Effect of Caffeine Exposure on Gene Expression in Human Mesenchymal Stem Cells Madison Pedreira

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Caffeine Exposure on Gene Expression in Human Mesenchymal Stem Cells Madison Pedreira Effect of Caffeine Exposure on Gene Expression in Human Mesenchymal Stem Cells Madison Pedreira 1 Abstract Millions of pregnant women consume caffeine during their pregnancy, which may end up affecting their child’s development. In animal models, fetal caffeine exposure has shown to alter gene expression and embryonic cardiac tissue while also producing long-term effects. Some human studies have shown miscarriage and reduced birth weight to be an effect of fetal caffeine exposure, but there are differing opinions. To better understand the influence of caffeine on stem cell gene expression, we cultured mesenchymal stem cells (MSCs) from human umbilical cords. One group of samples were obtained from mothers that consumed high levels of caffeine during their pregnancy and the other group consumed lower caffeine levels. RNA was isolated from 3 cell lines for both levels of caffeine exposure and analyzed by RNAseq. Analysis of RNAseq data revealed differences in gene expression between the two groups. In this report, we demonstrate that genes involved in apoptosis, gliomas, and transcriptional activation are upregulated in the high caffeine samples, while genes involving apoptosis inhibition, embryonic and neural development, and transcriptional repression are downregulated. 2 Introduction Environmental factors can have a major effect on the development of the fetus in the womb. Anything consumed by the pregnant mother has the potential to affect the fetus’s gene expression directly or through epigenetic pathways[1]. It has been demonstrated that smoking or drinking during pregnancy can have serious consequences on the fetus, however, caffeine has not been considered as dangerous. Understanding the consequence of caffeine consumption during pregnancy is a public health concern that directly affects our children and their development. Animal studies have shown ventricular septal defects[2] and decreased embryonic cardiac tissue[3] to be heart-related abnormalities during embryonic development when exposed to caffeine in utero. Caffeine exposure has been correlated with lower birth weight[4] and miscarriage in human babies[5], but these concerns are not shown by all researchers. However, data from our previous experiments in animals showed that embryonic caffeine exposure leads to altered cardiac function in mice[3, 6, 7], as described in the following paragraphs. The mouse data we have collected already is important for us to consider when comparing our human stem cell analysis in order to better understand the effect of fetal caffeine exposure. One of our previous animal studies showed that in utero exposure to caffeine affects embryonic development and cardiac function after birth[3]. After pregnant mice were treated with caffeine, either the embryos were collected, or the pregnant mothers gave birth. This allowed for both the analysis of prenatal fetus and the postnatal offspring to understand the extent to which caffeine affects post-fertilization development. In the embryos, cardiac histology was examined and showed that the caffeine-treated group had a smaller cross-sectional area of the ventricular myocardium, indicating that the embryonic development of the heart was negatively affected by caffeine exposure. In the pups, echocardiography was used to determine cardiac function, showing a decrease in overall cardiac function and in systolic function. This information indicates that in utero caffeine exposure in mice affects both the fetal development before birth and the offspring development after birth in the heart, which is a concern that must be studied in human samples to determine if caffeine consumption during pregnancy is dangerous. A relevant concern is that fetal caffeine exposure may affect the offspring and generations after that. The consequence of consuming caffeine becomes much greater if this is true, and another one of our previous animal studies indicates that this may be the case[7]. Pregnant mice were treated with caffeine, and their offspring and the next two generations displayed altered cardiac morphology and function. Generation 1 was the only generation exposed to caffeine in utero, yet the next two generations displayed adverse effects into adulthood. Symptoms of altered cardiac function often did not show until adulthood of the 2nd and 3rd generations, indicating that transgenerational fetal caffeine exposure may have latent effects. This raises questions about how representative this study is to humans. In order to understand the extent of the danger of caffeine consumption during pregnancy, these findings must be confirmed in human models. These findings are also supported in animal cell studies. Another previous study demonstrates that gene expression and cell morphology are altered when mouse cardiomyocyte cells are treated with caffeine[6]. These results showed that the cells treated with caffeine had higher mRNA expression in several cardiac structural genes, cardiac transcription factors, and cardiac 