Stratigraphic Distribution of Large Flightless Birds in the Palaeogene of Europe

Total Page:16

File Type:pdf, Size:1020Kb

Stratigraphic Distribution of Large Flightless Birds in the Palaeogene of Europe See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/285787109 Stratigraphic Distribution of Large Flightless Birds in the Palaeogene of Europe Article · January 2014 DOI: 10.1007/978-3-319-04364-7_190 CITATIONS READS 3 14 2 authors: Eric Buffetaut Delphine Angst French National Centre for Scientific Research University of Cape Town 422 PUBLICATIONS 6,421 CITATIONS 21 PUBLICATIONS 86 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Late Cretaceous and Cenozoic giant birds View project All content following this page was uploaded by Delphine Angst on 07 December 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Earth-Science Reviews 138 (2014) 394–408 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Stratigraphic distribution of large flightless birds in the Palaeogene of Europe and its palaeobiological and palaeogeographical implications Eric Buffetaut a,⁎, Delphine Angst b a Centre National de la Recherche Scientifique, UMR 8538, Laboratoire de Géologie de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France b Université Claude Bernard — Lyon 1, UMR5276 Terre, Planète et Environnement, Laboratoire de Géologie de Lyon, 2 rue Dubois — Géode, 69622 Villeurbanne Cedex, France article info abstract Article history: The stratigraphic distribution of the three main groups of large flightless birds known from the Palaeogene of Received 8 April 2014 Europe, Gastornithidae, Phorusrhacidae and Ratitae, is reviewed. The huge, herbivorous gastornithids, represented Accepted 3 July 2014 by the single genus Gastornis, are known from the Selandian (Middle Palaeocene) to the late Lutetian (Middle Available online 11 July 2014 Eocene), being recorded from reference levels MP5 to MP13. The carnivorous phorusrhacids are represented by a single species, Eleutherornis cotei, from the late Lutetian (MP14, late Middle Eocene). The ratites have a patchy dis- Keywords: Aves tribution, being represented by two species of moderate size, Remiornis heberti from the Thanetian (MP6, Late Palaeogene Palaeocene) and Palaeotis weigelti from the Lutetian (MP11 to MP13, Middle Eocene). The stratigraphic distributions Stratigraphy of large eggs referred to gastornithids in the Late Palaeocene and Early Eocene of southern Europe and the occur- Gastornithidae renceofenigmaticlargeavianfootprintsintheLateEoceneofFrancearediscussed.Whereasgastornithidsandrat- Ratitae ites co-existed in both the Palaeocene and the Middle Eocene, phorusrhacids seem to have been the only large Phorusrhacidae ground birds in Europe at the end of the Middle Eocene. The palaeobiogeographical and evolutionary implications of the stratigraphic distributions of those groups of large birds in Europe are discussed. As Gastornis first appears in North America and in Asia in the Early Eocene, it is likely that gastornithids originated in Europe and later spread to other land masses during a dispersal event close to the Palaeocene–Eocene boundary. Prior to that, gastornithids evolved on the European “island continent”, where they were the largest terrestrial tetrapods during the Palaeocene. Gastornithids do not seem to have been significantly affected by the PETM. Ratitae have a more patchy record and relationships between Remiornis and Palaeotis remain unclear. Nevertheless, those European forms are among the earliest known ratites and this should not be overlooked in discussions of ratite evolution and palaeobiogeography. Phorusrhacids appear to have been present in Europe for only a short time and are interpreted as the result of dispersal from Africa followed by local extinction. © 2014 Elsevier B.V. All rights reserved. Contents 1. Introduction.............................................................. 395 2. Geologicalsetting........................................................... 395 3. Systematicpalaeontology........................................................ 395 3.1. Gastornithidae......................................................... 395 3.2. Ratitae............................................................. 397 3.3. Phorusrhacidae......................................................... 397 4. StratigraphicdistributionofGastornithidae................................................ 398 4.1. Palaeocene........................................................... 398 4.1.1. Walbeck,Sachsen-Anhalt,Germany............................................ 398 4.1.2. Cernay-lès-ReimsandBerru,Marne,France........................................ 399 4.1.3. Louvois,Marne,France................................................. 399 4.1.4. Mesvin,Belgium.................................................... 