Alternating Sign Matrices and Polynomiography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Immanants of Totally Positive Matrices Are Nonnegative
IMMANANTS OF TOTALLY POSITIVE MATRICES ARE NONNEGATIVE JOHN R. STEMBRIDGE Introduction Let Mn{k) denote the algebra of n x n matrices over some field k of characteristic zero. For each A>valued function / on the symmetric group Sn, we may define a corresponding matrix function on Mn(k) in which (fljji—• > X\w )&i (i)'"a ( )' (U weSn If/ is an irreducible character of Sn, these functions are known as immanants; if/ is an irreducible character of some subgroup G of Sn (extended trivially to all of Sn by defining /(vv) = 0 for w$G), these are known as generalized matrix functions. Note that the determinant and permanent are obtained by choosing / to be the sign character and trivial character of Sn, respectively. We should point out that it is more traditional to use /(vv) in (1) where we have used /(W1). This change can be undone by transposing the matrix. If/ happens to be a character, then /(w-1) = x(w), so the generalized matrix function we have indexed by / is the complex conjugate of the traditional one. Since the characters of Sn are real (and integral), it follows that there is no difference between our indexing of immanants and the traditional one. It is convenient to associate with each AeMn(k) the following element of the group algebra kSn: [A]:= £ flliW(1)...flBiW(B)-w~\ In terms of this notation, the matrix function defined by (1) can be described more simply as A\—+x\Ai\, provided that we extend / linearly to kSn. Note that if we had used w in place of vv"1 here and in (1), then the restriction of [•] to the group of permutation matrices would have been an anti-homomorphism, rather than a homomorphism. -
Eigenvalues of Euclidean Distance Matrices and Rs-Majorization on R2
Archive of SID 46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University 2 Talk Eigenvalues of Euclidean distance matrices and rs-majorization on R pp.: 1{4 Eigenvalues of Euclidean Distance Matrices and rs-majorization on R2 Asma Ilkhanizadeh Manesh∗ Department of Pure Mathematics, Vali-e-Asr University of Rafsanjan Alemeh Sheikh Hoseini Department of Pure Mathematics, Shahid Bahonar University of Kerman Abstract Let D1 and D2 be two Euclidean distance matrices (EDMs) with correspond- ing positive semidefinite matrices B1 and B2 respectively. Suppose that λ(A) = ((λ(A)) )n is the vector of eigenvalues of a matrix A such that (λ(A)) ... i i=1 1 ≥ ≥ (λ(A))n. In this paper, the relation between the eigenvalues of EDMs and those of the 2 corresponding positive semidefinite matrices respect to rs, on R will be investigated. ≺ Keywords: Euclidean distance matrices, Rs-majorization. Mathematics Subject Classification [2010]: 34B15, 76A10 1 Introduction An n n nonnegative and symmetric matrix D = (d2 ) with zero diagonal elements is × ij called a predistance matrix. A predistance matrix D is called Euclidean or a Euclidean distance matrix (EDM) if there exist a positive integer r and a set of n points p1, . , pn r 2 2 { } such that p1, . , pn R and d = pi pj (i, j = 1, . , n), where . denotes the ∈ ij k − k k k usual Euclidean norm. The smallest value of r that satisfies the above condition is called the embedding dimension. As is well known, a predistance matrix D is Euclidean if and 1 1 t only if the matrix B = − P DP with P = I ee , where I is the n n identity matrix, 2 n − n n × and e is the vector of all ones, is positive semidefinite matrix. -
Some Classes of Hadamard Matrices with Constant Diagonal
