Left Eigenvector of a Stochastic Matrix

Total Page:16

File Type:pdf, Size:1020Kb

Left Eigenvector of a Stochastic Matrix Advances in Pure Mathematics, 2011, 1, 105-117 doi:10.4236/apm.2011.14023 Published Online July 2011 (http://www.SciRP.org/journal/apm) Left Eigenvector of a Stochastic Matrix Sylvain Lavalle´e Departement de mathematiques, Universite du Quebec a Montreal, Montreal, Canada E-mail: [email protected] Received January 7, 2011; revised June 7, 2011; accepted June 15, 2011 Abstract We determine the left eigenvector of a stochastic matrix M associated to the eigenvalue 1 in the commu- tative and the noncommutative cases. In the commutative case, we see that the eigenvector associated to the eigenvalue 0 is (,,NN1 n ), where Ni is the ith principal minor of NMI= n , where In is the 11 identity matrix of dimension n . In the noncommutative case, this eigenvector is (,P1 ,Pn ), where Pi is the sum in aij of the corresponding labels of nonempty paths starting from i and not passing through i in the complete directed graph associated to M . Keywords: Generic Stochastic Noncommutative Matrix, Commutative Matrix, Left Eigenvector Associated To The Eigenvalue 1, Skew Field, Automata 1. Introduction stochastic free field and that the vector 11 (,,PP1 n ) is fixed by our matrix; moreover, the sum 1 It is well known that 1 is one of the eigenvalue of a of the Pi is equal to 1, hence they form a kind of stochastic matrix (i.e. the sum of the elements of each noncommutative limiting probability. row is equal to 1) and its associated right eigenvector is These results have been proved in [1] but the proof the vector (1,1, ,1)T . But, what is the left eigenvector proposed in this paper are completely different. associated to 1? Indeed for the major part the proof in these two In the commutative case, this eigenvector is the vector instances, we use elementary operations on the rows and (,,)M1 M n , where M i is the i th principal minor the columns of the matrix. of the matrix. This formula is known in probability theory; it amounts to finding the stationary distribution 2. Commutative Case of the finite Markov chain whose transition matrix is the stochastic irreducible matrix. The commutative case is well known in probability In the noncommutative case, we must involve inverses theory. Indeed, we calculate the limit probability of a of elements of the skew field and as these may be finite Markov chain by replacing the stochastic matrix undefined, we take a generic noncommutative stochastic M by M I, where I is the identity matrix of the matrix: this is the matrix ()aij of noncommuting vari- appropriate dimension. For this, we use the Markov ables aij subject only to the stochastic identities; i.e. the chain tree Theorem, where this calculus is expressed in sum of each row equals one. terms of spanning trees. The Markov chain tree theorem We work in the free field generated by these variables gives a formula for the stationary distribution of a finite (in the sense of Paul Cohn), which we call the stochastic Markov chain. Equivalently, this formula gives a row free field. Considering the complete digraph on the set vector fixed by a matrix fixing (1,1, ,1)T . This {1, ,n }, let M i be the set of paths from i to i . Let theorem is attributed to Kirchoff by Persi Diaconis, who Pi be the paths starting from i and not passing gives a probabilistic proof of it (see [2] p. 443 and 444). through i again. We identify Pi with the noncom- See also [3,4]. mutative power series which is equal to the sum of all the The proof uses only the definition of the determinant words in Pi and we still denote this series by Pi . Next which involves the principal minors. 