399 4.1.5. Rivecourt,Oise,France.................................................. 399 4.2. EarlyEocene.......................................................... 400 4.2.1. Meudon,HautsdeSeine,France............................................. 400 4.2.2. Croydon,Surrey,England................................................ 400 ⁎ Corresponding author. http://dx.doi.org/10.1016/j.earscirev.2014.07.001 0012-8252/© 2014 Elsevier B.V. All rights reserved. E. Buffetaut, D. Angst / Earth-Science Reviews 138 (2014) 394–408 395 4.2.3. Saint-Papoul,Aude,France............................................... 400 4.2.4. Monthelon,Marne,France................................................ 400 4.3. MiddleEocene......................................................... 400 4.3.1. Messel,Hessen,Germany................................................ 400 4.3.2. Geiseltal,Sachsen-Anhalt,Germany........................................... 400 5. StratigraphicdistributionofRatitae................................................... 400 5.1. Palaeocene........................................................... 400 5.1.1. Berru,Marne,France.................................................. 400 5.1.2. Rivecourt,Oise,France................................................. 400 5.2. Eocene............................................................. 400 5.2.1. Messel,Hessen,Germany................................................ 400 5.2.2. Geiseltal,Sachsen-Anhalt,Germany........................................... 400 6. StratigraphicdistributionofPhorusrhacidae............................................... 401 7. Eggshells............................................................... 401 7.1. France............................................................. 401 7.2. Spain............................................................. 402 8. Footprints............................................................... 402 9. Discussion.............................................................. 403 9.1. Faunalsuccession........................................................ 403 9.2. Evolutionaryandpalaeobiogeographicalimplications........................................ 403 9.2.1. Gastornithidae..................................................... 403 9.2.2. Ratitae......................................................... 404 9.2.3. Phorusrhacidae..................................................... 404 9.2.4. Flightlessness,climateandextinction........................................... 404 10. Conclusion.............................................................. 405 Acknowledgments.............................................................. 406 References................................................................. 406 1. Introduction Palaeogene fossil groups, including birds (Fig. 2), in Europe. Palaeogene birds are known from a number of localities in Europe (Mlíkovský, Large to very large flightless birds, belonging to various avian groups, 2002; Mayr, 2005a, 2009), most of which are well dated. In addition evolved several times during the Cenozoic in various parts of the world. to the standard stratigraphic scale based on the marine record, specific The Australian dromornithids (Murray and Vickers-Rich, 2004), the scales have been devised to account for the stratigraphic distribution mainly South American phorusrhacids (Alvarenga and Höfling, 2003; of land vertebrates, especially mammals; they include European Land Agnolin, 2009; Tambussi and Degrange, 2013)andtheinsularmoas Mammal Ages (ELMA) and reference levels (MP for the Palaeogene) — of New Zealand (Worthy and Scofield, 2012) and aepyornithids of see Vandenberghe et al. (2012) for a recent review and correlation Madagascar (Monnier, 1913; Lamberton, 1934; Balanoff and Rowe, charts. We have attempted to use all three complementary systems in 2007) are well known examples of such groups that are now extinct, our discussion of the stratigraphic distribution of large flightless birds, and the present-day ratites (ostriches, rheas, cassowaries, emus, as as this is likely to make correlations easier. well as the smaller kiwis), with their wide and complex geographical fl distribution, are living instances. Large ightless birds were also present 3. Systematic palaeontology in Europe during the Palaeogene (Fig. 1), together with much smaller, fl possibly ightless, forms such as the Ameghinornithidae (Mayr, 2009), From a systematic point of view, three not closely related groups of which pose different problems and are not discussed in the present large flightess
Recommended publications
  • Download Vol. 11, No. 3
