Localization: on Division Rings and Tilting Modules

Total Page:16

File Type:pdf, Size:1020Kb

Localization: on Division Rings and Tilting Modules Localization: On Division Rings and Tilting Modules Javier S´anchez Serd`a Mem`oriapresentada per a aspirar al grau de doctor en Matem`atiques Certifico que la present Mem`oria ha estat realitzada per en Javier S´anchez Serd`a, sota la direcci´ode la Dra. Dolors Herbera Espinal. Bellaterra, Juny 2008 Firmat: Dra. Dolors Herbera Espinal “And here we are again the door is closed behind us and the long road lies ahead where do we go from here?” Fates Warning, Leave the past behind Introduction Let R be a ring. Suppose that R embeds in a division ring E (i.e. E is a not necessarily commutative field). By the division ring of fractions of R inside E we mean the embedding R,→ E(R) where E(R) denotes the intersection of all subdivision rings of E that contain R. When R is a commutative ring, the answer to whether R is embeddable in a division ring is well known: (a) Existence: R has a division ring of fractions Q(R) if and only if R is a domain, i.e. R is a nonzero ring such that xy = 0 implies that x = 0 or y = 0. (b) Uniqueness: If λ: R,→ Q(R) is a division ring of fractions of R, given any embedding ψ : R,→ E in a division ring E, there exists a morphism of rings ψ¯: Q(R) → E such that ψλ¯ = ψ. In particular E(R) =∼ Q(R). (c) Form of the elements: The division ring of fractions Q(R) is constructed in an analogous way as the rationals from the integers. The elements of Q(R) are of the form s−1r for some r ∈ R and s ∈ R \{0}. Moreover, we have a rule to decide when two fractions −1 −1 s1 r1, s2 r2 represent the same element of E (iff s1r2 = s2r1). This situation extends to the non-commutative setting provided that R is a left (right) Ore domain [Ore31], but in general the picture is not like that. Certainly, being a domain is a necessary condition for the ring R to be embeddable in a division ring, but it is not sufficient as A.I. Mal’cev showed [Mal37]. Necessary and sufficient conditions can be found in [Coh95], but they are difficult to verify for a given domain R and, in addition, the proof of the existence of the division ring is not constructive. There are also many (non-Ore) domains R with more than one division ring of frac- tions [Fis71] (or see also Chapter 7). For example, for any field k, the free k-algebra khXi on a set X of cardinality at least two. Furthermore, if R,→ D is a division ring of fractions of R, the elements of D can be built up from the elements of R in stages, using addition, subtraction, multiplication, and division by nonzero elements. It can happen that the subset {s−1r ∈ D | r ∈ R, s ∈ R \{0}} is not a division ring, and it may not be possible to simplify expressions like uv−1w + xy−1z or −1 −1 −1 (w2 − x2(w1 − x1y1 z1) z2) . This leads to the concept of inversion height. The inversion height of a rational expression is the maximum number of nested inversions that occur in it. −1 −1 −1 −1 −1 For example, the inversion height of uv w+xy z is one and of (w2−x2(w1−x1y1 z1) z2) is three. The inversion height of an element of D is the least inversion height of the rational expressions of elements of R that represent f. Observe that the inversion height of an element is not so easy to compute. It depends of course on the nature of the ring R, but there are also rational identities. To illustrate this point, consider elements x, y ∈ R. At first sight the element f = (x−1 + (y−1 − x)−1)−1 ∈ D seems to be of inversion height 3. However, by Hua’s identity, f = x − xyx, and therefore is of inversion height zero. The inversion height of a division ring of fractions R,→ D is the supremum of the inversion height of the elements of D (it may be infinite). Notice that if R is a left (right) Ore domain, R,→ D is of inversion height 1. ii Introduction Therefore, description of division rings of fractions turns out to be a difficult task. About two thirds of this work is concerned with the problem of the uniqueness of division rings of fractions and the form in which the elements of a division ring of fractions can be expressed. We proceed to outline our main results in this direction. Let G be a group and k a division ring. One can construct a crossed product group ring kG, for example