1 we show that the elements Pi can be evaluated in the Proposition 1 Let M be a stochastic matrix and Copyright © 2011 SciRes. APM 106 S. LAVALL E´E NMI==() nijijb 1,n; i.e. for all in=1, , , Proof. By definition of N , we have det N = 0 . n We show that j=1bij =0. Then (,,NN1 n ), where Ni is the i th (,NN ,, N )=0N principal minor of N , is the left eigenvector associated 12 n to the eigenvalue 0. We verify this Equation with the first column of N . Nb111 Nbnn1 bb22 23 b2n bb11 12 b1,n 1 bb32 33 b3n bb21 22 b2,n 1 = bb11 n1 bbnn23 b nn bbnn1,1 1,2 b nn 1, 1 n bb1121,1jn b j=2 bb b 22 23 2n n bb32 33 b3n bb2222,1jn b = b11 j=2 bn1 bb b nn23 nn n bbnj1, n1,2bnn 1, 1 j=2 bb22 23 b 2n bb12 12 b 1,n 1 bb32 33 b 3n bb22 22 b 2,n 1 = bb11 n 1 bbnn23 b nn bbnn1,2 1,2 b nn 1, 1 =0 bb1,nn 1 12 b 1, 1 bb1121,1nn b bb2,nn 1 22 b 2, 1 bb2222,1nn b bbnn11 bbnn1, 1 n 1,2 bnn 1, 1 bbnn1, n 1,2 b nn 1, 1 =0 bb22 23 b2n bb1121,1nn b bb32 33 b3n bb2222,1nn b = bb11 n1 bbnn23 b nn bbnn1, n 1,2 b nn 1, 1 bb22 23 b2n bb12 13 b1n bb32 33 b3n n2 bb22 23 b2n =(1b11 ) bn1 bbnn23 b nn bbnn1,2 1,3 b nn 1, bb22 23 b2n bb12 13 b1n bb32 33 b3n n1 bb22 23 b2n =(1)bb11 n1 bbnn23 b nn bbnn1,2 1,3 b nn 1, =detN =0 Remark 2 If M is reducible, then this proposition is irreducible and stochastic, then its adjoint will be of the asserting that the zero vector ia an eigenvector. If M is form (1, ,1)uT , where uT is a null vector. Te pro- Copyright © 2011 SciRes. APM S. LAVALL E´E 107 position follows from the cofactor formula for the adjoint. that its characteristic series wL wA is ratio- nal. We shall identify a language and its characteristic 3. Noncommutative Case series. This is exposed in [5] or [6]. In [1], the authors have prove in two manners that are 3.2. Free Field actually similar, Theorem 9. In the first, results from variable-length prefix codes are required; and the second Let be a field. If the multiplicative group of is deals with general variable-length codes, not necessarily commutative, then is a commutative field. Else, is called skew field. The ring of rational formal series in prefix. Moreover, in Appendix 2 of [1], we see how the rat theory of quasideterminants may be used to obtain these noncommutative variables A is not a skew results on noncommutative matrices. field. However, skew fields containing A do exist. The major part of the new proof of this Theorem One of them is the free field (in the sense of Cohn), involves only the elementary operations on the rows and denoted . The free field is the noncommutative on the columns of the stochastic matrix. Therefore, we analogue of the field of fractions of the ring of commu- need the following results. tative polynomials. There are several constructions of the free field: Amitsur [7], Bergman [8], Malcolmson [9], 3.1. Languages and Series Cohn [10] and [11]. A square matrix of order n is full if it can’t expressed Let A be a finite alphabet and A* be the free monoid as a product of matrices nn 1 by nn1 . generated by A . A language is a subset of a free Theorem 3 ([11], Thm 4.5.8.) Each full matrix M monoid A* . A language is rational if it is obtained from with coefficients in X is invertible in the free field. finite languages by the operations (called rational) union, A square matrix of order n is called hollow if it product (concatenation) and star. The product of two contains a pq block of zeros such that pqn 1. languages LL12 is ww12 w 1 L 1, w 2 L 2 , and the star 001 of L is LwwwLn* =, 0= Ln . Ra- Example 4 The matrix 001 is hollow since 1 ni n0 tional languages may be obtained by using only unam- 111 biguous rational operations; these are: disjoint union, there is a 22 block of 0 and 4>3. unambiguous product (meaning that if wLL 12, then Proposition 5 ([11], Prop. 4.5.4) A hollow matrix is w has a unique factorization ww= 12w, wii L) and not full. * the star L restricted to languages which are free Proposition 6 Take 1n , M nn and * submonoids of A . n1 , where is a skew field. We suppose that A formal series is an element of the -algebra of M noncommutative series A , where A is a set of M is invertible. Then is invertible if and 0 noncommuting variables. A rational series is an element 1 of the smallest subalgebra of A , which contains only if M 0 . the -algebra of noncommutative polynomials A , Proof. 1 and which is closed under the operation () Suppose that cM= 0, then the inverse M * n 1 of is SS ==1 S S n=0 0 which is defined if S has zero constant term. We MMcMMc11111 1 denote by A rat the -algebra of rational series. cM11 c 1 Let L be a rational language. Since L may be obtained by unambiguous rational expressions, it follows Indeed, this matrix is the right inverse of M since M MM111111 c MMc 11 1 0 cM c MM()(111111 M c M cM MM 11 c) c1 = 1111 11 ()MMcM Mc 11 11 1 1 1cM cM c c 10 = MMcMMc111111 = 01 ==cc Copyright © 2011 SciRes.