BULL. AUSTRAL. MATH. SOC. O5BO5. 05B20 VOL. 7 (1972), 233-249. • Some classes of Hadamard matrices with constant diagonal Jennifer Wallis and Albert Leon Whiteman The concepts of circulant and backcircul-ant matrices are generalized to obtain incidence matrices of subsets of finite additive abelian groups. These results are then used to show the existence of skew-Hadamard matrices of order 8(1*f+l) when / is odd and 8/ + 1 is a prime power. This shows the existence of skew-Hadamard matrices of orders 296, 592, 118U, l6kO, 2280, 2368 which were previously unknown. A construction is given for regular symmetric Hadamard matrices with constant diagonal of order M2m+l) when a symmetric conference matrix of order km + 2 exists and there are Szekeres difference sets, X and J , of size m satisfying x € X =» -x £ X , y £ Y ~ -y d X . Suppose V is a finite abelian group with v elements, written in additive notation. A difference set D with parameters (v, k, X) is a subset of V with k elements and such that in the totality of all the possible differences of elements from D each non-zero element of V occurs X times. If V is the set of integers modulo V then D is called a cyclic difference set: these are extensively discussed in Baumert [/]. A circulant matrix B = [b. •) of order v satisfies b. = b . (j'-i+l reduced modulo v ), while B is back-circulant if its elements Received 3 May 1972. The authors wish to thank Dr VI.D. Wallis for helpful discussions and for pointing out the regularity in Theorem 16. -
Clustering by Left-Stochastic Matrix Factorization
Clustering by Left-Stochastic Matrix Factorization Raman Arora [email protected] Maya R. Gupta [email protected] Amol Kapila [email protected] Maryam Fazel [email protected] University of Washington, Seattle, WA 98103, USA Abstract 1.1. Related Work in Matrix Factorization Some clustering objective functions can be written as We propose clustering samples given their matrix factorization objectives. Let n feature vectors d×n pairwise similarities by factorizing the sim- be gathered into a feature-vector matrix X 2 R . T d×k ilarity matrix into the product of a clus- Consider the model X ≈ FG , where F 2 R can ter probability matrix and its transpose. be interpreted as a matrix with k cluster prototypes n×k We propose a rotation-based algorithm to as its columns, and G 2 R is all zeros except for compute this left-stochastic decomposition one (appropriately scaled) positive entry per row that (LSD). Theoretical results link the LSD clus- indicates the nearest cluster prototype. The k-means tering method to a soft kernel k-means clus- clustering objective follows this model with squared tering, give conditions for when the factor- error, and can be expressed as (Ding et al., 2005): ization and clustering are unique, and pro- T 2 arg min kX − FG kF ; (1) vide error bounds. Experimental results on F;GT G=I simulated and real similarity datasets show G≥0 that the proposed method reliably provides accurate clusterings. where k · kF is the Frobenius norm, and inequality G ≥ 0 is component-wise. This follows because the combined constraints G ≥ 0 and GT G = I force each row of G to have only one positive element. -
The Many Faces of Alternating-Sign Matrices
The many faces of alternating-sign matrices James Propp Department of Mathematics University of Wisconsin – Madison, Wisconsin, USA [email protected] August 15, 2002 Abstract I give a survey of different combinatorial forms of alternating-sign ma- trices, starting with the original form introduced by Mills, Robbins and Rumsey as well as corner-sum matrices, height-function matrices, three- colorings, monotone triangles, tetrahedral order ideals, square ice, gasket- and-basket tilings and full packings of loops. (This article has been pub- lished in a conference edition of the journal Discrete Mathematics and Theo- retical Computer Science, entitled “Discrete Models: Combinatorics, Com- putation, and Geometry,” edited by R. Cori, J. Mazoyer, M. Morvan, and R. Mosseri, and published in July 2001 in cooperation with le Maison de l’Informatique et des Mathematiques´ Discretes,` Paris, France: ISSN 1365- 8050, http://dmtcs.lori.fr.) 1 Introduction An alternating-sign matrix of order n is an n-by-n array of 0’s, 1’s and 1’s with the property that in each row and each column, the non-zero entries alter- nate in sign, beginning and ending with a 1. For example, Figure 1 shows an Supported by grants from the National Science Foundation and the National Security Agency. 1 alternating-sign matrix (ASM for short) of order 4. 0 100 1 1 10 0001 0 100 Figure 1: An alternating-sign matrix of order 4. Figure 2 exhibits all seven of the ASMs of order 3. 001 001 0 10 0 10 0 10 100 001 1 1 1 100 0 10 100 0 10 0 10 100 100 100 001 0 10 001 0 10 001 Figure 2: The seven alternating-sign matrices of order 3. -