    BULLETIN OF THE FLORIDA STATE MUSEUM BIOLOGICAL SCIENCES Volume 11 Number 3 CATALOGUE OF FOSSIL BIRDS: Part 3 (Ralliformes, Ichthyornithiformes, Charadriiformes) Pierce Brodkorb M,4 * . /853 0 UNIVERSITY OF FLORIDA Gainesville 1967 Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM are pub- lished at irregular intervals. Volumes contain about 800 pages and are not nec- essarily completed in any one calendar year. WALTER AuFFENBERC, Managing Editor OLIVER L. AUSTIN, JA, Editor Consultants for this issue. ~ HILDEGARDE HOWARD ALExANDER WErMORE Communications concerning purchase or exchange of the publication and all manuscripts should be addressed to the Managing Editor of the Bulletin, Florida State Museum, Seagle Building, Gainesville, Florida. 82601 Published June 12, 1967 Price for this issue $2.20 CATALOGUE OF FOSSIL BIRDS: Part 3 ( Ralliformes, Ichthyornithiformes, Charadriiformes) PIERCE BRODKORBl SYNOPSIS: The third installment of the Catalogue of Fossil Birds treats 84 families comprising the orders Ralliformes, Ichthyornithiformes, and Charadriiformes. The species included in this section number 866, of which 215 are paleospecies and 151 are neospecies. With the addenda of 14 paleospecies, the three parts now published treat 1,236 spDcies, of which 771 are paleospecies and 465 are living or recently extinct. The nominal order- Diatrymiformes is reduced in rank to a suborder of the Ralliformes, and several generally recognized families are reduced to subfamily status. These include Geranoididae and Eogruidae (to Gruidae); Bfontornithidae
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • Ebook ^ Extinct Flightless Birds: Dodo, Moa, Great Auk, Gastornis
    QW3BE16N56 ^ Extinct flightless birds: Dodo, Moa, Great Auk, Gastornis, Elephant bird, Stephens Island... « Book Extinct fligh tless birds: Dodo, Moa, Great A uk, Gastornis, Eleph ant bird, Steph ens Island W ren, Dromornith idae, A epyornis, Hesperornith es By Source: Wikipedia Books LLC, Wiki Series, 2016. Paperback. Book Condition: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. READ ONLINE [ 7.56 MB ] Reviews Merely no words to spell out. I am quite late in start reading this one, but better then never. I am happy to explain how this is actually the very best publication we have go through within my personal daily life and can be he best ebook for at any time. -- Althea Christiansen This sort of ebook is everything and made me hunting ahead of time and more. I am quite late in start reading this one, but better then never. I found out this publication from my dad and i suggested this publication to discover. -- Judge Mills ROFLPHUIRS > Extinct flightless birds: Dodo, Moa, Great Auk, Gastornis, Elephant bird, Stephens Island... « Book Related Books TJ new concept of the Preschool Quality Education Engineering: new happy learning young children (3-5 years old) daily learning book Intermediate (2)(Chinese Edition) paperback. Book Condition: New. Ship out in 2 business day, And Fast shipping, Free Tracking number will be provided aer the shipment.Paperback. Pub Date :2005-09-01 Publisher: Chinese children before making Reading: All books are the Youth Pre- employment Training software download generated pictures... TJ new concept of the Preschool Quality Education Engineering the daily learning book of: new happy learning young children (3-5 years) Intermediate (3)(Chinese Edition) paperback.
    [Show full text]
  • Aquila 23. Évf. 1916
    A madarak palaeontologiájának története és irodalma. Irta : DR. Lambrecht Kálmán. Minden ismeret történetének eredete többé-kevésbbé homályba vész. Az els úttörk még maguk is csak tapogatóznak; leírásaik — a kezdet nehézségeivel küzdve — nem szabatosak, több bennük a sej- dít, mint a positiv elem. Fokozottan áll ez a palaeontologiára, amely- nek gyakran bizony igen hiányos anyaga gazdag recens összehasonlító anyagot és alapos morphologiai ismereteket igényel. A palaeontologia legismertebb történetíróinak, MARSH-nak^ és ZiTTEL-nek2 chronologiai beosztásait figyelmen kívül hagyva, ehelyütt Abel3 szellemes beosztását fogadjuk el és megkülönböztetünk a madár- palaeontologia történetében 1. phantasticus, 2. descriptiv és 3. morpho- logiai és phylogenetikai periódust. Nagyon természetes, hogy a fossilis madarak ismerete karöltve haladt a recens madarak osteologiájának megismerésével, 4 mert a palaeon- tologus csakis recens comparativ anyag és vizsgálatok alapján foghat munkához. De viszont igaz az is, hogy a morphologus sem mozdulhat meg az si alakok vázrendszerének ismerete nélkül, nem is szólva arról, hogy a gyakran nagyon töredékes fossilis maradványok mennyi érdekes morphologiai megfigyelésre vezették már a búvárokat. A phantasticus periódus. Ez a periódus, amely — összehasonlítás hiján — túlnyomóan speculativ alapon mvelte a tudományt, a XVIll. századdal, vagyis CuviER felléptével végzdik. Eltekintve Albertus MAGNUS-nak (1193—1280, Marsh szerint 1 Marsh, 0. C, Geschichte und Methode der paläoiitologischen Entdeckungen. — Kosmos VI. 1879.