Recommended publications
  • Eigenvalues of Euclidean Distance Matrices and Rs-Majorization on R2
    Archive of SID 46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University 2 Talk Eigenvalues of Euclidean distance matrices and rs-majorization on R pp.: 1{4 Eigenvalues of Euclidean Distance Matrices and rs-majorization on R2 Asma Ilkhanizadeh Manesh∗ Department of Pure Mathematics, Vali-e-Asr University of Rafsanjan Alemeh Sheikh Hoseini Department of Pure Mathematics, Shahid Bahonar University of Kerman Abstract Let D1 and D2 be two Euclidean distance matrices (EDMs) with correspond- ing positive semidefinite matrices B1 and B2 respectively. Suppose that λ(A) = ((λ(A)) )n is the vector of eigenvalues of a matrix A such that (λ(A)) ... i i=1 1 ≥ ≥ (λ(A))n. In this paper, the relation between the eigenvalues of EDMs and those of the 2 corresponding positive semidefinite matrices respect to rs, on R will be investigated. ≺ Keywords: Euclidean distance matrices, Rs-majorization. Mathematics Subject Classification [2010]: 34B15, 76A10 1 Introduction An n n nonnegative and symmetric matrix D = (d2 ) with zero diagonal elements is × ij called a predistance matrix. A predistance matrix D is called Euclidean or a Euclidean distance matrix (EDM) if there exist a positive integer r and a set of n points p1, . , pn r 2 2 { } such that p1, . , pn R and d = pi pj (i, j = 1, . , n), where . denotes the ∈ ij k − k k k usual Euclidean norm. The smallest value of r that satisfies the above condition is called the embedding dimension. As is well known, a predistance matrix D is Euclidean if and 1 1 t only if the matrix B = − P DP with P = I ee , where I is the n n identity matrix, 2 n − n n × and e is the vector of all ones, is positive semidefinite matrix.
    [Show full text]
  • Clustering by Left-Stochastic Matrix Factorization
    Clustering by Left-Stochastic Matrix Factorization Raman Arora [email protected] Maya R. Gupta [email protected] Amol Kapila [email protected] Maryam Fazel [email protected] University of Washington, Seattle, WA 98103, USA Abstract 1.1. Related Work in Matrix Factorization Some clustering objective functions can be written as We propose clustering samples given their matrix factorization objectives. Let n feature vectors d×n pairwise similarities by factorizing the sim- be gathered into a feature-vector matrix X 2 R . T d×k ilarity matrix into the product of a clus- Consider the model X ≈ FG , where F 2 R can ter probability matrix and its transpose. be interpreted as a matrix with k cluster prototypes n×k We propose a rotation-based algorithm to as its columns, and G 2 R is all zeros except for compute this left-stochastic decomposition one (appropriately scaled) positive entry per row that (LSD). Theoretical results link the LSD clus- indicates the nearest cluster prototype. The k-means tering method to a soft kernel k-means clus- clustering objective follows this model with squared tering, give conditions for when the factor- error, and can be expressed as (Ding et al., 2005): ization and clustering are unique, and pro- T 2 arg min kX − FG kF ; (1) vide error bounds. Experimental results on F;GT G=I simulated and real similarity datasets show G≥0 that the proposed method reliably provides accurate clusterings. where k · kF is the Frobenius norm, and inequality G ≥ 0 is component-wise. This follows because the combined constraints G ≥ 0 and GT G = I force each row of G to have only one positive element.
