Pereskia Grandifolia Common Name(S): Rose Cactus Synonym(S

Total Page:16

File Type:pdf, Size:1020Kb

Pereskia Grandifolia Common Name(S): Rose Cactus Synonym(S Pereskia grandifolia Common Name(s): Rose Cactus Synonym(s): Cactus grandifolius, Cactus rosa, Pereskia ochnacarpa, Rhodocactus grandifolius, Pereskia tampicana, Rhodocactus tampicanus Origin and Habitat: Brazil (Southern America from southernmost Ceará, Pernambuco (native and cultivated), central-eastern and south-eastern Bahia to southern Espírito Santo and south-western Minas Gerais. Perhaps it is also native to Rio de Janeiro and São Paulo. It is widely cultivated and ranges south to Santa Catarina and southeastern Mato Grosso. It is commonly introduced in the Neotropics. The natural range of this Pereskia grandifolia remains poorly known, probably through early destruction of its habitat and for the uncertainty as to its native status caused by its widespread introduction as a cultivated ornamental. Habitat and Ecology: This is a humid/subhumid evergreen forest element. The species is widespread and widely cultivated. There is widespread habitat loss due to logging, expansion of urban areas and clearance of forest for agricultural expansion. Cultivation and Propagation: Nearly indestructible, Pereskia grandifolia requires full sun or light shade (but withstand dense shade) and well drained soils, preferably rich neutral organic soils, but may tolerate acidic ones. Growing rate: It is a fast grower, and will quickly become large landscape masterpieces in just a few years. It is a long lived plant and once established, it will be content in its position and with its soil for years. Waterings: Water regularly during the active growing season from March to September. No water should ever be allowed to stand around the roots. Keep almost completely dry in winter. It is drought resistant, but leaves drop during drought. Hardiness: Considered frost tender, but surprisingly cold hardy outdoors and also very sun hardy for a succulent plant. It likes warmth (recommended minimum winter temperature 10° C). Maintenance: Can be pruned for shape and branching. Uses: Often used for edges it is planted by pushing cutting into the ground, its spiny stem soon forming a capital barrier, sometimes grown as a climber, as a basket plant. From: http://www.llifle.com/Encyclopedia/CACTI/Family/Cactaceae/19667/Pereskia_grandifolia .
Recommended publications
  • What Did the First Cacti Look Like
    What Did the First Cactus Look like? An Attempt to Reconcile the Morphological and Molecular Evidence Author(s): M. Patrick Griffith Source: Taxon, Vol. 53, No. 2 (May, 2004), pp. 493-499 Published by: International Association for Plant Taxonomy (IAPT) Stable URL: http://www.jstor.org/stable/4135628 . Accessed: 03/12/2014 10:33 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. International Association for Plant Taxonomy (IAPT) is collaborating with JSTOR to digitize, preserve and extend access to Taxon. http://www.jstor.org This content downloaded from 192.135.179.249 on Wed, 3 Dec 2014 10:33:44 AM All use subject to JSTOR Terms and Conditions TAXON 53 (2) ' May 2004: 493-499 Griffith * The first cactus What did the first cactus look like? An attempt to reconcile the morpholog- ical and molecular evidence M. Patrick Griffith Rancho Santa Ana Botanic Garden, 1500 N. College Avenue, Claremont, California 91711, U.S.A. michael.patrick. [email protected] THE EXTANT DIVERSITYOF CAC- EARLYHYPOTHESES ON CACTUS TUS FORM EVOLUTION Cacti have fascinated students of naturalhistory for To estimate evolutionaryrelationships many authors many millennia. Evidence exists for use of cacti as food, determinewhich morphological features are primitive or medicine, and ornamentalplants by peoples of the New ancestral versus advanced or derived.