    [Show full text]
  • The Gastornis (Aves, Gastornithidae) from the Late Paleocene of Louvois (Marne, France)
    Swiss J Palaeontol (2016) 135:327–341 DOI 10.1007/s13358-015-0097-7 The Gastornis (Aves, Gastornithidae) from the Late Paleocene of Louvois (Marne, France) 1 2 Ce´cile Mourer-Chauvire´ • Estelle Bourdon Received: 26 May 2015 / Accepted: 18 July 2015 / Published online: 26 September 2015 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2015 Abstract The Late Paleocene locality of Louvois is specimens to a new species of Gastornis and we designate located about 20 km south of Reims, in the department of it as Gastornis sp., owing to the fragmentary nature of the Marne (France). These marly sediments have yielded material. However, the morphological features of the numerous vertebrate remains. The Louvois fauna is coeval Louvois material are sufficiently distinct for us to propose with those of the localities of Cernay-le`s-Reims and Berru that three different forms of Gastornis were present in the and is dated as reference-level MP6, late Thanetian. Here Late Paleocene of North-eastern France. we provide a detailed description of the remains of giant flightless gastornithids that were preliminarily reported in a Keywords Gastornis Á Louvois Á Sexual size study of the vertebrate fauna from Louvois. These frag- dimorphism Á Thanetian Á Third coeval form mentary gastornithid remains mainly include a car- pometacarpus, several tarsometatarsi, and numerous pedal phalanges. These new avian fossils add to the fossil record Introduction of Gastornis, which has been reported from various Early Paleogene localities in the Northern Hemisphere. Tar- The fossiliferous locality of Louvois was discovered by M. sometatarsi and pedal phalanges show large differences in Laurain during the digging of a ditch for a gas pipeline, and size, which may be interpreted as sexual size dimorphism.
    [Show full text]
  • A Giant Anseriformes of the Neogene of The
    Downloaded from http://rsos.royalsocietypublishing.org/ on January 11, 2017 The extreme insular adaptation of Garganornis rsos.royalsocietypublishing.org ballmanni Meijer, 2014: a Research giant Anseriformes of the Cite this article: Pavia M, Meijer HJM, Rossi Neogene of the MA, Göhlich UB. 2017 The extreme insular adaptation of Garganornis ballmanni Meijer, 2014: a giant Anseriformes of the Neogene of Mediterranean Basin the Mediterranean Basin. R. Soc. open sci. 1 2 4: 160722. Marco Pavia , Hanneke J. M. Meijer , Maria Adelaide http://dx.doi.org/10.1098/rsos.160722 Rossi3 and Ursula B. Göhlich4 1Dipartimento di Scienze della Terra, Museo di Geologia e Paleontologia, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy Received: 20 September 2016 2Department of Natural History, University Museum, University of Bergen, Postboks Accepted: 5 December 2016 7800, 5007 Bergen, Norway 3Soprintendenza archeologia, belle arti e paesaggio dell’Abruzzo, Via degli Agostiniani 14, 66100 Chieti, Italy 4Department of Geology and Paleontology, Natural History Museum Vienna, Subject Category: Burgring 7, 1010 Vienna, Austria Earth science MP, 0000-0002-5188-4155 Subject Areas: palaeontology New skeletal elements of the recently described endemic giant anseriform Garganornis ballmanni Meijer, 2014 are presented, coming from the type-area of the Gargano and from Scontrone, Keywords: southern and central Italy, respectively. The new remains fossil bird, Anseriformes, flightlessness, represent the first bird remains found at Scontrone so far, and insular gigantism, Miocene, Italy another shared element between these two localities, both part of the Apulia-Abruzzi Palaeobioprovince. The presence of a very reduced carpometacarpus confirms its flightlessness, only previously supposed on the basis of the very large size, while Author for correspondence: the morphologies of tarsometatarsus and posterior phalanges Marco Pavia clearly indicate the adaptation of G.