    [Show full text]
  • Realizing Euclidean Distance Matrices by Sphere Intersection
    Realizing Euclidean distance matrices by sphere intersection Jorge Alencara,∗, Carlile Lavorb, Leo Libertic aInstituto Federal de Educa¸c~ao,Ci^enciae Tecnologia do Sul de Minas Gerais, Inconfidentes, MG, Brazil bUniversity of Campinas (IMECC-UNICAMP), 13081-970, Campinas-SP, Brazil cCNRS LIX, Ecole´ Polytechnique, 91128 Palaiseau, France Abstract This paper presents the theoretical properties of an algorithm to find a re- alization of a (full) n × n Euclidean distance matrix in the smallest possible embedding dimension. Our algorithm performs linearly in n, and quadratically in the minimum embedding dimension, which is an improvement w.r.t. other algorithms. Keywords: Distance geometry, sphere intersection, euclidean distance matrix, embedding dimension. 2010 MSC: 00-01, 99-00 1. Introduction Euclidean distance matrices and sphere intersection have a strong mathe- matical importance [1, 2, 3, 4, 5, 6], in addition to many applications, such as navigation problems, molecular and nanostructure conformation, network 5 localization, robotics, as well as other problems of distance geometry [7, 8, 9]. Before defining precisely the problem of interest, we need the formal defini- tion for Euclidean distance matrices. Let D be a n × n symmetric hollow (i.e., with zero diagonal) matrix with non-negative elements. We say that D is a (squared) Euclidean Distance Matrix (EDM) if there are points x1; x2; : : : ; xn 2 RK (for a positive integer K) such that 2 D(i; j) = Dij = kxi − xjk ; i; j 2 f1; : : : ; ng; where k · k denotes the Euclidean norm. The smallest K for which such a set of points exists is called the embedding dimension of D, denoted by dim(D).
    [Show full text]
  • Similarity-Based Clustering by Left-Stochastic Matrix Factorization
    JournalofMachineLearningResearch14(2013)1715-1746 Submitted 1/12; Revised 11/12; Published 7/13 Similarity-based Clustering by Left-Stochastic Matrix Factorization Raman Arora [email protected] Toyota Technological Institute 6045 S. Kenwood Ave Chicago, IL 60637, USA Maya R. Gupta [email protected] Google 1225 Charleston Rd Mountain View, CA 94301, USA Amol Kapila [email protected] Maryam Fazel [email protected] Department of Electrical Engineering University of Washington Seattle, WA 98195, USA Editor: Inderjit Dhillon Abstract For similarity-based clustering, we propose modeling the entries of a given similarity matrix as the inner products of the unknown cluster probabilities. To estimate the cluster probabilities from the given similarity matrix, we introduce a left-stochastic non-negative matrix factorization problem. A rotation-based algorithm is proposed for the matrix factorization. Conditions for unique matrix factorizations and clusterings are given, and an error bound is provided. The algorithm is partic- ularly efficient for the case of two clusters, which motivates a hierarchical variant for cases where the number of desired clusters is large. Experiments show that the proposed left-stochastic decom- position clustering model produces relatively high within-cluster similarity on most data sets and can match given class labels, and that the efficient hierarchical variant performs surprisingly well. Keywords: clustering, non-negative matrix factorization, rotation, indefinite kernel, similarity, completely positive 1. Introduction Clustering is important in a broad range of applications, from segmenting customers for more ef- fective advertising, to building codebooks for data compression. Many clustering methods can be interpreted in terms of a matrix factorization problem.