    [Show full text]
  • L'intégration Du Genre Leuenbergeria Lodé Dans Sa Propre Sous-Famille : Leuenbergerioideae Mayta & Mol
    L'intégration du genre Leuenbergeria Lodé dans sa propre sous-famille : Leuenbergerioideae Mayta & Mol. Nov., 2021/09/30 11:03 1/4 subfam. nov. L'intégration du genre Leuenbergeria Lodé dans sa propre sous-famille : Leuenbergerioideae Mayta & Mol. Nov., subfam. nov. par Luis Mayta 1) et EA Molinari-Novoa 2) Cet article a été initialement publié dans Succulentopi@ n°12 p.6-7, le 3 janvier 2015. Pendant longtemps (Butterworth & Wallace, 2005 ; Edwards et al., 2005 ; Butterworth & Edwards, 2008 ; Bárcenas et al., 2011), a été reconnue la paraphylie 3) de Pereskia Mill., l’un des genres les plus primitifs des cactées (Edwards & Donoghue, 2006). Actuellement, les Pereskiae «véritables» ont été délimitées par Nyffeler & Eggli (2010). Stevens (2014) propose dans son APWeb le nom Rhodocactus (A. Berger) F.M. Knuth (in Backeberg & Knuth, 1935) comme une alternative possible pour les espèces qui en sont exclues (également connues collectivement comme “clade du Nord”, qui est plus ancien que tout autre dans les cactées, cf. Arakaki et al., 2011). Ce nom a été établi originalement comme un sous-genre de Pereskia. Cependant, cette alternative n'est pas acceptable, car Berger (1926, 1929) a choisi un “véritable” Pereskia comme type de ce sous-genre, et de ce fait, il s’agit d’un synonyme (Backeberg, 1958 ; Leuenberg 1986, 2007). Lodé (2013) a reconnu cette situation et a transféré toutes les espèces concernées dans son nouveau genre, Leuenbergeria, mais ce changement qui était correct, a été ignoré par la plupart des cactologistes, qui maintiennent la paraphylie de Pereskia et donc, la paraphylie de toute la sous-famille.
    [Show full text]
  • CACTACEAE 1. PERESKIA Miller, Gard. Dict. Abr., Ed. 4. 1754
    CACTACEAE 仙人掌科 xian ren zhang ke Li Zhenyu (李振宇)1; Nigel P. Taylor2 Fleshy perennials, shrubs, trees or vines, terrestrial or epiphytic. Stems jointed, terete, globose, flattened, or fluted, mostly leafless and variously spiny. Leaves alternate, flat or subulate to terete, vestigial, or entirely absent; spines, glochids (easily detached, small, bristlelike spines), and flowers always arising from cushionlike, axillary areoles (modified short shoots). Flowers solitary, sessile, rarely clustered and stalked (in Pereskia), bisexual, rarely unisexual, actinomorphic or occasionally zygomorphic. Receptacle tube (hypanthium or perianth tube) absent or short to elongate, naked or invested with leaflike bracts, scales, areoles, and hairs, bristles, or spines; perianth segments usually numerous, in a sepaloid to petaloid series. Stamens numerous, variously inserted in throat and tube; anthers 2-loculed, dehiscing longitudinally. Ovary (pericarpel) inferior, rarely superior, 1-loculed, with 3 to many parietal (rarely basal) placentas; ovules usually numerous; style 1; stigmas 2 to numerous, papillate, rarely 2-fid. Fruit juicy or dry, naked, scaly, hairy, bristly, or spiny, indehiscent or dehiscent, when juicy then pulp derived from often deliquescent funicles (except in Pereskia). Seeds usually numerous, often arillate or strophiolate; embryo curved or rarely straight; endosperm present or absent; cotyledons reduced or vestigial, rarely leaflike. About 110 genera and more than 1000 species: temperate and tropical America; Rhipsalis baccifera (J. S. Mueller) Stearn native in tropical Africa, Madagascar, Comoros, Mascarenes, and Sri Lanka; some species of other genera now extensively naturalized in the Old World through human agency; more than 60 genera and 600 species cultivated as ornamentals or hedges in China, of which four genera and seven species more or less naturalized.
    [Show full text]
  • A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia Bleo (Kunth) DC
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2014, Article ID 326107, 11 pages http://dx.doi.org/10.1155/2014/326107 Review Article A Review of Botanical Characteristics, Traditional Usage, Chemical Components, Pharmacological Activities, and Safety of Pereskia bleo (Kunth) DC Sogand Zareisedehizadeh,1 Chay-Hoon Tan,2 and Hwee-Ling Koh1 1 Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543 2 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 Correspondence should be addressed to Hwee-Ling Koh; [email protected] Received 19 February 2014; Accepted 2 May 2014; Published 3 June 2014 Academic Editor: Wei Jia Copyright © 2014 Sogand Zareisedehizadeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pereskia bleo, a leafy cactus, is a medicinal plant native to West and South America and distributed in tropical and subtropical areas. It is traditionally used as a dietary vegetable, barrier hedge, water purifier, and insect repellant and for maintaining health, detoxification, prevention of cancer, and/or treatment of cancer, hypertension, diabetes, stomach ache, muscle pain, and inflammatory diseases such as dermatitis and rheumatism. The aim of this paper was to provide an up-to-date and comprehensive review of the botanical characteristics, traditional usage, phytochemistry, pharmacological activities, and safety of P. bl eo .A literature search using MEDLINE (via PubMed), Science direct, Scopus and Google scholar and China Academic Journals Full- Text Database (CNKI) and available eBooks and books in the National University of Singapore libraries in English and Chinese was conducted.
