Structure of the Reelfoot-Rough Creek Rift System, Fluorspar Area Fault

Total Page:16

File Type:pdf, Size:1020Kb

Structure of the Reelfoot-Rough Creek Rift System, Fluorspar Area Fault Structure of the Reelfoot-Rough Creek Rift System, Fluorspar Area Fault Complex, and Hicks Dome, Southern Illinois and Western Kentucky— New Constraints from Regional Seismic Reflection Data U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1538-Q MISSOURI - ^^*- » ~: ^ ARKANSAS Cover. Gray, shaded-relief map of magnetic anomaly data. Map area includes parts of Missouri, Illinois, Indiana, Kentucky, Tennessee, and Arkansas. Illumination is from the west. Figure is from Geophysical setting of the Reelfoot rift and relations between rift structures and the New Madrid seismic zone, by Thomas G. Hildenbrand and John D. Hendricks (chapter E in this series). Structure of the Reelfoot-Rough Creek Rift System, Fluorspar Area Fault Complex, and Hicks Dome, Southern Illinois and Western Kentucky— New Constraints from Regional Seismic Reflection Data By Christopher J. Potter, Martin B. Goldhaber, Paul C. Heigold, and James A. Drahovzal INVESTIGATIONS OF THE NEW MADRID SEISMIC ZONE Edited by Kaye M. Shedlock and Arch C. Johnston U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1538-Q UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1995 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Structure of the Reelfoot-Rough Creek rift system, Fluorspar area fault complex, and Hicks dome, southern Illinois and western Kentucky : New constraints from regional seismic reflection data / by Christopher J. Potter....[et al.]. p. cm.—(Investigations of the New Madrid seismic zone ; Q) (U.S. Geological Survey professional paper ; 1538) Includes bibliographical references. Supt.ofDocs.no. : I 19.16: 1538Q 1. Geology, Structural—Illinois. 2. Geology, Structural—Kentucky. 3. Geology, Stratigraphic—Cambrian. 4. Seismic reflection method. I. Potter, Christopher J. II. Series. III. Series : U.S. Geological Survey professional paper ; 1538. QE535.2.UGI59 1995 vol. Q [QE627.5.13] 551.2'2'09778985—dc20 [551.8'09773] 95-3057 CIP CONTENTS Abstract........................................................................................................................... Ql Introduction.................................................................................................................... 2 Geologic Setting............................................................................................................. 2 Data Acquisition and Processing.................................................................................... 4 Correlation of Reflections with Regional Stratigraphy.................................................. 4 Velocity Assumptions..................................................................................................... 5 Interpretation of the Seismic Profile............................................................................... 6 Stephens Well and Vicinity.................................................................................... 6 Tabb Fault System.................................................................................................. 6 Fluorspar Area Fault Complex............................................................................... 7 Ohio River-Rock Creek Graben Area.................................................................... 10 Discussion....................................................................................................................... 13 Reelfoot-Rough Creek Rift.................................................................................... 13 Fluorspar Area Fault Complex............................................................................... 16 Hicks Dome............................................................................................................ 16 Conclusions.................................................................................................................... 17 References Cited............................................................................................................. 18 PLATE [Plate is in pocket] 1. Interpretive line drawing of seismic reflection profile, southern Illinois and western Kentucky FIGURES 1. Regional geologic setting and location of seismic line, southern Illinois and western Kentucky................................ Q3 2. Seismic reflection data near the Tabb fault zone, western Kentucky............................................................................ 5 3. Detail, seismic reflection data in the Tabb fault zone, western Kentucky .................................................................... 7 4. Seismic reflection data, Griffith Bluff graben, western Kentucky................................................................................ 8 5. Seismic reflection data, Mexico graben, western Kentucky......................................................................................... 9 6. Seismic reflection data, Hicks dome, southern Illinois................................................................................................. 11 7. Map showing regional variation in Cambrian rift structure, U.S. Midcontinent.......................................................... 