Similarity-Based Clustering by Left-Stochastic Matrix Factorization
JournalofMachineLearningResearch14(2013)1715-1746 Submitted 1/12; Revised 11/12; Published 7/13 Similarity-based Clustering by Left-Stochastic Matrix Factorization Raman Arora [email protected] Toyota Technological Institute 6045 S. Kenwood Ave Chicago, IL 60637, USA Maya R. Gupta [email protected] Google 1225 Charleston Rd Mountain View, CA 94301, USA Amol Kapila [email protected] Maryam Fazel [email protected] Department of Electrical Engineering University of Washington Seattle, WA 98195, USA Editor: Inderjit Dhillon Abstract For similarity-based clustering, we propose modeling the entries of a given similarity matrix as the inner products of the unknown cluster probabilities. To estimate the cluster probabilities from the given similarity matrix, we introduce a left-stochastic non-negative matrix factorization problem. A rotation-based algorithm is proposed for the matrix factorization. Conditions for unique matrix factorizations and clusterings are given, and an error bound is provided. The algorithm is partic- ularly efficient for the case of two clusters, which motivates a hierarchical variant for cases where the number of desired clusters is large. Experiments show that the proposed left-stochastic decom- position clustering model produces relatively high within-cluster similarity on most data sets and can match given class labels, and that the efficient hierarchical variant performs surprisingly well. Keywords: clustering, non-negative matrix factorization, rotation, indefinite kernel, similarity, completely positive 1. Introduction Clustering is important in a broad range of applications, from segmenting customers for more ef- fective advertising, to building codebooks for data compression. Many clustering methods can be interpreted in terms of a matrix factorization problem. -
The Many Faces of Alternating-Sign Matrices
The many faces of alternating-sign matrices James Propp∗ Department of Mathematics University of Wisconsin – Madison, Wisconsin, USA [email protected] June 1, 2018 Abstract I give a survey of different combinatorial forms of alternating-sign ma- trices, starting with the original form introduced by Mills, Robbins and Rumsey as well as corner-sum matrices, height-function matrices, three- colorings, monotone triangles, tetrahedral order ideals, square ice, gasket- and-basket tilings and full packings of loops. (This article has been pub- lished in a conference edition of the journal Discrete Mathematics and Theo- retical Computer Science, entitled “Discrete Models: Combinatorics, Com- putation, and Geometry,” edited by R. Cori, J. Mazoyer, M. Morvan, and R. Mosseri, and published in July 2001 in cooperation with le Maison de l’Informatique et des Math´ematiques Discr`etes, Paris, France: ISSN 1365- 8050, http://dmtcs.lori.fr.) 1 Introduction arXiv:math/0208125v1 [math.CO] 15 Aug 2002 An alternating-sign matrix of order n is an n-by-n array of 0’s, +1’s and −1’s with the property that in each row and each column, the non-zero entries alter- nate in sign, beginning and ending with a +1. For example, Figure 1 shows an ∗Supported by grants from the National Science Foundation and the National Security Agency. 1 alternating-sign matrix (ASM for short) of order 4. 0 +1 0 0 +1 −1 +1 0 0 0 0 +1 0 +1 0 0 Figure 1: An alternating-sign matrix of order 4. Figure 2 exhibits all seven of the ASMs of order 3. -
An Infinite Dimensional Birkhoff's Theorem and LOCC-Convertibility
