Article Or Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wetlands of the Nile Basin the Many Eco for Their Liveli This Chapt Distribution, Functions and Contribution to Contribution Livelihoods They Provide
important role particular imp into wetlands budget (Sutch 11 in the Blue N icantly 1110difi Wetlands of the Nile Basin the many eco for their liveli This chapt Distribution, functions and contribution to contribution livelihoods they provide. activities, ane rainfall (i.e. 1 Lisa-Maria Rebelo and Matthew P McCartney climate chan: food securit; currently eX' arc under tb Key messages water resour support • Wetlands occur extensively across the Nile Basin and support the livelihoods ofmillions of related ;;ervi people. Despite their importance, there are big gaps in the knowledge about the current better evalu: status of these ecosystems, and how populations in the Nile use them. A better understand systematic I ing is needed on the ecosystem services provided by the difl:erent types of wetlands in the provide. Nile, and how these contribute to local livelihoods. • While many ofthe Nile's wetlands arc inextricably linked to agricultural production systems the basis for making decisions on the extent to which, and how, wetlands can be sustainably used for agriculture is weak. The Nile I: • Due to these infi)fl11atio!1 gaps, the future contribution of wetlands to agriculture is poorly the basin ( understood, and wetlands are otten overlooked in the Nile Basin discourse on water and both the E agriculture. While there is great potential for the further development of agriculture and marsh, fen, fisheries, in particular in the wetlands of Sudan and Ethiopia, at the same time many that is stat wetlands in the basin are threatened by poor management practices and populations. which at \, In order to ensure that the future use of wetlands for agriculture will result in net benefits (i.e. -
K&C 13 Wetland Theme Days Summary Laura Hess
K&C 13 Wetland Theme Days Summary Laura Hess Science Team meeting #13 JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Post-Copenhagen Considerations (What Obama Faces in the U.S. Congress) “If we decrease the use of carbon dioxide, are we not taking away plant food from the atmosphere? . All our good intentions could be for vain.” Rep. John Shimkus (Illinois) “Wouldn’t it be ironic if in the interest of global warming we mandated massive switches to wind energy, which is a finite resource, which slows the winds down, which causes the temperature to go up? . It’s just something to think about.” Rep. Bill Posey (Florida) Source: “Who’s the Biggest FoolScience on the Team Hill?”, meeting Mother #13 Jones magazine, Jan/Feb 2010 JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Mapping and Monitoring of Richard Mangroves and Wetlands Lucas Mangrove structural Mangrove change, 2000-2008, northern Australia types, Belize Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Mapping Rice Paddies and Agroecological Bill Attributes in Monsoon Asia Salas Poyang Lake Paddy Crop Region, China Area Calendar Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Wetlands of the Upper Lisa White Nile Rebelo Sudd Marshes Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Central Amazon Wetlands Laura Inundation Periodicity Hess May 2007 (R) June-July 2007 (G) August 2007 (B) Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Global Monitoring of Wetland Extent Kyle and Dynamics: Boreal Wetlands McDonald Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 K&C deliverables: Mangroves • A standardized object-orientated method for characterising mangroves and detecting change. -
The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan: an Evolutionary Approach to Environment and Development