the usual group ring k[G]. We deal with the problem of embedding kG in division rings when G is a locally indicable group, that is, a group such that every nontrivial finitely generated subgroup H of G has a normal subgroup N with H/N infinite cyclic. These groups form a large class: locally free groups, torsion-free abelian groups, orderable groups, torsion-free one-relator groups and extensions of groups in these classes are locally indicable groups. Observe that if 1 6= H ≤ G is finitely generated and the class of t generates H/N, then the powers of t are kN-linearly independent. An embedding kG ,→ D, with D a division ring, is Hughes-free if the powers of t are D(kN)-linearly independent for all 1 6= H ≤ G finitely generated, N C H such that H/N is infinite cyclic and t such that the coset of t generates H/N, that is, we can extend the kN-linear independence of t to the division ring D(kN) generated by kN inside D. An important example of Hughes-free embedding goes back to A.I. Mal’cev [Mal48] and B.H. Neumann [Neu49a]. They independently showed: for each ordered group (G, <), division ring k and crossed product group ring kG, the embedding kG ,→ k((G, <)) is a Hughes-free embedding, where k((G, <)) denotes the Mal’cev-Neumann series ring, i.e. X k((G, <)) = {γ = agg | supp γ is well-ordered}. g∈G In particular, this holds for (locally) free groups. A locally indicable group G is Hughes-free embeddable if kG has a Hughes-free division ring of fractions for every division ring k and every crossed product group ring kG. Orderable groups are examples of Hughes-free embeddable groups. We give new proofs of two results by I. Hughes, [Hug70] and [Hug72]. More precisely, we show: Hughes’ Theorem I. Let k be a division ring and G a locally indicable group. If kG ,→ D1 and kG ,→ D2 are two Hughes-free division ring of fractions, then there exists a (unique) isomorphism ϕ: D1 → D2 D1 o7 * ooo kG t ϕ OO OO' D2 making the diagram commutative. Hughes’ Theorem II. Suppose that G is a locally indicable group with a normal subgroup L such that G/L is locally indicable. If both L and G/L are Hughes-free embeddable, then G is Hughes-free embeddable. The proof of Hughes’ Theorem I and the machinery developed to show both results is a joint work with W. Dicks and D. Herbera [DHS04]. Hughes’ Theorem I has played an important role in the study of division rings of fractions of the free algebra and of crossed product group rings of free groups. It has been used by J. Lewin in [Lew74] to describe the universal division ring of fractions of the free algebra and of the crossed product group ring of a free group as the division ring of fractions of kG inside the Mal’cev-Neumann series rings. Also, P. Linnell [Lin00], [Lin93] made use of it to prove that the division ring of fractions that arises from group von Neumann algebras of free groups is the same as the universal division iii ring of fractions of the group ring of a free group. Because of these important results and the fact that, in words of P. Linnell [Lin06, p. 52], “the proof given by Hughes in [Hug70] is extremely condensed, and ... it is difficult to follow”, a new proof was needed. We also give an easier proof of the aforementioned result by J. Lewin following closely the work by C. Reutenauer [Reu99]. Hughes’ Theorem II gives a large supply of Hughes-free embeddings and partial positive answers to Mal’cev problem of whether the group ring of a right orderable group is embeddable in a division ring [MMC83, Question 1.6]. Moreover, it allows us to define a division ring coproduct, and it is also useful for computing the inversion height of some embeddings of rings in division rings. In this direction, we close a conjecture by B.H. Neumann [Neu49a, p. 215]. More precisely, we prove Theorem. Let G be a free group on a set X of at least two elements and k a field. Let < be a total order on G such that (G, <) is an ordered group. Then the embedding kG ,→ k((G, <)) is of infinite inversion height. This result was showed by C. Reutenauer [Reu96] for X an infinite set. Indeed, he proved that the inversion height of the entries of the inverse of an n × n generic matrix (i.e. a matrix of the form (xij) where the xij’s are distinct noncommuting variables in X) equals n with respect to khXi ,→ k((G, <)).