    [Show full text]
  • Alternating Sign Matrices and Polynomiography
    Alternating Sign Matrices and Polynomiography Bahman Kalantari Department of Computer Science Rutgers University, USA [email protected] Submitted: Apr 10, 2011; Accepted: Oct 15, 2011; Published: Oct 31, 2011 Mathematics Subject Classifications: 00A66, 15B35, 15B51, 30C15 Dedicated to Doron Zeilberger on the occasion of his sixtieth birthday Abstract To each permutation matrix we associate a complex permutation polynomial with roots at lattice points corresponding to the position of the ones. More generally, to an alternating sign matrix (ASM) we associate a complex alternating sign polynomial. On the one hand visualization of these polynomials through polynomiography, in a combinatorial fashion, provides for a rich source of algo- rithmic art-making, interdisciplinary teaching, and even leads to games. On the other hand, this combines a variety of concepts such as symmetry, counting and combinatorics, iteration functions and dynamical systems, giving rise to a source of research topics. More generally, we assign classes of polynomials to matrices in the Birkhoff and ASM polytopes. From the characterization of vertices of these polytopes, and by proving a symmetry-preserving property, we argue that polynomiography of ASMs form building blocks for approximate polynomiography for polynomials corresponding to any given member of these polytopes. To this end we offer an algorithm to express any member of the ASM polytope as a convex of combination of ASMs. In particular, we can give exact or approximate polynomiography for any Latin Square or Sudoku solution. We exhibit some images. Keywords: Alternating Sign Matrices, Polynomial Roots, Newton’s Method, Voronoi Diagram, Doubly Stochastic Matrices, Latin Squares, Linear Programming, Polynomiography 1 Introduction Polynomials are undoubtedly one of the most significant objects in all of mathematics and the sciences, particularly in combinatorics.
    [Show full text]
  • Arxiv:1701.03378V1 [Math.RA] 12 Jan 2017 Setao Apihe Rusadfe Probability” Free and Groups T Lamplighter by on Supported Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by TUGraz OPEN Library Linearizing the Word Problem in (some) Free Fields Konrad Schrempf∗ January 13, 2017 Abstract We describe a solution of the word problem in free fields (coming from non- commutative polynomials over a commutative field) using elementary linear algebra, provided that the elements are given by minimal linear representa- tions. It relies on the normal form of Cohn and Reutenauer and can be used more generally to (positively) test rational identities. Moreover we provide a construction of minimal linear representations for the inverse of non-zero elements. Keywords: word problem, minimal linear representation, linearization, realiza- tion, admissible linear system, rational series AMS Classification: 16K40, 16S10, 03B25, 15A22 Introduction arXiv:1701.03378v1 [math.RA] 12 Jan 2017 Free (skew) fields arise as universal objects when it comes to embed the ring of non-commutative polynomials, that is, polynomials in (a finite number of) non- commuting variables, into a skew field [Coh85, Chapter 7]. The notion of “free fields” goes back to Amitsur [Ami66]. A brief introduction can be found in [Coh03, Section 9.3], for details we refer to [Coh95, Section 6.4]. In the present paper we restrict the setting to commutative ground fields, as a special case. See also [Rob84]. In [CR94], Cohn and Reutenauer introduced a normal form for elements in free fields in order to extend results from the theory of formal languages. In particular they characterize minimality of linear representations in terms of linear independence of ∗Contact: [email protected], Department of Discrete Mathematics (Noncommutative Structures), Graz University of Technology.
    [Show full text]
  • Representations of Stochastic Matrices
    Rotational (and Other) Representations of Stochastic Matrices Steve Alpern1 and V. S. Prasad2 1Department of Mathematics, London School of Economics, London WC2A 2AE, United Kingdom. email: [email protected] 2Department of Mathematics, University of Massachusetts Lowell, Lowell, MA. email: [email protected] May 27, 2005 Abstract Joel E. Cohen (1981) conjectured that any stochastic matrix P = pi;j could be represented by some circle rotation f in the following sense: Forf someg par- tition Si of the circle into sets consisting of …nite unions of arcs, we have (*) f g pi;j = (f (Si) Sj) = (Si), where denotes arc length. In this paper we show how cycle decomposition\ techniques originally used (Alpern, 1983) to establish Cohen’sconjecture can be extended to give a short simple proof of the Coding Theorem, that any mixing (that is, P N > 0 for some N) stochastic matrix P can be represented (in the sense of * but with Si merely measurable) by any aperiodic measure preserving bijection (automorphism) of a Lesbesgue proba- bility space. Representations by pointwise and setwise periodic automorphisms are also established. While this paper is largely expository, all the proofs, and some of the results, are new. Keywords: rotational representation, stochastic matrix, cycle decomposition MSC 2000 subject classi…cations. Primary: 60J10. Secondary: 15A51 1 Introduction An automorphism of a Lebesgue probability space (X; ; ) is a bimeasurable n bijection f : X X which preserves the measure : If S = Si is a non- ! f gi=1 trivial (all (Si) > 0) measurable partition of X; we can generate a stochastic n matrix P = pi;j by the de…nition f gi;j=1 (f (Si) Sj) pi;j = \ ; i; j = 1; : : : ; n: (1) (Si) Since the partition S is non-trivial, the matrix P has a positive invariant (stationary) distribution v = (v1; : : : ; vn) = ( (S1) ; : : : ; (Sn)) ; and hence (by de…nition) is recurrent.