The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan: An Evolutionary Approach to Environment and Development JOHN GOWDY HANNES LANG Professor of Economics and Professor of Science Research Associate & Technology Studies School of Life Sciences Rensselaer Polytechnic Institute, Technical University Munich Troy New York, 12180 USA 85354 Freising, Germany [email protected] [email protected] The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan 1 Contents About the Authors ....................................................................................................................2 Key Findings of this Report .......................................................................................................3 I. Introduction ......................................................................................................................... 4 II. The Sudd ............................................................................................................................ 8 III. Human Presence in the Sudd ..............................................................................................10 IV. Development Threats to the Sudd ........................................................................................ 11 V. Value Transfer as a Framework for Developing the Sudd Wetland ......................................... 15 VI. Maintaining the Ecosystem Services of the Sudd: An Evolutionary Approach to Development and the Environment ...........................................26 -
The Republic of South Sudan
THE REPUBLIC OF SOUTH SUDAN PRESENTATION ON AICHI BIODIVERSITY TARGET 5 THE REPUBLIC OF SOUTH SUDAN • Population of 11.3 million, 83% rural • Abundant natural resources, but very poor country, largely due to the 50 years of conflict Land cover map of 2011 Percent of land area agriculture 4% trees 33% shrubs 39% herbaceous plants 23% Significant habitats and wildlife populations Example: • Savannah and woodland ecosystems, wetlands (the Sudd) • Biodiversity hot spots: Imatong mountains. • WCS aerial Survey (2007 – 2010) found • 1.2 million white-eared kob and mongalla gazelle • 4000 Elephants and viable populations of other large bodied species. Drivers of loss of natural habitat and wildlife • 1973 – 2006: annual forest loss 2% per year • Underlying drivers of deforestation: demographic, economic, technological, policy, institutional and cultural factors • Biodiversity assets are threatened by escalating commercial poaching linked to population of fire arms, refugees returning, grazing, water scarcity, extractive industries for oil and minerals NATURAL HABITATS; INCLUDING FORESTS IN SOUTH SUDAN: - Low land forest. - Maintenance forest. - Savannah wood land. - Grass land savanna. - Flood plain. - Sudd swamps and other wetlands. - Semi-arid region WCS 2012 TABLE: SOUTH SUDAN NATIONAL HABITATS: HABITATS IMPORTANCE THREATS NEW STEPS Lowland Manual: chimpanzees, • Communities • Assessment forest elephants, forest hug, • Insecurity • Management Bongo, Buffalo and • Illegal • Conservation practices forest monkeys. harvesting • Poaching Mountain Plants: Albizzia, • Farming • Law enforcement forest podocarpus • Hunting • Policies (9,000 km²) Animals: Bush pig, bush • Fire • Institutional framework bug, colobus monkeys, • Illegal logging Rich bird life. Protected area. Savannah Sited in the iron stone • Shifting • Community based wood land plateau. cultivation. management and Elephants, hippos, • Rehabilitation collaboration. -
THE ARCHAEAN and Earllest PROTEROZOIC EVOLUTION and METALLOGENY of Australla
Revista Brasileira de Geociências 12(1-3): 135-148, Mar.-Sel.. 1982 - Silo Paulo THE ARCHAEAN AND EARLlEST PROTEROZOIC EVOLUTION AND METALLOGENY OF AUSTRALlA DA VID I. OROVES' ABSTRACT Proterozoic fold belts in Austrália developed by lhe reworking of Archaean base mcnt. The nature of this basement and the record of Archaean-earliest Proterozoic evolution and metallogeny is best prescrved in the Western Australian Shield. ln the Yilgarn Craton. a poorly-mineralized high-grade gneiss terrain rccords a complex,ca. 1.0 b.y. history back to ca. 3.6b.y. This terrain is probably basement to lhe ca. 2.9~2.7 b.y. granitoid -greenstone terrains to lhe east-Cratonization was essentially complete by ca, 2.6 b.y. Evolution of the granitoid-greenstone terrains ofthe Pilbara Craton occurred between ca. 3.5b.y. ano 2.8 b.y. The Iectonic seuing of ali granitoid-greenstone terrains rcmains equivocaI. Despitc coincidcnt cale -alkalinc volcanism and granitoid emplacemcnt , and broad polarity analogous to modem are and marginal basin systcrns. thcre is no direct evidencc for plate tectonic processes. Important diffcrences in regional continuity of volcanic scqucnccs, lithofacies. regional tectonic pauerns and meta1Jogeny of lhe terrains may relate to the amount of crusta! extension during basin formation. At onc extreme, basins possibly reprcsenting low total cxrensíon (e.g. east Pilbara l are poorly mi ncralizcd with some porphyry-stylc Mo-Cu and small sulphute-rich volcanogenic 01' evaporitic deposits reflecting the resultam subaerial to shaJlow-water environment. ln contrast, basins inter prctcd to have formcd during greater crusta! cxrcnsion (e.g. -
Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant
U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP CP-37 U.S. GEOLOGICAL SURVEY Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant 1:10,000,000 ICIRCUM-PACIFIC i • \ COUNCIL AND MINERAL RESOURCES 1991 CIRCUM-PACIFIC COUNCIL FOR ENERGY AND MINERAL RESOURCES Michel T. Halbouty, Chairman CIRCUM-PACIFIC MAP PROJECT John A. Reinemund, Director George Gryc, General Chairman Erwin Scheibner, Advisor, Tectonic Map Series EXPLANATORY NOTES FOR THE TECTONIC MAP OF THE CIRCUM-PACIFIC REGION SOUTHWEST QUADRANT 1:10,000,000 By Erwin Scheibner, Geological Survey of New South Wales, Sydney, 2001 N.S.W., Australia Tadashi Sato, Institute of Geoscience, University of Tsukuba, Ibaraki 305, Japan H. Frederick Doutch, Bureau of Mineral Resources, Canberra, A.C.T. 2601, Australia Warren O. Addicott, U.S. Geological Survey, Menlo Park, California 94025, U.S.A. M. J. Terman, U.S. Geological Survey, Reston, Virginia 22092, U.S.A. George W. Moore, Department of Geosciences, Oregon State University, Corvallis, Oregon 97331, U.S.A. 1991 Explanatory Notes to Supplement the TECTONIC MAP OF THE CIRCUM-PACIFTC REGION SOUTHWEST QUADRANT W. D. Palfreyman, Chairman Southwest Quadrant Panel CHIEF COMPILERS AND TECTONIC INTERPRETATIONS E. Scheibner, Geological Survey of New South Wales, Sydney, N.S.W. 2001 Australia T. Sato, Institute of Geosciences, University of Tsukuba, Ibaraki 305, Japan C. Craddock, Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. TECTONIC ELEMENTS AND STRUCTURAL DATA AND INTERPRETATIONS J.-M. Auzende et al, Institut Francais de Recherche pour 1'Exploitacion de la Mer (IFREMER), Centre de Brest, B. -
Assessment of the Vulnerability of Peatland Carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to Climate Change
Ministry of Natural Resources and Forestry Assessment of the vulnerability Science and Research of peatland carbon in the Albany Ecodistrict of the 46 Hudson Bay Lowlands, Ontario, CLIMATE CHANGE Canada to climate change RESEARCH REPORT CCRR-46 Responding to Climate Change Through Partnership Assessment of the vulnerability of peatland carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to climate change Jim McLaughlin, Maara Packalen, and Bharat Shrestha Forest Research and Monitoring Section Ontario Ministry of Natural Resources and Forestry 2018 Science and Research Branch • Ministry of Natural Resources and Forestry © 2018, Queen’s Printer for Ontario Printed in Ontario, Canada Single copies of this publication are available from [email protected]. Cette publication hautement spécialisée Assessment of the Vulnerability of Peatland Carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to Climate Change n’est disponible qu’en anglais conformément au Règlement 671/92, selon lequel il n’est pas obligatoire de la traduire en vertu de la Loi sur les services en français. Pour obtenir des renseignements en français, veuillez communiquer avec le ministère des Richesses naturelles et des Forêts au [email protected]. Some of the information in this document may not be compatible with assistive technologies. If you need any of the information in an alternate format, please contact [email protected]. Cite this report as: McLaughlin, J., M. Packalen and B. Shrestha. 2018. Assessment of the vulnerability of peatland carbon in the Albany Ecodistrict of the Hudson Bay Lowlands, Ontario, Canada to climate change. Ontario Ministry of Natural Resources and Forestry, Science and Research Branch, Peterborough, ON. -
7. Sudd Marshes Management Tools
