Cycle Keywords Plasmodium, Infection, Species, Parasite, Erythrocytic Contents 1. Learning Outcomes 2. Introduction 3. Spectrum of Plasmodium Infection 3.1. Species of Malaria Parasite Afflict Human Beings 4. Morphology of Plasmodium 5. Life Cycle of the Malaria Parasite 5.1. Exo-erythrocytic Stages of Human Malaria Parasites 5.2. Erythrocytic Stages of Human Malaria Parasites 5.3. Sexual Cycle in the Mosquito 6. Summary 2 Biology of Parasitism ZOOLOGY Plasmodium: Morphology and Life Cycle 1. Learning Outcomes The module has been designed to make you understand: General aspect of Plasmodium Spectrum of Plasmodium infection Species of Malaria parasite afflict human beings Morphology of different stages Life Cycle of Plasmodium 2. Introduction Plasmodium, an intracellular endoparasitic protozoan which passes on to human beings by female Anopheles mosquito, is responsible for causing Malaria. It is commonly known as the malaria parasite. Malaria is one of the most dreaded diseases of tropical countries and remains as an epidemic in more than 100 countries (Figure 1). Deadly fevers-probably malaria-have been recorded since the beginning of the written word and references can also be found in Vedic writings in India.
    [Show full text]
  • Inferring Ancestry
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176 Inferring Ancestry Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life DING HE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9031-7 UPPSALA urn:nbn:se:uu:diva-231670 2014 Dissertation presented at Uppsala University to be publicly examined in Fries salen, Evolutionsbiologiskt centrum, Norbyvägen 18, 752 36, Uppsala, Friday, 24 October 2014 at 10:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Andrew Roger (Dalhousie University). Abstract He, D. 2014. Inferring Ancestry. Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9031-7. There are ~12 supergroups of complex-celled organisms (eukaryotes), but relationships among them (including the root) remain elusive. For Paper I, I developed a dataset of 37 eukaryotic proteins of bacterial origin (euBac), representing the conservative protein core of the proto- mitochondrion. This gives a relatively short distance between ingroup (eukaryotes) and outgroup (mitochondrial progenitor), which is important for accurate rooting. The resulting phylogeny reconstructs three eukaryote megagroups and places one, Discoba (Excavata), as sister group to the other two (neozoa). This rejects the reigning “Unikont-Bikont” root and highlights the evolutionary importance of Excavata. For Paper II, I developed a 150-gene dataset to test relationships in supergroup SAR (Stramenopila, Alveolata, Rhizaria). Analyses of all 150-genes give different trees with different methods, but also reveal artifactual signal due to extremely long rhizarian branches and illegitimate sequences due to horizontal gene transfer (HGT) or contamination.
    [Show full text]