Recommended publications
  • Arxiv:1709.01426V2 [Math.AC] 22 Feb 2018 N Rilssc S[] 3,[]
    A FRESH LOOK INTO MONOID RINGS AND FORMAL POWER SERIES RINGS ABOLFAZL TARIZADEH Abstract. In this article, the ring of polynomials is studied in a systematic way through the theory of monoid rings. As a con- sequence, this study provides natural and canonical approaches in order to find easy and rigorous proofs and methods for many facts on polynomials and formal power series; some of them as sample are treated in this note. Besides the universal properties of the monoid rings and polynomial rings, a universal property for the formal power series rings is also established. 1. Introduction Formal power series specially polynomials are ubiquitous in all fields of mathematics and widely applied across the sciences and engineering. Hence, in the abstract setting, it is necessary to have a systematic the- ory of polynomials available in hand. In [5, pp. 104-107], the ring of polynomials is introduced very briefly in a systematic way but the de- tails specially the universal property are not investigated. In [4, Chap 3, §5], this ring is also defined in a satisfactory way but the approach is not sufficiently general. Unfortunately, in the remaining standard algebra text books, this ring is introduced in an unsystematic way. Beside some harmful affects of this approach in the learning, another defect which arises is that then it is not possible to prove many results arXiv:1709.01426v2 [math.AC] 22 Feb 2018 specially the universal property of the polynomial rings through this non-canonical way. In this note, we plan to fill all these gaps. This material will help to an interesting reader to obtain a better insight into the polynomials and formal power series.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • Single Elements
    Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 47 (2006), No. 1, 275-288. Single Elements B. J. Gardner Gordon Mason Department of Mathematics, University of Tasmania Hobart, Tasmania, Australia Department of Mathematics & Statistics, University of New Brunswick Fredericton, N.B., Canada Abstract. In this paper we consider single elements in rings and near- rings. If R is a (near)ring, x ∈ R is called single if axb = 0 ⇒ ax = 0 or xb = 0. In seeking rings in which each element is single, we are led to consider 0-simple rings, a class which lies between division rings and simple rings. MSC 2000: 16U99 (primary), 16Y30 (secondary) Introduction If R is a (not necessarily unital) ring, an element s is called single if whenever asb = 0 then as = 0 or sb = 0. The definition was first given by J. Erdos [2] who used it to obtain results in the representation theory of normed algebras. More recently the idea has been applied by Longstaff and Panaia to certain matrix algebras (see [9] and its bibliography) and they suggest it might be worthy of further study in other contexts. In seeking rings in which every element is single we are led to consider 0-simple rings, a class which lies between division rings and simple rings. In the final section we examine the situation in nearrings and obtain information about minimal N-subgroups of some centralizer nearrings. 1. Single elements in rings We begin with a slightly more general definition. If I is a one-sided ideal in a ring R an element x ∈ R will be called I-single if axb ∈ I ⇒ ax ∈ I or xb ∈ I.
    [Show full text]
  • Realizing Euclidean Distance Matrices by Sphere Intersection
    Realizing Euclidean distance matrices by sphere intersection Jorge Alencara,∗, Carlile Lavorb, Leo Libertic aInstituto Federal de Educa¸c~ao,Ci^enciae Tecnologia do Sul de Minas Gerais, Inconfidentes, MG, Brazil bUniversity of Campinas (IMECC-UNICAMP), 13081-970, Campinas-SP, Brazil cCNRS LIX, Ecole´ Polytechnique, 91128 Palaiseau, France Abstract This paper presents the theoretical properties of an algorithm to find a re- alization of a (full) n × n Euclidean distance matrix in the smallest possible embedding dimension. Our algorithm performs linearly in n, and quadratically in the minimum embedding dimension, which is an improvement w.r.t. other algorithms. Keywords: Distance geometry, sphere intersection, euclidean distance matrix, embedding dimension. 2010 MSC: 00-01, 99-00 1. Introduction Euclidean distance matrices and sphere intersection have a strong mathe- matical importance [1, 2, 3, 4, 5, 6], in addition to many applications, such as navigation problems, molecular and nanostructure conformation, network 5 localization, robotics, as well as other problems of distance geometry [7, 8, 9]. Before defining precisely the problem of interest, we need the formal defini- tion for Euclidean distance matrices. Let D be a n × n symmetric hollow (i.e., with zero diagonal) matrix with non-negative elements. We say that D is a (squared) Euclidean Distance Matrix (EDM) if there are points x1; x2; : : : ; xn 2 RK (for a positive integer K) such that 2 D(i; j) = Dij = kxi − xjk ; i; j 2 f1; : : : ; ng; where k · k denotes the Euclidean norm. The smallest K for which such a set of points exists is called the embedding dimension of D, denoted by dim(D).
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • 1. Rings of Fractions
    1. Rings of Fractions 1.0. Rings and algebras (1.0.1) All the rings considered in this work possess a unit element; all the modules over such a ring are assumed unital; homomorphisms of rings are assumed to take unit element to unit element; and unless explicitly mentioned otherwise, all subrings of a ring A are assumed to contain the unit element of A. We generally consider commutative rings, and when we say ring without specifying, we understand this to mean a commutative ring. If A is a not necessarily commutative ring, we consider every A module to be a left A- module, unless we expressly say otherwise. (1.0.2) Let A and B be not necessarily commutative rings, φ : A ! B a homomorphism. Every left (respectively right) B-module M inherits the structure of a left (resp. right) A-module by the formula a:m = φ(a):m (resp m:a = m.φ(a)). When it is necessary to distinguish the A-module structure from the B-module structure on M, we use M[φ] to denote the left (resp. right) A-module so defined. If L is an A module, a homomorphism u : L ! M[φ] is therefore a homomorphism of commutative groups such that u(a:x) = φ(a):u(x) for a 2 A, x 2 L; one also calls this a φ-homomorphism L ! M, and the pair (u,φ) (or, by abuse of language, u) is a di-homomorphism from (A, L) to (B, M). The pair (A,L) made up of a ring A and an A module L therefore form the objects of a category where the morphisms are di-homomorphisms.