k r o w t e N GIS Based Decision Support Tool g n for Sustainable Development i d l of SUDD Marshes Region i (SUDAN) u B y t i c a p a C n i s a B e l i N GIS Based Decision Support Tool for Sustainable Development of SUDD Marshes Region (SUDAN) “Key knowledge” By Mohamed El Shamy Eman Sayed Mamdouh Anter Ibrahim Babakir Muna El Hag Yasser Elwan Coordinated by Prof. Dr. Karima Attia Nile Research Institute, Egypt Scientific Advisor Prof. Roland K. Price UNESCO-IHE Dr. Zoltan Vekerdy ITC 2010 Produced by the Nile Basin Capacity Building Network (NBCBN-SEC) office Disclaimer The designations employed and presentation of material and findings through the publication don’t imply the expression of any opinion whatsoever on the part of NBCBN concerning the legal status of any country, territory, city, or its authorities, or concerning the delimitation of its frontiers or boundaries. Copies of NBCBN publications can be requested from: NBCBN-SEC Office Hydraulics Research Institute 13621, Delta Barrages, Cairo, Egypt Email: [email protected] Website: www.nbcbn.com Images on the cover page are property of the publisher © NBCBN 2010 Project Title Knowledge Networks for the Nile Basin Using the innovative potential of Knowledge Networks and CoP’s in strengthening human and institutional research capacity in the Nile region. Implementing Leading Institute UNESCO-IHE Institute for Water Education, Delft, The Netherlands (UNESCO-IHE) Partner Institutes Ten selected Universities and Ministries of Water Resources from Nile Basin Countries. Project Secretariat Office Hydraulics Research Institute – Cairo - Egypt Beneficiaries Water Sector Professionals and Institutions in the Nile Basin Countries Short Description The idea of establishing a Knowledge Network in the Nile region emerged after encouraging experiences with the first Regional Training Centre on River Engineering in Cairo since 1996. -
Carbon Storage and Potential Methane Production in the Hudson Bay Lowlands Since Mid-Holocene Peat Initiation
ARTICLE Received 28 Aug 2013 | Accepted 9 May 2014 | Published 11 Jun 2014 DOI: 10.1038/ncomms5078 Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation Maara S. Packalen1, Sarah A. Finkelstein2 & James W. McLaughlin3 Peatlands have influenced Holocene carbon (C) cycling by storing atmospheric C and releasing methane (CH4). Yet, our understanding of contributions from the world’s second largest peatland, the Hudson Bay Lowlands (HBL), Canada, to peat-climate-C-dynamics is constrained by the paucity of dated peat records and regional C-data. Here we examine HBL peatland development in relation to Holocene C-dynamics. We show that peat initiation in the HBL is tightly coupled with glacial isostatic adjustment (GIA) through most of the record, and occurred within suitable climatic conditions for peatland development. HBL peatlands initiated most intensively in the mid-Holocene, when GIA was most rapid and climate was cooler and drier. As the peat mass developed, we estimate that the HBL potentially released 1–7 Tg CH4 per year during the late Holocene. Our results indicate that the HBL currently stores a C-pool of B30 Pg C and provide support for a peatland-derived CH4 contribution to the late Holocene atmosphere. 1 Department of Geography, University of Toronto, Toronto, Ontario, Canada M5S 3G3. 2 Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3B1. 3 Ontario Forest Research Institute, Ontario Ministry of Natural Resources, Sault Ste. Marie, Ontario, Canada P6A 2E5. Correspondence and requests for materials should be addressed to M.S.P. -
Summary of the Hudson Bay Marine Ecosystem Overview
i SUMMARY OF THE HUDSON BAY MARINE ECOSYSTEM OVERVIEW by D.B. STEWART and W.L. LOCKHART Arctic Biological Consultants Box 68, St. Norbert P.O. Winnipeg, Manitoba CANADA R3V 1L5 for Canada Department of Fisheries and Oceans Central and Arctic Region, Winnipeg, Manitoba R3T 2N6 Draft March 2004 ii Preface: This report was prepared for Canada Department of Fisheries and Oceans, Central And Arctic Region, Winnipeg. MB. Don Cobb and Steve Newton were the Scientific Authorities. Correct citation: Stewart, D.B., and W.L. Lockhart. 2004. Summary of the Hudson Bay Marine Ecosystem Overview. Prepared by Arctic Biological Consultants, Winnipeg, for Canada Department of Fisheries and Oceans, Winnipeg, MB. Draft vi + 66 p. iii TABLE OF CONTENTS 1.0 INTRODUCTION.........................................................................................................................1 2.0 ECOLOGICAL OVERVIEW.........................................................................................................3 2.1 GEOLOGY .....................................................................................................................4 2.2 CLIMATE........................................................................................................................6 2.3 OCEANOGRAPHY .........................................................................................................8 2.4 PLANTS .......................................................................................................................13 2.5 INVERTEBRATES AND UROCHORDATES.................................................................14 -