An infinite dimensional Birkhoff's Theorem and LOCC-convertibility Daiki Asakura Graduate School of Information Systems, The University of Electro-Communications, Tokyo, Japan August 29, 2016 Preliminary and Notation[1/13] Birkhoff's Theorem (: matrix analysis(math)) & in infinite dimensinaol Hilbert space LOCC-convertibility (: quantum information ) Notation H, K : separable Hilbert spaces. (Unless specified otherwise dim = 1) j i; jϕi 2 H ⊗ K : unit vectors. P1 P1 majorization: for σ = a jx ihx j, ρ = b jy ihy j 2 S(H), P Pn=1 n n n n=1 n n n ≺ () n # ≤ n # 8 2 N σ ρ i=1 ai i=1 bi ; n . def j i ! j i () 9 2 N [ f1g 9 H f gn 9 ϕ n , POVM on Mi i=1 and a set of LOCC def K f gn unitary on Ui i=1 s.t. Xn j ih j ⊗ j ih j ∗ ⊗ ∗ ϕ ϕ = (Mi Ui ) (Mi Ui ); in C1(H): i=1 H jj · jj "in C1(H)" means the convergence in Banach space (C1( ); 1) when n = 1. LOCC-convertibility[2/13] Theorem(Nielsen, 1999)[1][2, S12.5.1] : the case dim H, dim K < 1 j i ! jϕi () TrK j ih j ≺ TrK jϕihϕj LOCC Theorem(Owari et al, 2008)[3] : the case of dim H, dim K = 1 j i ! jϕi =) TrK j ih j ≺ TrK jϕihϕj LOCC TrK j ih j ≺ TrK jϕihϕj =) j i ! jϕi ϵ−LOCC where " ! " means "with (for any small) ϵ error by LOCC". ϵ−LOCC TrK j ih j ≺ TrK jϕihϕj ) j i ! jϕi in infinite dimensional space has LOCC been open. -
Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks Ana Lucic Maartje ter Hoeve Gabriele Tolomei University of Amsterdam University of Amsterdam Sapienza University of Rome Amsterdam, Netherlands Amsterdam, Netherlands Rome, Italy [email protected] [email protected] [email protected] Maarten de Rijke Fabrizio Silvestri University of Amsterdam Sapienza University of Rome Amsterdam, Netherlands Rome, Italy [email protected] [email protected] ABSTRACT that result in an alternative output response (i.e., prediction). If Given the increasing promise of Graph Neural Networks (GNNs) in the modifications recommended are also clearly actionable, this is real-world applications, several methods have been developed for referred to as achieving recourse [12, 28]. explaining their predictions. So far, these methods have primarily To motivate our problem, we consider an ML application for focused on generating subgraphs that are especially relevant for computational biology. Drug discovery is a task that involves gen- a particular prediction. However, such methods do not provide erating new molecules that can be used for medicinal purposes a clear opportunity for recourse: given a prediction, we want to [26, 33]. Given a candidate molecule, a GNN can predict if this understand how the prediction can be changed in order to achieve molecule has a certain property that would make it effective in a more desirable outcome. In this work, we propose a method for treating a particular disease [9, 19, 32]. If the GNN predicts it does generating counterfactual (CF) explanations for GNNs: the minimal not have this desirable property, CF explanations can help identify perturbation to the input (graph) data such that the prediction the minimal change one should make to this molecule, such that it changes. -
Representations of Stochastic Matrices
Rotational (and Other) Representations of Stochastic Matrices Steve Alpern1 and V. S. Prasad2 1Department of Mathematics, London School of Economics, London WC2A 2AE, United Kingdom. email: [email protected] 2Department of Mathematics, University of Massachusetts Lowell, Lowell, MA. email: [email protected] May 27, 2005 Abstract Joel E. Cohen (1981) conjectured that any stochastic matrix P = pi;j could be represented by some circle rotation f in the following sense: Forf someg par- tition Si of the circle into sets consisting of …nite unions of arcs, we have (*) f g pi;j = (f (Si) Sj) = (Si), where denotes arc length. In this paper we show how cycle decomposition\ techniques originally used (Alpern, 1983) to establish Cohen’sconjecture can be extended to give a short simple proof of the Coding Theorem, that any mixing (that is, P N > 0 for some N) stochastic matrix P can be