15 III STRUCTURE OF THE REELFOOT-ROUGH CREEK RIFT SYSTEM, FLUORSPAR AREA FAULT COMPLEX, AND HICKS DOME, SOUTHERN ILLINOIS AND WESTERN KENTUCKY- NEW CONSTRAINTS FROM REGIONAL SEISMIC REFLECTION DATA By Christopher J. Potter,1 Martin B. Goldhaber,2 Paul C. Heigold,3 and James A. Drahovzal4 ABSTRACT Because the New Madrid seismic zone coincides spa­ 0.76 s (2.1 km) near the Ohio River and is thickest against tially with a segment of the Cambrian Reelfoot rift (RFR), basement-cutting normal faults in the area of intersection of regional studies of subsurface Cambrian rift structures may the Tabb and Pennyrile fault systems in western Kentucky, provide important insights into the structural fabric of the where it occupies 1.13 s (3.1 km). Near the southeast margin New Madrid seismic zone. High-quality seismic reflection of the rift, the Cambrian syn-rift sequence thins markedly to data examined in this study show that, north of the New the southeast across steep basement-cutting normal faults in Madrid seismic zone within the major dogleg bend in the rift the Tabb-Pennyrile zone; these northwest-dipping faults system in southern Illinois and western Kentucky, the geom­ appear to have been the dominant faults in this part of the etry of the Cambrian rift system is that of a half-graben that Cambrian rift. Post-Mississippian reverse displacements are thickens to the southeast. This contrasts with the northward- also evident in the Tabb-Pennyrile fault zone. thickening half-graben observed to the east, in the Rough Comparison of these seismic reflection data with other Creek graben in Kentucky, and with the more symmetric published reflection data in the Cambrian rift system reveals graben to the south, in the seismogenic part of the RFR. several major along-strike changes in the cross-sectional The 83-km segment of seismic reflection data examined geometry of the rift, similar to other rift systems. We propose here is oriented northwest-southeast within the major bend in that the localization of New Madrid seismicity within a dis­ the Cambrian rift, in southeastern Illinois and western Ken­ crete segment of the Reelfoot rift is inherited from Cambrian tucky. The margins of the 110-km-wide rift (as determined rift structure; the zone of seismicity appears bounded on the north and south by Cambrian accommodation zones that by aeromagnetic data) lie beyond the ends of the seismic line. linked segments with differing rift geometry. The data show that, near Hicks dome (southeastern Illinois), Lower and Middle Cambrian syn-rift sedimentary rocks The seismic data also provide new information on the occupy about 0.4 s two-way travel time on the seismic reflec­ late Paleozoic development of Hicks dome (southeastern tion section (corresponding to a thickness of about 1.1 km). Illinois) and the surrounding Fluorspar area fault complex This stratigraphic interval thickens to the southeast within (FAFC) in southeastern Illinois and western Kentucky. Near the rift. The syn-rift sedimentary sequence occupies about Hicks dome (a center of carbonatitic intrusions), strong Mis- sissippian reflections are relatively continuous, whereas the Cambrian-Ordovician section is greatly disrupted. This dis­ 1 U.S. Geological Survey, Mail Stop 939, P.O. Box 25046, Denver ruption is probably related to the combination of intrusive Federal Center, Denver, CO 80225. and explosive processes that formed the dome. The entire 2 U.S. Geological Survey, Mail Stop 973, P.O. Box 25046, Denver section of Paleozoic rocks and the top of the Precambrian Federal Center, Denver, CO 80225. 3 Illinois State Geological Survey, Champaign, IL 61820 [now at Ar- basement are domed, demonstrating that the uplift originated gonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439]. in the basement rather than within the sedimentary section. 4 Kentucky Geological Survey, 228 Mining and Mineral Resources, Southeast of Hicks dome in western Kentucky, a series of University of Kentucky, Lexington, KY 40506. grabens and horsts in the FAFC document a late Paleozoic Ql Q2 INVESTIGATIONS OF THE NEW
Recommended publications
  • Poster Final
    Evidence for polyphase deformation in the mylonitic zones bounding the Chester and Athens Domes, in southeastern Vermont, from 40Ar/39Ar geochronology Schnalzer, K., Webb, L., McCarthy, K., University of Vermont Department of Geology, Burlington Vermont, USA CLM 40 39 Sample Mineral Assemblage Metamorphic Facies Abstract Microstructure and Ar/ Ar Geochronology 18CD08A Quartz, Muscovite, Biotite, Feldspar, Epidote Upper Greenschist to Lower Amphibolite The Chester and Athens Domes are a composite mantled gneiss QC Twelve samples were collected during the fall of 2018 from the shear zones bounding the Chester and Athens Domes for 18CD08B Quartz, Biotite, Feldspar, Amphibole Amphibolite Facies 18CD08C Quartz, Muscovite, Biotite, Feldspar, Epidote Upper Greenschist to Lower Amphibolite dome in southeast Vermont. While debate persists regarding Me 40 39 microstructural analysis and Ar/ Ar age dating. These samples were divided between two transects, one in the northeastern 18CD08D Quartz, Muscovite, Biotite, Feldspar, Garnet Upper Greenschist to Lower Amphibolite the mechanisms of dome formation, most workers consider the VT NH section of the Chester dome and the second in the southern section of the Athens dome. These samples were analyzed by X-ray 18CD08E Quartz, Muscovite Greenschist Facies domes to have formed during the Acadian Orogeny. This study diraction in the fall of 2018. Oriented, orthogonal thin sections were also prepared for each of the twelve samples. The thin sec- 18CD09A Quartz, Amphibole Amphib olite Facies 40 CVGT integrates the results of Ar/Ar step-heating of single mineral NY tions named with an “X” were cut parallel to the stretching lineation (X) and normal to the foliation (Z) whereas the thin sections 18CD09B Quartz, Biotite, Feldspar, Amphibole, Muscovite Amphibolite Facies grains, or small multigrain aliquots, with data from microstruc- 18CD09C Quartz, Amphibole, Feldspar Amphibolite Facies named with a “Y” have been cut perpendicular to the ‘X-Z’ thin section.