Canadian-Geography-And-Mapping
Canadian Geography and Mapping Skills Encouraging Topic Interest Keep a class collection of maps showing population, climate, topography, etc., to help students develop an understanding and appreciation of different types of maps. The Government of Canada website (http://gc.ca/aboutcanada-ausujetcanada/maps-cartes/maps-cartes-eng.html) and tourism bureaus are great sources of free maps. Encourage students to add to the class collection by bringing in a variety of maps for roads, tourist attractions, neighbourhoods, parks, amusement parks, floor plans, etc. Also have atlases and other resources handy for further study. Vocabulary List Record new and theme-related vocabulary on chart paper for students’ reference during activities. Classify the word list into categories such as nouns, verbs, adjectives, or physical features. Blackline Masters and Graphic Organizers Use the blackline masters and graphic organizers to present information, reinforce important concepts, and to extend opportunities for learning. The graphic organizers will help students focus on important ideas, or make direct comparisons. Outline Maps Use the maps found in this teacher resource to teach the names and locations of physical regions, provinces, territories, cities, physical features, and other points of interest. Encourage students to use the maps from this book and their own information reports to create an atlas of Canada. Learning Logs Keeping a learning log is an effective way for students to organize thoughts and ideas about concepts presented. Student learning logs also provide insight on what follow-up activities are needed to review and to clarify concepts learned. Learning logs can include the following types of entries: • Teacher prompts • Connections discovered • Students’ personal reflections • Labelled diagrams and pictures • Questions that arise • Definitions for new vocabulary Rubrics and Checklists Use the rubrics and checklists in this book to assess students’ learning. -
Long Term Landscape Evolution of the Western Australian Shield
Joe Jennings: Father of modern Australian geomorphology BRAD PILLANS Research School of Earth Sciences, The Australian National University, Canberra, ACT, 0200, Australia ([email protected]) Joe Jennings was appointed to the Geography Department at the Australian National University (ANU) in 1953, and over the next three decades he had a profound and lasting effect on Australian geomorphology. Although best remembered as a karst geomorphologist, Joe had wide-ranging research interests and boundless enthusiasm for the entire discipline of geomorphology. Nowhere is this better evidenced than in the graduate students he supervised (with year of completion in brackets), including Eric Bird (1959), Nel Caine (1966), Ian Douglas (1966), Martin Williams (1969), Jim Bowler (1970), Bud Frank (1972), John Chappell (1973), Colin Pain (1973), Ross Coventry (1973), Chris Whitaker (1976), Joyce Lundberg (1976) and David Gillieson (1982). As a PhD student of John Chappell, and therefore an academic grandson of Joe, I was privileged to know him in the late 1970’s and early 1980’s at ANU. In this paper I have constructed a “family tree” of Joe’s academic descendents. Introduction Joseph Newell Jennings (1916-1984), or Joe to everyone who knew him (Fig. 1), was appointed to the fledgling Geography Department at the Australian National University (ANU) in 1953, and over the next three decades he had a profound and lasting effect on Australian geomorphology. Joe is best remembered as a karst geomorphologist, but in fact he had wide-ranging research interests and boundless enthusiasm for the entire discipline of geomorphology - see obituary and publication list in Spate & Spate (1985).