represented (in the sense of * but with Si merely measurable) by any aperiodic measure preserving bijection (automorphism) of a Lesbesgue proba- bility space. Representations by pointwise and setwise periodic automorphisms are also established. While this paper is largely expository, all the proofs, and some of the results, are new. Keywords: rotational representation, stochastic matrix, cycle decomposition MSC 2000 subject classi…cations. Primary: 60J10. Secondary: 15A51 1 Introduction An automorphism of a Lebesgue probability space (X; ; ) is a bimeasurable n bijection f : X X which preserves the measure : If S = Si is a non- ! f gi=1 trivial (all (Si) > 0) measurable partition of X; we can generate a stochastic n matrix P = pi;j by the de…nition f gi;j=1 (f (Si) Sj) pi;j = \ ; i; j = 1; : : : ; n: (1) (Si) Since the partition S is non-trivial, the matrix P has a positive invariant (stationary) distribution v = (v1; : : : ; vn) = ( (S1) ; : : : ; (Sn)) ; and hence (by de…nition) is recurrent. -
Left Eigenvector of a Stochastic Matrix
Advances in Pure Mathematics, 2011, 1, 105-117 doi:10.4236/apm.2011.14023 Published Online July 2011 (http://www.SciRP.org/journal/apm) Left Eigenvector of a Stochastic Matrix Sylvain Lavalle´e Departement de mathematiques, Universite du Quebec a Montreal, Montreal, Canada E-mail: [email protected] Received January 7, 2011; revised June 7, 2011; accepted June 15, 2011 Abstract We determine the left eigenvector of a stochastic matrix M associated to the eigenvalue 1 in the commu- tative and the noncommutative cases. In the commutative case, we see that the eigenvector associated to the eigenvalue 0 is (,,NN1 n ), where Ni is the ith principal minor of NMI= n , where In is the 11 identity matrix of dimension n . In the noncommutative case, this eigenvector is (,P1 ,Pn ), where Pi is the sum in aij of the corresponding labels of nonempty paths starting from i and not passing through i in the complete directed graph associated to M . Keywords: Generic Stochastic Noncommutative Matrix, Commutative Matrix, Left Eigenvector Associated To The Eigenvalue 1, Skew Field, Automata 1. Introduction stochastic free field and that the vector 11 (,,PP1 n ) is fixed by our matrix; moreover, the sum 1 It is well known that 1 is one of the eigenvalue of a of the Pi is equal to 1, hence they form a kind of stochastic matrix (i.e. the sum of the elements of each noncommutative limiting probability. row is equal to 1) and its associated right eigenvector is These results have been proved in [1] but the proof the vector (1,1, ,1)T . -
Alternating Sign Matrices, Extensions and Related Cones
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311671190 Alternating sign matrices, extensions and related cones Article in Advances in Applied Mathematics · May 2017 DOI: 10.1016/j.aam.2016.12.001 CITATIONS READS 0 29 2 authors: Richard A. Brualdi Geir Dahl University of Wisconsin–Madison University of Oslo 252 PUBLICATIONS 3,815 CITATIONS 102 PUBLICATIONS 1,032 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Combinatorial matrix theory; alternating sign matrices View project All content following this page was uploaded by Geir Dahl on 16 December 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Alternating sign matrices, extensions and related cones Richard A. Brualdi∗ Geir Dahly December 1, 2016 Abstract An alternating sign matrix, or ASM, is a (0; ±1)-matrix where the nonzero entries in each row and column alternate in sign, and where each row and column sum is 1. We study the convex cone generated by ASMs of order n, called the ASM cone, as well as several related cones and polytopes. Some decomposition results are shown, and we find a minimal Hilbert basis of the ASM cone. The notion of (±1)-doubly stochastic matrices and a generalization of ASMs are introduced and various properties are shown. For instance, we give a new short proof of the linear characterization of the ASM polytope, in fact for a more general polytope.