    [Show full text]
  • Au Cactus Francophone
    ISSN 2259-1060 Succulentopi@ n° 12 Janvier 2015 Le Cactus Francophone en revue Sommaire Édito ............................................................ par Yann Cochard .................. 3 Galerie photos ............................................................. par Olivier Arnoud ................. 4 Leuenbergerioideae ........................................ par Luis Mayta et EA Molinari-Novoa .. 6 Encyclopédie : Leuenbergeria ............................................ par Philippe Corman ............. 8 Botaniste : Beat Ernst Leuenberger (1946-2010) ............. par Philippe Corman ............ 19 Encyclopédie : Adromischus ........................................... par Benoit ALBERT ............... 20 Philatélie ............................................................. par Jean-Pierre Pailler .......... 32 Aperçu de discussions sur le forum .................................. ......................................... 33 Bibliothèque numérique de CactusPro … ........................ ......................................... 35 Informations diverses ..................................................... ......................................... 37 Agenda ................................................................................ .................................. 38 Ce numéro publie p.6 une nouvelle sous-famille/ In this issue p.6 is published a new sub-family name : Leuenbergerioideae Mayta & Mol. Nov." Succulentopi@ n°12, janvier 2015 * Éditeur : Cactuspro, association loi 1901, 63360 Saint-Beauzire, France, [email protected]
    [Show full text]
  • Pereskia (Cactaceae)
    Pereskia (Cactaceae) LIBRARY. JAN 1 2 1987 BOTANICAL GARDEW BEAT ERNST LEUENBERGER Memoirs of the New York Botanical Garden Volume 41 Memoirs of The New York Botanical Garden ADVISORY BOARD PATRICIA K. HOLMGREN, Director JAMES L. LUTEYN, Curator of the Herbarium The New York Botanical Garden The New York Botanical Garden GHILLEAN T. PRANCE, Senior SCOTT A. MORI, Chairman, Vice-President for Science Publications Committee, The New York Botanical Garden and Curator The New York Botanical Garden EDITORIAL BOARD WILLIAM R. BUCK, Associate Editor The New York Botanical Garden Bronx, New York 10458 H. DAVID HAMMOND, Associate Editor The New York Botanical Garden Bronx, New York 10458 WALTER S. JUDD (1984-1989), Herbarium, Department of Botany, University of Florida, Gainesville, Florida 32611, U.S.A. AMY ROSSMAN (1984-1989), B011 A, Room 329, BARC-West, Beltsville, Mary­ land 20705, U.S.A. LESLIE R. LANDRUM (1985-1990), Herbarium, Department of Botany and Mi­ crobiology, University of Arizona, Tempe, Arizona 85281 U.S.A. MELINDA DENTON (1986-1991), Herbarium, Department of Botany, University of Washington, Seattle, Washington 98195 U.S.A. The MEMOIRS are published at irregular intervals in issues and volumes of various sizes and are designed to include results of original botanical research by members of the Garden's staff, or by botanists who have collaborated in one or more of the Garden's research programs. Ordinarily only manuscripts of fifty or more typwritten pages will be considered for publication. Manuscripts should be submitted to the Editor. For further information re­ garding editorial policy and instructions for the preparation of manuscripts, ad­ dress the Editor.
    [Show full text]
  • A Taxonomic Backbone for the Global Synthesis of Species Diversity in the Angiosperm Order Caryophyllales
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales Hernández-Ledesma, Patricia; Berendsohn, Walter G; Borsch, Thomas; Mering, Sabine Von; Akhani, Hossein; Arias, Salvador; Castañeda-Noa, Idelfonso; Eggli, Urs; Eriksson, Roger; Flores-Olvera, Hilda; Fuentes-Bazán, Susy; Kadereit, Gudrun; Klak, Cornelia; Korotkova, Nadja; Nyffeler, Reto; Ocampo, Gilberto; Ochoterena, Helga; Oxelman, Bengt; Rabeler, Richard K; Sanchez, Adriana; Schlumpberger, Boris O; Uotila, Pertti Abstract: The Caryophyllales constitute a major lineage of flowering plants with approximately 12500 species in 39 families. A taxonomic backbone at the genus level is provided that reflects the current state of knowledge and accepts 749 genera for the order. A detailed review of the literature of the past two decades shows that enormous progress has been made in understanding overall phylogenetic relationships in Caryophyllales. The process of re-circumscribing families in order to be monophyletic appears to be largely complete and has led to the recognition of eight new families (Anacampserotaceae, Kewaceae, Limeaceae, Lophiocarpaceae, Macarthuriaceae, Microteaceae, Montiaceae and Talinaceae), while the phylogenetic evaluation of generic concepts is still well underway. As a result of this, the number of genera has increased by more than ten percent in comparison to the last complete treatments in the Families and genera of vascular plants” series. A checklist with all currently accepted genus names in Caryophyllales, as well as nomenclatural references, type names and synonymy is presented. Notes indicate how extensively the respective genera have been studied in a phylogenetic context.