3 miRNAs. The cells also displayed morphological changes and reduced in numbers after a certain concentration of caffeine was administered. This study supports the results from the last two studies discussed here, but with cellular data. Using cells to study the effect of caffeine treatment is helpful because there is less genetic variability that may affect the results, as cells grow in a more controlled environment than breeding mice. As described, there is existing evidence in mouse studies that indicate that in utero caffeine exposure has effects on embryonic development that may lead to altered phenotypes in adulthood. The next step in this sequence of studies is to use a human model to verify the data we have from animal studies. The model for fetal development in this study is human umbilical cord MSCs taken from subjects, and the samples were separated into two groups, high vs. low in utero caffeine exposure. High caffeine exposure is defined as greater than 71.3 mg/day (about 6 oz. coffee) and low caffeine exposure is defined as less than 24.9 mg/day. This is not an ideal model, but it is a good first step because it allows us to examine human fetal cells in response to in utero caffeine exposure. Because these cells are mesenchymal stem cells from fetal tissue, we can compare them to our mouse data. MSCs are undifferentiated stem cells and will allow us to identify genes that are differentially expressed in response to caffeine exposure. This will give us a basis to understand these cells so that future studies can be done on these cells after differentiation into cardiomyocytes. RNAseq data from each human sample group (high vs. low caffeine exposure) will be compared on the basis of gene expression to determine any differences between the two groups. This also allows us to determine if human MSCs respond to caffeine similarly as we have observed in animal models. Here, we use an RNAseq analysis pipeline to understand the differentially expressed genes between high caffeine and low caffeine groups. This will help us understand if caffeine consumption during pregnancy has an effect on gene expression in the embryo, and whether this has long-term effects on the health of the fetus. 4 Methods Quality control and alignment to transcriptome The 6 RNAseq samples (3 high caffeine, 3 low caffeine) were analyzed for quality control using FastQC (version 0.11.4)[8] and MultiQC (version 1.1)[9], which was done before and after trimming. This provides quality scores, per base sequence content, and GC content. The sequences were trimmed using Trimmomatic (version 0.36)[10] based on the quality control report to remove low quality bases. The samples were aligned to the human transcriptome using STAR (version 2.7.3a)[11]. STAR is an efficient alignment tool for RNAseq because it aligns transcripts and takes splicing into account instead of mapping to the genomic sequence. Quantification and Differential Expression analysis Gene and transcript abundance and expression values were quantified with RSEM (version 1.2.31)[12]. RSEM also produces a correlation scatterplot with correlation scores between each replicate, along with a Multi-Dimensional Scaling (MDS) plot for the raw expression data. DESeq2[13] was used for the differential expression analysis to determine which of the genes identified by RSEM were differentially expressed between the two study conditions. The significant genes were filtered to only include log2(FC) ≥ |1.0| and False Discovery Rate corrected p-value ≤ 0.05. Another MDS plot is generated in DESeq2 once the expression data is normalized. DESeq2 filtered protein-coding genes specifically so that the genes of interest may be identified in developmental pathways to understand the effect that caffeine has on embryonic development. Pathway identification GeneCards is a searchable human gene database available on the internet and was used to identify potential pathways in the differentially expressed genes found in the RNAseq pipeline. A more accurate and robust pathway analysis would be done in the continuation of this study, but GeneCards was used here as a preliminary pathway analysis for the genes found. GeneCards pulls information from Entrez and UniProt to include in their summary for each gene. 5 Results and Discussion Quality control analysis shows high quality scores and transcriptome alignment rate In order to better understand the quality of the sequencing of our isolated RNA samples, we must first run quality control before any further analysis. Quality control provides the information that dictates trimming, which will lead to a better alignment to the transcriptome. The quality of the samples was analyzed using FastQC[8], and the quality report determined how much needed to be trimmed off the ends of our sample to ensure that only high quality bases are retained. This will allow for the closest possible mapping to the transcriptome, in which we used STAR[11]. Here, the percentage of reads retained after trimming (Table 1) is high due to the high quality scores of the samples. The quality control used here assigns only 4 quality score values as compared to the previous range of 40, resulting in the highest possible scores for these samples.