    [Show full text]
  • SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
    SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′.
    [Show full text]
  • Arxiv:1701.03378V1 [Math.RA] 12 Jan 2017 Setao Apihe Rusadfe Probability” Free and Groups T Lamplighter by on Supported Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by TUGraz OPEN Library Linearizing the Word Problem in (some) Free Fields Konrad Schrempf∗ January 13, 2017 Abstract We describe a solution of the word problem in free fields (coming from non- commutative polynomials over a commutative field) using elementary linear algebra, provided that the elements are given by minimal linear representa- tions. It relies on the normal form of Cohn and Reutenauer and can be used more generally to (positively) test rational identities. Moreover we provide a construction of minimal linear representations for the inverse of non-zero elements. Keywords: word problem, minimal linear representation, linearization, realiza- tion, admissible linear system, rational series AMS Classification: 16K40, 16S10, 03B25, 15A22 Introduction arXiv:1701.03378v1 [math.RA] 12 Jan 2017 Free (skew) fields arise as universal objects when it comes to embed the ring of non-commutative polynomials, that is, polynomials in (a finite number of) non- commuting variables, into a skew field [Coh85, Chapter 7]. The notion of “free fields” goes back to Amitsur [Ami66]. A brief introduction can be found in [Coh03, Section 9.3], for details we refer to [Coh95, Section 6.4]. In the present paper we restrict the setting to commutative ground fields, as a special case. See also [Rob84]. In [CR94], Cohn and Reutenauer introduced a normal form for elements in free fields in order to extend results from the theory of formal languages. In particular they characterize minimality of linear representations in terms of linear independence of ∗Contact: [email protected], Department of Discrete Mathematics (Noncommutative Structures), Graz University of Technology.
    [Show full text]
  • Noncommutative Localization in Algebra and Topology
    Noncommutative localization in algebra and topology ICMS Edinburgh 2002 Edited by Andrew Ranicki Electronic version of London Mathematical Society Lecture Note Series 330 Cambridge University Press (2006) Contents Dedication . vii Preface . ix Historical Perspective . x Conference Participants . xi Conference Photo . .xii Conference Timetable . xiii On atness and the Ore condition J. A. Beachy ......................................................1 Localization in general rings, a historical survey P. M. Cohn .......................................................5 Noncommutative localization in homotopy theory W. G. Dwyer . 24 Noncommutative localization in group rings P. A. Linnell . 40 A non-commutative generalisation of Thomason's localisation theorem A. Neeman . 60 Noncommutative localization in topology A. A. Ranicki . 81 v L2-Betti numbers, Isomorphism Conjectures and Noncommutative Lo- calization H. Reich . 103 Invariants of boundary link cobordism II. The Blanch¯eld-Duval form D. Sheiham . 143 Noncommutative localization in noncommutative geometry Z. Skoda· ........................................................220 vi Dedicated to the memory of Desmond Sheiham (13th November 1974 ¡ 25th March 2005) ² Cambridge University (Trinity College), 1993{1997 B.A. Hons. Mathematics 1st Class, 1996 Part III Mathematics, Passed with Distinction, 1997 ² University of Edinburgh, 1997{2001 Ph.D. Invariants of Boundary Link Cobordism, 2001 ² Visiting Assistant Professor, Mathematics Department, University of California at Riverside, 2001{2003 ² Research Instructor, International University Bremen (IUB), 2003{2005 vii Publications: 1. Non-commutative Characteristic Polynomials and Cohn Localization Journal of the London Mathematical Society (2) Vol. 64, 13{28 (2001) http://arXiv.org/abs/math.RA/0104158 2. Invariants of Boundary Link Cobordism Memoirs of the American Mathematical Society, Vol. 165 (2003) http://arXiv.org/abs/math.AT/0110249 3. Whitehead Groups of Localizations and the Endomorphism Class Group Journal of Algebra, Vol.