    [Show full text]
  • Leaf Cactus, Pereskia Spp
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 25 March 2019 Leaf cactus, Pereskia spp. Pereskia is a small genus of tropical cacti that don’t look at all like a typi- cal cactus; all 17 species* have thin, spiny stems and large, privet-like leaves. Native to the Americas from Mexico to Brazil, they superfi cially resemble other types of plants, and often are only marginally succulent and are classifi ed as shrubs or climbers. In their native habitat of dry forests or thorny scrub with a distinct dry sea- son, these plants are typically found mixed in with other trees and shrubs and often look very similar to the sur- rounding plants at fi rst glance. They are in the cactus family (Cactace- ae), however, because they have spines de- A leafy cactus, Pereskia sp. veloping from areoles Pereskia shrubs in habitat in Brazil. (small light- to dark-colored bumps) and the same type of distinctive fl o- ral cup that all plants in this family have. A few other genera in the Cac- taceae also have leaves, but they are either succulent or not persistent, whereas Pereskia is the only genus of cacti that has persistent non- succulent leaves. It is regarded as a primitive cactus group and likely the ancestor of the cactus family resembled these leafy, spiny plants. Like their cactus cousins they also have the water-use adaptations that allow succulent leafl ess cacti to thrive in arid environments, including a shallow root system to allow quick water uptake, the abil- *Molecular studies and geographical ity to close stomata to slow distribution suggest that there are actu- water loss, and are capable ally two groups or clades within the orig- of using crassulacean acid inal genus Pereskia, and one clade with The spines on Pereskia come 8 of these 17 species really belongs in a from areoles, like all other cacti.
    [Show full text]
  • Trade in Epiphytic Cacti (Cactaceae Spp.)
    CoP15 Doc. 55 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Fifteenth meeting of the Conference of the Parties Doha (Qatar), 13-25 March 2010 Species trade and conservation TRADE IN EPIPHYTIC CACTI (CACTACEAE SPP.) 1. This document has been submitted by the Management Authority of Switzerland*. Background 2. The listing of Cactaceae spp. in Appendix II contained and continues to contain certain commodities of bulk trade and industrial production, as well as easily identifiable natural taxa that are virtually absent from international trade and not threatened. Consequently, the listing has been streamlined on various occasions in order to exclude taxa not threatened by trade. This lead to exemption of leaf-bearing cacti (Pereskia spp., Pereskiopsis spp. and Quiabentia spp.), artificially propagated, grafted color mutants of Cactaceae spp., certain hybrids and cultivars of epiphytic cacti (Hatiora, Schlumbergera, see below), and cultivars of Opuntia microdasys. Such streamlining allows for a reduction of the workload of authorities in charge of enforcement. Activities like permitting, inspection and reporting for these non-threatened taxa cease. National CITES resources can be allocated in a more effective way, especially for the monitoring of trade in wild-collected plants that are threatened by such trade and their parts and derivatives. 3. Epiphytic cacti are implicitly listed under Cactaceae spp. in Appendix II. International trade in epiphytic cacti is regulated accordingly. In recent times, trade in artificially propagated epiphytic cacti increased dramatically, as they proved to be extremely well suited for indoor cultivation. In contrast, trade in wild- collected specimens is very limited (see Annex 4) and doesn’t show commercial dimensions.