Recommended publications
  • Meta-Analysis of Nasopharyngeal Carcinoma
    BMC Genomics BioMed Central Research article Open Access Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation Xia Chen†1,2, Shuang Liang†1, WenLing Zheng1,3, ZhiJun Liao1, Tao Shang1 and WenLi Ma*1 Address: 1Institute of Genetic Engineering, Southern Medical University, Guangzhou, PR China, 2Xiangya Pingkuang associated hospital, Pingxiang, Jiangxi, PR China and 3Southern Genomics Research Center, Guangzhou, Guangdong, PR China Email: Xia Chen - [email protected]; Shuang Liang - [email protected]; WenLing Zheng - [email protected]; ZhiJun Liao - [email protected]; Tao Shang - [email protected]; WenLi Ma* - [email protected] * Corresponding author †Equal contributors Published: 7 July 2008 Received: 16 February 2008 Accepted: 7 July 2008 BMC Genomics 2008, 9:322 doi:10.1186/1471-2164-9-322 This article is available from: http://www.biomedcentral.com/1471-2164/9/322 © 2008 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Epstein-Barr virus (EBV) presumably plays an important role in the pathogenesis of nasopharyngeal carcinoma (NPC), but the molecular mechanism of EBV-dependent neoplastic transformation is not well understood. The combination of bioinformatics with evidences from biological experiments paved a new way to gain more insights into the molecular mechanism of cancer. Results: We profiled gene expression using a meta-analysis approach. Two sets of meta-genes were obtained. Meta-A genes were identified by finding those commonly activated/deactivated upon EBV infection/reactivation.
    [Show full text]
  • Review Article Gas7 Is Required for Mesenchymal Stem Cell-Derived Bone Development
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Publishing Corporation Stem Cells International Volume 2013, Article ID 137010, 6 pages http://dx.doi.org/10.1155/2013/137010 Review Article Gas7 Is Required for Mesenchymal Stem Cell-Derived Bone Development Chuck C.-K. Chao, Feng-Chun Hung, and Jack J. Chao Department of Biochemistry and Molecular Biology and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan Correspondence should be addressed to Chuck C.-K. Chao; [email protected] Received 20 January 2013; Accepted 12 May 2013 Academic Editor: Gael¨ Y. Rochefort Copyright © 2013 Chuck C.-K. Chao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and lead to bone formation in the body. Osteoblast differentiation and bone development are regulated by a network of molecular signals and transcription factors induced by several proteins, including BMP2, osterix, and Runx2. We recently observed that the growth-arrest-specific 7 gene (Gas7) is upregulated during differentiation of human MSCs into osteoblasts. Downregulation of Gas7 using short-hairpin RNA decreased the expression of Runx2, a master regulator of osteogenesis, and its target genes (alkaline phosphatase, type I collagen, osteocalcin, and osteopontin). In addition, knockdown of Gas7 decreased the mineralization of dexamethasone-treated MSCs in culture. Conversely, ectopic expression of Gas7 induced Runx2-dependent transcriptional activity and gene expression leading to osteoblast differentiation and matrix mineralization.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • 1 UST College of Science Department of Biological Sciences
    UST College of Science Department of Biological Sciences 1 Pharmacogenomics of Myofascial Pain Syndrome An Undergraduate Thesis Submitted to the Department of Biological Sciences College of Science University of Santo Tomas In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Biology Jose Marie V. Lazaga Marc Llandro C. Fernandez May 2021 UST College of Science Department of Biological Sciences 2 PANEL APPROVAL SHEET This undergraduate research manuscript entitled: Pharmacogenomics of Myofascial Pain Syndrome prepared and submitted by Jose Marie V. Lazaga and Marc Llandro C. Fernandez, was checked and has complied with the revisions and suggestions requested by panel members after thorough evaluation. This final version of the manuscript is hereby approved and accepted for submission in partial fulfillment of the requirements for the degree of Bachelor of Science in Biology. Noted by: Asst. Prof. Marilyn G. Rimando, PhD Research adviser, Bio/MicroSem 602-603 Approved by: Bio/MicroSem 603 panel member Bio/MicroSem 603 panel member Date: Date: UST College of Science Department of Biological Sciences 3 DECLARATION OF ORIGINALITY We hereby affirm that this submission is our own work and that, to the best of our knowledge and belief, it contains no material previously published or written by another person nor material to which a substantial extent has been accepted for award of any other degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text. We also declare that the intellectual content of this undergraduate research is the product of our work, even though we may have received assistance from others on style, presentation, and language expression.