    [Show full text]
  • Phylogeny and Biogeography of Ratite Birds Inferred from DNA Sequences of the Mitochondrial Ribosomal Genes
    Phylogeny and Biogeography of Ratite Birds Inferred from DNA Sequences of the Mitochondrial Ribosomal Genes Marcel van Tuinen,* Charles G. Sibley,² and S. Blair Hedges* *Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University; and ²Santa Rosa, California The origin of the ¯ightless ratite birds of the southern continents has been debated for over a century. Whether dispersal or vicariance (continental breakup) best explains their origin depends largely on their phylogenetic rela- tionships. No consensus has been reached on this issue despite many morphological and molecular studies. To address this question further we sequenced a 2.8-kb region of mitochondrial DNA containing the ribosomal genes in representative ratites and a tinamou. Phylogenetic analyses indicate that Struthio (Africa) is basal and Rhea (South America) clusters with living Australasian ratites. This phylogeny agrees with transferrin and DNA hybrid- ization studies but not with sequence analyses of some protein-coding genes. These results also require reevaluation of the phylogenetic position of the extinct moas of New Zealand. We propose a new hypothesis for the origin of ratites that combines elements of dispersal and vicariance. Introduction The living ratites include two species of ostriches cause a UPGMA tree joined Rhea and Struthio, whereas (Struthio) in Africa and formerly in Asia, the Australian trees constructed with the Fitch-Margoliash (1967) al- emu (Dromaius), three species of cassowaries (Casuar- gorithm joined Rhea with the Australasian clade (Sibley ius) in New Guinea and northeastern Australia, three and Ahlquist 1990). In contrast, mitochondrial DNA se- species of forest-dwelling kiwis (Apteryx) in New Zea- quence data (12S rRNA; 400 bp) supported a basal po- land, and two rheas (Rhea) in South America (Sibley sition for Rhea (Cooper et al.
    [Show full text]
  • Und Klimacharakter Der Spätmittelpleistozänen Warmzeit Von Neumark Nord (Geiseltal)
    Hercynia N. F. 43 (2010): 203 –256 203 Der besondere Umwelt- und Klimacharakter der spätmittelpleistozänen Warmzeit von Neumark Nord (Geiseltal) Dietrich Mania, Dieter Hans Mai, Maria Seifert-Eulen, Matthias Thomae und Manfred Altermann 19 Abbildungen Abstract Mania, D.; Mai, D. H.; Seifert-Eulen, M.; Thomae, M.; Altermann, M.: The special environmen- tal and climatic character of the Late Middle Pleistocene interglacial of Neumark Nord (Geisel valley). – Hercynia N. F. 43 (2010): 203 –256. The geological sequence deriving from the open-cut mine of Neumark Nord allows to ascribe the in- terglacial sediments to the Saale complex. The 15-m-thick, limnic and telmatic sediments of a fossil lake are located on the ground moraine of the Saale glaciation (Drenthian, Saale I) and are covered by a periglacial sequence with the loess of the Warthian (Saale II, III). Overlying are a soil complex (Eemian and Early Weichselian) and the periglacial sequence with the loess of the Weichselian. The palynologi- cal investigation yields the Pleistocene basic succession of the vegetation. A fossil flora of fruits and seeds containing about 200 species originates from the interglacial maximum. They give evidence for the development of Quercetalia pubescentis with dry woods of the Aceri tatarici-Quercion. Steppes coexist with them (Festico-Brometea, Astragalo-Stipion). A great number of the species presently oc- cupy Southern Siberian, West-Asian and East-European as well as Pontic regions. They prove the strong subcontinental influence on vegetation and climate of this interglacial. Forest and steppe associations appropriate for comparisons presently occur in the Pannonia lowland and the southern Russian steppes.