    [Show full text]
  • Notes on Ring Theory
    Notes on Ring Theory by Avinash Sathaye, Professor of Mathematics February 1, 2007 Contents 1 1 Ring axioms and definitions. Definition: Ring We define a ring to be a non empty set R together with two binary operations f,g : R × R ⇒ R such that: 1. R is an abelian group under the operation f. 2. The operation g is associative, i.e. g(g(x, y),z)=g(x, g(y,z)) for all x, y, z ∈ R. 3. The operation g is distributive over f. This means: g(f(x, y),z)=f(g(x, z),g(y,z)) and g(x, f(y,z)) = f(g(x, y),g(x, z)) for all x, y, z ∈ R. Further we define the following natural concepts. 1. Definition: Commutative ring. If the operation g is also commu- tative, then we say that R is a commutative ring. 2. Definition: Ring with identity. If the operation g has a two sided identity then we call it the identity of the ring. If it exists, the ring is said to have an identity. 3. The zero ring. A trivial example of a ring consists of a single element x with both operations trivial. Such a ring leads to pathologies in many of the concepts discussed below and it is prudent to assume that our ring is not such a singleton ring. It is called the “zero ring”, since the unique element is denoted by 0 as per convention below. Warning: We shall always assume that our ring under discussion is not a zero ring.
    [Show full text]
  • Left Eigenvector of a Stochastic Matrix
    Advances in Pure Mathematics, 2011, 1, 105-117 doi:10.4236/apm.2011.14023 Published Online July 2011 (http://www.SciRP.org/journal/apm) Left Eigenvector of a Stochastic Matrix Sylvain Lavalle´e Departement de mathematiques, Universite du Quebec a Montreal, Montreal, Canada E-mail: [email protected] Received January 7, 2011; revised June 7, 2011; accepted June 15, 2011 Abstract We determine the left eigenvector of a stochastic matrix M associated to the eigenvalue 1 in the commu- tative and the noncommutative cases. In the commutative case, we see that the eigenvector associated to the eigenvalue 0 is (,,NN1 n ), where Ni is the ith principal minor of NMI= n , where In is the 11 identity matrix of dimension n . In the noncommutative case, this eigenvector is (,P1 ,Pn ), where Pi is the sum in aij of the corresponding labels of nonempty paths starting from i and not passing through i in the complete directed graph associated to M . Keywords: Generic Stochastic Noncommutative Matrix, Commutative Matrix, Left Eigenvector Associated To The Eigenvalue 1, Skew Field, Automata 1. Introduction stochastic free field and that the vector 11 (,,PP1 n ) is fixed by our matrix; moreover, the sum 1 It is well known that 1 is one of the eigenvalue of a of the Pi is equal to 1, hence they form a kind of stochastic matrix (i.e. the sum of the elements of each noncommutative limiting probability. row is equal to 1) and its associated right eigenvector is These results have been proved in [1] but the proof the vector (1,1, ,1)T .
    [Show full text]
  • Arxiv:1508.00183V2 [Math.RA] 6 Aug 2015 Atclrb Ed Yasemigroup a by field
    A THEOREM OF KAPLANSKY REVISITED HEYDAR RADJAVI AND BAMDAD R. YAHAGHI Abstract. We present a new and simple proof of a theorem due to Kaplansky which unifies theorems of Kolchin and Levitzki on triangularizability of semigroups of matrices. We also give two different extensions of the theorem. As a consequence, we prove the counterpart of Kolchin’s Theorem for finite groups of unipotent matrices over division rings. We also show that the counterpart of Kolchin’s Theorem over division rings of characteristic zero implies that of Kaplansky’s Theorem over such division rings. 1. Introduction The purpose of this short note is three-fold. We give a simple proof of Kaplansky’s Theorem on the (simultaneous) triangularizability of semi- groups whose members all have singleton spectra. Our proof, although not independent of Kaplansky’s, avoids the deeper group theoretical aspects present in it and in other existing proofs we are aware of. Also, this proof can be adjusted to give an affirmative answer to Kolchin’s Problem for finite groups of unipotent matrices over division rings. In particular, it follows from this proof that the counterpart of Kolchin’s Theorem over division rings of characteristic zero implies that of Ka- plansky’s Theorem over such division rings. We also present extensions of Kaplansky’s Theorem in two different directions. M arXiv:1508.00183v2 [math.RA] 6 Aug 2015 Let us fix some notation. Let ∆ be a division ring and n(∆) the algebra of all n × n matrices over ∆. The division ring ∆ could in particular be a field. By a semigroup S ⊆ Mn(∆), we mean a set of matrices closed under multiplication.
    [Show full text]