    [Show full text]
  • Tibbo, Amy J. (2020) Compartmentalized Camp Signaling Via the PDE4- Popeye Protein Complex
    Tibbo, Amy J. (2020) Compartmentalized cAMP Signaling via the PDE4- Popeye Protein Complex. PhD thesis. http://theses.gla.ac.uk/81454/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] 1 Compartmentalized cAMP Signaling via the PDE4-Popeye Protein Complex Amy Jane Tibbo (BSc Hons) Thesis submitted in fulfilment of the requirements for Degree of Doctor of Philosophy Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow April 2020 2 Abstract The Popeye domain containing (POPDC) protein family are a unique family of transmembrane proteins with several proposed functions that are not fully understood. POPDC proteins are abundantly expressed in cardiac and skeletal muscle. Within the heart, POPDC1 has been shown to be highly expressed in the pace making centres and at moderate to low levels in the atria and ventricles. Given this localisation, a role for POPDC1 was hypothesised to be in the maintenance of normal heartbeat rhythm. Studies involving POPDC1 mutant mice and zebrafish provided evidence for this proposed function as the genetically modified model animals displayed cardiac arrhythmias as the predominant phenotype.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Identification of Differentially Methylated Cpg
    biomedicines Article Identification of Differentially Methylated CpG Sites in Fibroblasts from Keloid Scars Mansour A. Alghamdi 1,2 , Hilary J. Wallace 3,4 , Phillip E. Melton 5,6 , Eric K. Moses 5,6, Andrew Stevenson 4 , Laith N. Al-Eitan 7,8 , Suzanne Rea 9, Janine M. Duke 4, 10 11 4,9,12 4, , Patricia L. Danielsen , Cecilia M. Prêle , Fiona M. Wood and Mark W. Fear * y 1 Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia; [email protected] 2 Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia 3 School of Medicine, The University of Notre Dame Australia, Fremantle 6959, Australia; [email protected] 4 Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth 6009, Australia; andrew@fionawoodfoundation.com (A.S.); [email protected] (J.M.D.); fi[email protected] (F.M.W.) 5 Centre for Genetic Origins of Health and Disease, Faculty of Health and Medical Sciences, The University of Western Australia, Perth 6009, Australia; [email protected] (P.E.M.); [email protected] (E.K.M.) 6 School of Pharmacy and Biomedical Sciences, Faculty of Health Science, Curtin University, Perth 6102, Australia 7 Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; [email protected] 8 Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110,
    [Show full text]
  • Seromic Profiling of Ovarian and Pancreatic Cancer
    Seromic profiling of ovarian and pancreatic cancer Sacha Gnjatica,1, Erika Rittera, Markus W. Büchlerb, Nathalia A. Gieseb, Benedikt Brorsc, Claudia Freid, Anne Murraya, Niels Halamad, Inka Zörnigd, Yao-Tseng Chene, Christopher Andrewsf, Gerd Rittera, Lloyd J. Olda,1, Kunle Odunsig,2, and Dirk Jägerd,2 aLudwig Institute for Cancer Research Ltd, Memorial-Sloan Kettering Cancer Center, New York, NY 10065; bDepartment of General Surgery, cDepartment of Theoretical Bioinformatics, and dMedizinische Onkologie, Nationales Centrum für Tumorerkrankungen, University Hospital Heidelberg, Heidelberg D-69120, Germany; eDepartment of Pathology, Weill Medical College of Cornell University, New York, NY 10065; and fDepartment of Biostatistics and gDepartment of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263 Contributed by Lloyd J. Old, December 10, 2009 (sent for review August 20, 2009) Autoantibodies, a hallmark of both autoimmunity and cancer, analyzing a series of lung cancer and healthy control sera on a represent an easily accessible surrogate for measuring adaptive small array (329 proteins) for antigen reactivity using this anti- immune responses to cancer. Sera can now be assayed for re- body profiling method, referred to here as “seromics,” we were activity against thousands of proteins using microarrays, but there able to detect known antigens with sensitivity and specificity is no agreed-upon standard to analyze results. We developed a set comparable to ELISA, as well as new antigens that are now of tailored quality control and normalization procedures based on under further investigation. Contrary to gene microarrays where ELISA validation to allow patient comparisons and determination changes in the pattern of gene expression are detected in clus- of individual cutoffs for specificity and sensitivity.