    [Show full text]
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • Progressive Deformation of a Zone of Magma Transfer in a Transpressional Regime: the Variscan Me´Rens Shear Zone (Pyrenees, France)
    Journal of Structural Geology 30 (2008) 1138–1149 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Progressive deformation of a zone of magma transfer in a transpressional regime: The Variscan Me´rens shear zone (Pyrenees, France) Yoann Dene`le, Philippe Olivier*,Ge´rard Gleizes LMTG, Universite´ de Toulouse, CNRS, IRD, OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France article info abstract Article history: The EW-striking Variscan Me´rens shear zone (MSZ), located on the southern border of the Aston dome Received 19 November 2007 (Pyrenees), corresponds to variously mylonitized gneisses and plutonic rocks that are studied using the Received in revised form 30 April 2008 Anisotropy of Magnetic Susceptibility (AMS) technique. The plutonic rocks form EW-striking bands with, Accepted 15 May 2008 from south to north, gabbro-diorites, quartz diorites and granodiorites. The MSZ underwent a mylonitic Available online 28 May 2008 deformation with an intensity progressively increasing from the mafic to the more differentiated rocks. The foliations are EW to NW–SE striking and subvertical. A first set of lineations shows a moderate WNW plunge, with a dextral reverse kinematics. More recent subvertical lineations correspond to an uplift of Keywords: Mylonitic shear zone the northern compartment. To the east, the MSZ was cut by a N120 E-striking late shear band, separating Granite the MSZ from the Que´rigut pluton. The different stages of mylonitization relate to Late Variscan dextral AMS analysis transpression. This regime allowed the ascent of magmas along tension gashes in the middle crust. We Transpression interpret the MSZ as a zone of magma transfer, which fed a pluton now eroded that was similar to the Variscan Que´rigut and Millas plutons located to the east.
    [Show full text]
  • Introduction San Andreas Fault: an Overview
    Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest.
    [Show full text]
  • Preliminary Catalog of the Sedimentary Basins of the United States
    Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1
    [Show full text]
  • Sedimentary Record of Cretaceous And
    SEDIMENT AR Y RECORD OF CRETACEOUS AND TER TIAR Y SALT MOVEMENT, EAST TEXAS BASIN: TIMES, RATES, AND LUMES OF SALT FLOW, IMPLICATIONS TO NUCLEAR-WA TE ISOLATION AND PETROLEUM EXPLO ATION by Steven J. Seni and M. P. A. ackson This work was supported by U.S. Depart ent of Energy and funded under Contract No. DE-AC 7-80ET46617 CONTENTS ABSTRACT . • 00 INTRODUCTION. • 00 Data Base. • 00 Early History of Basin Formation and Infilling • 00 Geometry of Salt Structures • 00 EVOLUTIONARY STAGES OF DOME GROWTH. • 00 Pillow Stage . • 00 Geometry of Overlying Strata . • 00 Geometry of Surrounding Strata • 00 Depositional Facies and Lithostratigraph • 00 Diapir Stage • • 00 Geometry of Surrounding Strata • 00 Depositional Facies and Lithostratigraph • 00 Post-Diapir Stage • 00 Geometry of Surrounding Strata • 00 Depositional Facies and Lithostratigraphy • 00 Holocene Analogues. • 00 Discussion • 00 Significance to Subtle Petroleum Traps • 00 PATTERNS OF SALT MOVEMENT IN TIME AND SPAC • 00 Group 1: Pre-Glen Rose Subgroup (pre-112 Ma) - Periphery of Diapir Province • • 00 Group 2: Glen Rose Subgroup to Washita Group 112 to 98 Ma)-­ Basin Axis • 00 Group 3: Post-Austin Group (86 to 56 Ma) -- Per phery of Diapir Province • • 00 Initiation and Acceleration of Salt Flow • • 00 Overview of Dome History • • 00 RATES OF SALT MOVEMENT AND DOME GROWTH • • 00 Assumptions • • 00 Proven Propositions. • 00 Unproven Propositions • 00 Incorrect Propositions • • 00 Distinguishing Between Syndepositional and Post-D positional Thickness Variations. • 00 The Problem • • 00 Structural Evidence • • 00 Sedimentological Evidence • • 00 Methodology • • 00 Distinguishing Between Regional and Salt-Re ated Thickness Variations. • 00 Volume of Salt Mobilized and Estimates of S t Loss • 00 Rates of Dome Growth • • 00 Net Rates of Pillow Growth • 00 Net Rates of Diapir Growth • 00 Gross Rates of Diapir Growth • • 00 Growth Rates and Strain Rates • 00 IMPLICA TIONS TO WASTE ISOLATION • • 00 CONCLUSIONS • • 00 ACKNOWLEDGMENTS • • 00 REFERENCES • 00 APPENDICES • 00 Figures 1.