    [Show full text]
  • (Aves: Palaeognathae) from the Paleocene (Tiffanian) of Southern California
    PaleoBios 31(1):1–7, May 13, 2014 A lithornithid (Aves: Palaeognathae) from the Paleocene (Tiffanian) of southern California THOMAS A. STIDHAM,1* DON LOFGREN,2 ANDREW A. FARKE,2 MICHAEL PAIK,3 and RACHEL CHOI3 1Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; e-mail: [email protected], corresponding author. 2Raymond M. Alf Museum of Paleontology, Claremont, California 91711, USA. 3 The Webb Schools, Claremont, California 91711, USA The proximal end of a bird humerus recovered from the Paleocene Goler Formation of southern California is the oldest Cenozoic record of this clade from the west coast of North America. The fossil is characterized by a relatively large, dorsally-positioned head of the humerus and a subcircular opening to the pneumotricipital fossa, consistent with the Lithornithidae among known North American Paleocene birds, and is similar in size to Lithornis celetius. This specimen from the Tiffanian NALMA extends the known geographic range of lithornithids outside of the Rocky Mountains region in the United States. The inferred coastal depositional environment of the Goler Formation is consistent with a broad ecological niche of lithornithids. The age and geographic distribution of lithornithids in North America and Europe suggests these birds dispersed from North America to Europe in the Paleocene or by the early Eocene. During the Paleogene the intercontinental dispersal of lithornithids likely occurred alongside other known bird and mammalian movements that were facilitated by climatic and sea level changes. Keywords: bird humerus, fossil, Lithornithidae, Goler Formation, Tiffanian, California INTRODUCTION largely unknown in North America.
    [Show full text]
  • Messel Pit – Wikipedia Germany
    03/08/2018 Messel pit - Wikipedia Coordinates: 49°55′03″N 8°45′24″E Messel pit The Messel Pit (German: Grube Messel) is a disused quarry near the Messel Pit Fossil Site village of Messel, (Landkreis Darmstadt-Dieburg, Hesse) about 35 km (22 mi) southeast of Frankfurt am Main, Germany. Bituminous shale UNESCO World Heritage site was mined there. Because of its abundance of fossils, it has significant geological and scientific importance. After almost becoming a landfill, strong local resistance eventually stopped these plans and the Messel Pit was declared a UNESCO World Heritage site on 9 December 1995. Significant scientific discoveries are still being made and the site has increasingly become a tourist site as well. Contents Location Darmstadt-Dieburg, History Hesse, Germany Depositional characteristics Criteria Natural: (viii) Volcanic gas releases Reference 720bis (http://whc.unesco. Fossils org/en/list/720bis) Mammals Inscription 1995 (19th Session) Birds Reptiles Extensions 2010 Fish Area 42 ha (4,500,000 sq ft) Insects Plants Buffer zone 22.5 ha (2,420,000 sq ft) Access Coordinates 49°55′03″N 8°45′24″E See also References External links History Brown coal and later oil shale was actively mined from 1859. The pit first became known for its wealth of fossils around 1900, but serious scientific excavation only started around the 1970s, when falling oil prices made the quarry uneconomical. Commercial oil shale mining ceased in 1971 and a cement factory built in the quarry failed the following year. The land was slotted for use as a landfill, but the plans came to nought and the Hessian state bought the site in 1991 to secure scientific access.
    [Show full text]
  • The Palaeobiology of High Latitude Birds from the Early Eocene Greenhouse of Ellesmere Island, Arctic Canada
    www.nature.com/scientificreports OPEN The palaeobiology of high latitude birds from the early Eocene greenhouse of Ellesmere Island, Received: 14 September 2015 Accepted: 13 January 2016 Arctic Canada Published: 12 February 2016 Thomas A. Stidham1 & Jaelyn J. Eberle2 Fossils attributable to the extinct waterfowl clade Presbyornithidae and the large flightless Gastornithidae from the early Eocene (~52–53 Ma) of Ellesmere Island, in northernmost Canada are the oldest Cenozoic avian fossils from the Arctic. Except for its slightly larger size, the Arctic presbyornithid humerus is not distinguishable from fossils of Presbyornis pervetus from the western United States, and the Gastornis phalanx is within the known size range of mid-latitude individuals. The occurrence of Presbyornis above the Arctic Circle in the Eocene could be the result of annual migration like that of its living duck and geese relatives, or it may have been a year-round resident similar to some Eocene mammals on Ellesmere and some extant species of sea ducks. Gastornis, along with some of the mammalian and reptilian members of the Eocene Arctic fauna, likely over-wintered in the Arctic. Despite the milder (above freezing) Eocene climate on Ellesmere Island, prolonged periods of darkness occurred during the winter. Presence of these extinct birds at both mid and high latitudes on the northern continents provides evidence that future increases in climatic warming (closer to Eocene levels) could lead to the establishment of new migratory or resident populations within the Arctic Circle. Fossil birds from within the Arctic Circle are rare. The Cretaceous record is restricted to the flightless diving hesperornithiform birds from Devon Island1, Ellesmere Island2, and Alaska3, as well as bird tracks from Alaska4.
    [Show full text]