    [Show full text]
  • Alternating Sign Matrices, Extensions and Related Cones
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311671190 Alternating sign matrices, extensions and related cones Article in Advances in Applied Mathematics · May 2017 DOI: 10.1016/j.aam.2016.12.001 CITATIONS READS 0 29 2 authors: Richard A. Brualdi Geir Dahl University of Wisconsin–Madison University of Oslo 252 PUBLICATIONS 3,815 CITATIONS 102 PUBLICATIONS 1,032 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Combinatorial matrix theory; alternating sign matrices View project All content following this page was uploaded by Geir Dahl on 16 December 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Alternating sign matrices, extensions and related cones Richard A. Brualdi∗ Geir Dahly December 1, 2016 Abstract An alternating sign matrix, or ASM, is a (0; ±1)-matrix where the nonzero entries in each row and column alternate in sign, and where each row and column sum is 1. We study the convex cone generated by ASMs of order n, called the ASM cone, as well as several related cones and polytopes. Some decomposition results are shown, and we find a minimal Hilbert basis of the ASM cone. The notion of (±1)-doubly stochastic matrices and a generalization of ASMs are introduced and various properties are shown. For instance, we give a new short proof of the linear characterization of the ASM polytope, in fact for a more general polytope.
    [Show full text]
  • Contents 5 Eigenvalues and Diagonalization
    Linear Algebra (part 5): Eigenvalues and Diagonalization (by Evan Dummit, 2017, v. 1.50) Contents 5 Eigenvalues and Diagonalization 1 5.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial . 1 5.1.1 Eigenvalues and Eigenvectors . 2 5.1.2 Eigenvalues and Eigenvectors of Matrices . 3 5.1.3 Eigenspaces . 6 5.2 Diagonalization . 9 5.3 Applications of Diagonalization . 14 5.3.1 Transition Matrices and Incidence Matrices . 14 5.3.2 Systems of Linear Dierential Equations . 16 5.3.3 Non-Diagonalizable Matrices and the Jordan Canonical Form . 19 5 Eigenvalues and Diagonalization In this chapter, we will discuss eigenvalues and eigenvectors: these are characteristic values (and characteristic vectors) associated to a linear operator T : V ! V that will allow us to study T in a particularly convenient way. Our ultimate goal is to describe methods for nding a basis for V such that the associated matrix for T has an especially simple form. We will rst describe diagonalization, the procedure for (trying to) nd a basis such that the associated matrix for T is a diagonal matrix, and characterize the linear operators that are diagonalizable. Then we will discuss a few applications of diagonalization, including the Cayley-Hamilton theorem that any matrix satises its characteristic polynomial, and close with a brief discussion of non-diagonalizable matrices. 5.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial • Suppose that we have a linear transformation T : V ! V from a (nite-dimensional) vector space V to itself. We would like to determine whether there exists a basis of such that the associated matrix β is a β V [T ]β diagonal matrix.