    [Show full text]
  • Leaf Cactus, Alert List for Environmental Weeds
    This document was originally published on the website of the CRC for Australian Weed Management, which was wound up in 2008. To preserve the technical information it contains, the department is republishing this document. Due to limitations in the CRC’s production process, however, its content may not be accessible for all users. Please contact the department’s Weed Management Unit if you require more assistance. al er t l is t for envi ronment a l weeds Leaf cactus – Pereskia aculeata ● Actual Distribution Leaf cactus (Pereskia aculeata) The problem along the banks of rivers in Queensland The scented flowers can be white or pale and New South Wales. The plant has yellow, sometimes ageing to pink, and Leaf cactus is on the Alert List for Environ­ a tendency to form large impenetrable are approximately 20–55 mm in diameter. mental Weeds, a list of 28 non-native clumps, and its extreme thorniness makes There are numerous, long, yellow-tipped plants that threaten biodiversity and cause control of large infestations difficult. orange stamens in the middle of the other environmental damage. Although Because it is one of the 12 most flower. A prominent white style (the Leaf cactus only in the early stages of establishment, significant weeds in South Africa, leaf female part of the flower) sits in between these weeds have the potential to cactus could become a threat in areas the stamens. The flowers are generally seriously degrade Australia’s ecosystems. of Australia with similar climatic and grouped together to produce attractive Introduced into Australia in the 1920s environmental conditions.
    [Show full text]
  • Latest Pereskia Article2
    ALL ABOUT SUCCULENTS By Rosario Douglas December, 2018 The exceptions to the rule Most members of the Cactaceae family are succulents, meaning they store water in order to survive dry periods. Thus it is commonly said that all cactus are succulents but not all succulents are cacti. It turns out that this statement is only partially true since cacti in the genera Pereskiopsis, Pereskia, Leuenbergeria and Rhodocactus are exceptions to this rule. The four genera mentioned above are cacti but they are not succulents because they do not really store much water compared with most succulents. Plants in these genera are considered “archaic” or primitive cacti, they are the best living examples of ancestral cacti (Edwards and Donoghue, 2006). Most cacti are leafless and photosynthesis takes place via the stem. The elimination of leaves in most cacti is one of the main adaptations to drought. This is not the case with Pereskia and closely related genera since they have persistent leaves, as well as thin spiny stems. In times of drought Pereskia can drop their leaves (deciduous). Pereskia and related genera are found in the tropical Americas south to northern Argentina. These cacti are trees, bushes or climbing shrubs. In cultivation they are useful for grafting since they do well in nutrient rich soils, although they cannot tolerate moisture over long periods and need to be watered in moderation at regular intervals (Cullman et.al.1986). Illustration (top right): Pereskia aculeata Blühende Kakteen - Iconographia Cactacearum Tafel 86 (cropped) By Schumann, Gürke & Vaupel. Filtered image Peter A. Mansfeld 1902 From Wikimedia Commons ALL ABOUT SUCCULENTS By Rosario Douglas The exceptions to the rule cont.
    [Show full text]
  • Nutritional Assay Pereskia Spp.: Running Title: ORA-PRO-NOBIS: Unconventional Vegetable UNCONVENTIONAL VEGETAL
    An Acad Bras Cienc (2020) 92(Suppl. 1): e20180757 DOI 10.1590/0001-3765202020180757 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal AGRARIAN SCIENCES Nutritional assay Pereskia spp.: Running title: ORA-PRO-NOBIS: unconventional vegetable UNCONVENTIONAL VEGETAL Academy Section: Agrarian MELISSA G. SILVEIRA, CAMILA T.R. PICININ, MARCELO ÂNGELO CIRILLO, JULIANA M. FREIRE & MARIA DE FÁTIMA P. BARCELOS Sciences Abstract: Pereskia grandifolia Haworth (PGH) and Pereskia aculeata Miller (PAM) are recognized sources of proteins; dietary fiber; vitamins and minerals make this plant e20180757 leaves, raw, cooked, and braised, an important ally against protein and micronutrient deficiencies. One of the main problems is the presence of antinutritional factors that may interfere in the digestibility and bioavailability of some nutrients. The objective 92 was to evaluate the amino acid profile and the chemical score of the raw leaves and (Suppl. 1) 92(Suppl. 1) the effects of heating media and time on the total dietary fiber, minerals, trypsin inhibition, oxalic acid and tannins of leaves of PGH and PAM. The samples had similar amino acid profiles and total dietary fiber. With regard to antinutritional compounds, heating the leaves of PGH led to a decrease in trypsin inhibition, primarily after the first minutes of wet cooking. Oxalic acid and tannins predominated in both species. Considering the interaction with time, the variables related to iron and zinc minimized the tannin responses in PGH and PAM, respectively. Heating media and times interfered with the chemical components present in the leaves of Pereskia species and led to high antinutrient retention after heat treatment.
    [Show full text]