    [Show full text]
  • (Popdc2). Generation and Functional Characterization of a Null Mutant in Mice and Promoter Analysis
    The Popeye domain containing gene 2 (Popdc2). Generation and functional characterization of a null mutant in mice and promoter analysis. Dissertation For completion of the Doctorate degree in Natural Sciences at the Bayerische Julius-Maximilians-Universität Würzburg Alexander Froese from Dushanbe Würzburg 2007 Declaration: I hereby declare that the submitted dissertation was completed by myself and no other. I have not used any sources or materials other than those enclosed. Moreover I declare that the following dissertation has not been submitted further in this form or any other form, and has not been used to obtain any other equivalent qualifications at any other organisation/institution. Additionally, I have not applied for, nor will I attempt to apply for any other degree or qualification in relation to this work. Würzburg, den 21.12.2007 Alexander Froese The hereby submitted thesis was completed from January 2001 until April 2005 at the Cell and Molecular Biology Department, Technical University Braunschweig, Braunschweig and from May 2005 until December 2007 at the Department of Cell and Developmental Biology, University of Würzburg, under the supervision of Professor Dr. T. Brand. Members of the thesis committee: Chairman: Professor Dr. M. Müller Examiner: Professor Dr. T. Brand Examiner: PD Dr. S. Maier Submitted on: 21.12.2007 Date of oral exam: 20.02.2008 Wahrlich, wahrlich, ich sage euch: Wenn das Weizenkorn nicht in die Erde fällt und stirbt, bleibt es allein; wenn es aber stirbt, bringt es viel Frucht. Johannes 12;23-25 Истинно, истинно говорю вам: если пшеничное зерно, падши в землю, не умрёт, то останется одно; а если умрёт, то принесёт много плода.
    [Show full text]
  • Viewed and Published Immediately Upon Acceptance Cited in Pubmed and Archived on Pubmed Central Yours — You Keep the Copyright
    BMC Genomics BioMed Central Research article Open Access Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice Claudia Prinzen1, Dietrich Trümbach2, Wolfgang Wurst2, Kristina Endres1, Rolf Postina1 and Falk Fahrenholz*1 Address: 1Johannes Gutenberg-University, Institute of Biochemistry, Mainz, Johann-Joachim-Becherweg 30, 55128 Mainz, Germany and 2Helmholtz Zentrum München – German Research Center for Environmental Health, Institute for Developmental Genetics, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany Email: Claudia Prinzen - [email protected]; Dietrich Trümbach - [email protected]; Wolfgang Wurst - [email protected]; Kristina Endres - [email protected]; Rolf Postina - [email protected]; Falk Fahrenholz* - [email protected] * Corresponding author Published: 5 February 2009 Received: 19 June 2008 Accepted: 5 February 2009 BMC Genomics 2009, 10:66 doi:10.1186/1471-2164-10-66 This article is available from: http://www.biomedcentral.com/1471-2164/10/66 © 2009 Prinzen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In a transgenic mouse model of Alzheimer disease (AD), cleavage of the amyloid precursor protein (APP) by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results: To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn) of this enzyme.
    [Show full text]
  • Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
    Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.
    [Show full text]