    [Show full text]
  • Markov Chains
    Stochastic Matrices The following 3 3matrixdefinesa × discrete time Markov process with three states: P11 P12 P13 P = P21 P22 P23 ⎡ ⎤ P31 P32 P33 ⎣ ⎦ where Pij is the probability of going from j i in one step. A stochastic matrix → satisfies the following conditions: P 0 ∀i, j ij ≥ and M j ∑ Pij = 1. ∀ i=1 Example The following 3 3matrixdefinesa × discrete time Markov process with three states: 0.90 0.01 0.09 P = 0.01 0.90 0.01 ⎡ ⎤ 0.09 0.09 0.90 ⎣ ⎦ where P23 = 0.01 is the probability of going from 3 2inonestep.Youcan → verify that P 0 ∀i, j ij ≥ and 3 j ∑ Pij = 1. ∀ i=1 Example (contd.) 0.9 0.9 0.01 1 2 0.01 0.09 0.09 0.01 0.09 3 0.9 Figure 1: Three-state Markov process. Single Step Transition Probabilities x(1) = Px(0) x(2) = Px(1) . x(t+1) = Px(t) 0.641 0.90 0.01 0.09 0.7 0.188 = 0.01 0.90 0.01 0.2 ⎡ ⎤ ⎡ ⎤⎡ ⎤ 0.171 0.09 0.09 0.90 0.1 ⎣ x(t+1) ⎦ ⎣ P ⎦⎣ x(t) ⎦ M % &' ( (t%+1) &' (t) (% &' ( xi = ∑ Pij x j j=1 n-step Transition Probabilities Observe that x(3) can be written as fol- lows: x(3) = Px(2) = P Px(1) = P)P Px*(0) = P3)x(0)). ** n-step Transition Probabilities (contd.) Similar logic leads us to an expression for x(n): x(n) = P P... Px(0) ) )n ** = Pnx(0). % &' ( An n-step transition probability matrix can be defined in terms of a single step matrix and a (n 1)-step matrix: − M ( n) = n 1 .
    [Show full text]
  • On Matrices with a Doubly Stochastic Pattern
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEMATICALANALYSISAND APPLICATIONS 34,648-652(1971) On Matrices with a Doubly Stochastic Pattern DAVID LONDON Technion-Israel Institute of Technology, Haifa Submitted by Ky Fan 1. INTRODUCTION In [7] Sinkhorn proved that if A is a positive square matrix, then there exist two diagonal matrices D, = {@r,..., d$) and D, = {dj2),..., di2r) with positive entries such that D,AD, is doubly stochastic. This problem was studied also by Marcus and Newman [3], Maxfield and Mint [4] and Menon [5]. Later Sinkhorn and Knopp [8] considered the same problem for A non- negative. Using a limit process of alternately normalizing the rows and columns sums of A, they obtained a necessary and sufficient condition for the existence of D, and D, such that D,AD, is doubly stochastic. Brualdi, Parter and Schneider [l] obtained the same theorem by a quite different method using spectral properties of some nonlinear operators. In this note we give a new proof of the same theorem. We introduce an extremal problem, and from the existence of a solution to this problem we derive the existence of D, and D, . This method yields also a variational characterization for JJTC1(din dj2’), which can be applied to obtain bounds for this quantity. We note that bounds for I7y-r (d,!‘) dj”)) may be of interest in connection with inequalities for the permanent of doubly stochastic matrices [3]. 2. PRELIMINARIES Let A = (aij) be an 12x n nonnegative matrix; that is, aij > 0 for i,j = 1,***, n.
    [Show full text]
  • Stochastic Adjacency Matrix M
    CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu Web pages are not equally “important” www.joe-schmoe.com vs. www.stanford.edu We already know: Since there is large diversity in the connectivity of the vs. webgraph we can rank the pages by the link structure 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 We will cover the following Link Analysis approaches to computing importances of nodes in a graph: . Page Rank . Hubs and Authorities (HITS) . Topic-Specific (Personalized) Page Rank . Web Spam Detection Algorithms 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 3 Idea: Links as votes . Page is more important if it has more links . In-coming links? Out-going links? Think of in-links as votes: . www.stanford.edu has 23,400 inlinks . www.joe-schmoe.com has 1 inlink Are all in-links are equal? . Links from important pages count more . Recursive question! 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 4 Each link’s vote is proportional to the importance of its source page If page p with importance x has n out-links, each link gets x/n votes Page p’s own importance is the sum of the votes on its in-links p 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 5 A “vote” from an important The web in 1839 page is worth more y/2 A page is important if it is y pointed to by other important a/2 pages y/2 Define a “rank” r for node j m j a m r a/2 i Flow equations: rj = ∑ ry = ry /2 + ra /2 i→ j dout (i) ra = ry /2 + rm rm = ra /2 2/7/2012 Jure Leskovec, Stanford C246: Mining Massive Datasets 6 Flow equations: 3 equations, 3 unknowns, ry = ry /2 + ra /2 no constants ra = ry /2 + rm .
    [Show full text]