    [Show full text]
  • Influences of Surface Processes on Fold Growth During 3D Detachment
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Influences of surface processes on fold growth during 3-D 10.1002/2014GC005450 detachment folding Key Point: M. Collignon1, B. J. P. Kaus2, D. A. May3, and N. Fernandez2 Influences of surface processes on the fold pattern in fold-and-thrust 1Geological Institute, ETH Zurich, Zurich, Switzerland, 2Institut fur€ Geowissenschaften, Johannes Gutenberg-Universit€at, belts Mainz, Germany, 3Institute of Geophysics, ETH Zurich, Zurich, Switzerland Correspondence to: M. Collignon, Abstract In order to understand the interactions between surface processes and multilayer folding sys- [email protected] tems, we here present fully coupled three-dimensional numerical simulations. The mechanical model repre- sents a sedimentary cover with internal weak layers, detached over a much weaker basal layer representing Citation: salt or evaporites. Applying compression in one direction results in a series of three-dimensional buckle folds, Collignon, M., B. J. P. Kaus, D. A. May, and N. Fernandez (2014), Influences of of which the topographic expression consists of anticlines and synclines. This topography is modified through surface processes on fold growth time by mass redistribution, which is achieved by a combination of fluvial and hillslope erosion, as well as during 3-D detachment folding, deposition, and which can in return influence the subsequent deformation. Model results show that surface Geochem. Geophys. Geosyst., 15, doi:10.1002/2014GC005450. processes do not have a significant influence on folding patterns and aspect ratio of the folds. Nevertheless, erosion reduces the amount of shortening required to initiate folding and increases the exhumation rates. Received 9 JUN 2014 Increased sedimentation in the synclines contributes to this effect by amplifying the fold growth rate by grav- Accepted 29 JUL 2014 ity.
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • Subseismic Deformation in the Vaza-Barris Transfer Zone in the Cretaceous Recôncavo-Tucano-Jatobá Rift System, NE Brazil T
    Journal of Structural Geology 117 (2018) 81–95 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Subseismic deformation in the Vaza-Barris Transfer Zone in the Cretaceous Recôncavo-Tucano-Jatobá rift system, NE Brazil T ∗ Cleber Peralta Gomes Jr.a, Haakon Fossenb, , Renato Paes de Almeidaa, Bruno Salmonia a Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, Cidade Universitária, CEP 05508-080, São Paulo, SP, Brazil b Museum of Natural History/Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway ARTICLE INFO ABSTRACT Keywords: We investigate the subseismic structural expression of the major Vaza-Barris Transfer Zone in the Early Subseismic structures Cretaceous Tucano rift basin, NE Brazil based on field observations. Subseismic structures in the Tucano rift fill Deformation bands encompass cataclastic deformation bands, deformation band clusters and deformation band faults. In general, Rift transfer zone these subseismic structures indicate a ∼120° extension direction and document oblique extension across the N-S Tucano basin Tucano Rift, consistent with the movement direction inferred from plate-scale reconstructions. The transfer zone itself is dominated by a large population of NE-SW trending deformation band structures that developed into deformation band faults making a high angle to the transfer zone. The deformation band faults are quite evenly distributed along the transfer zone, which we attribute to extension related to its arcuate cross-sectional shape with flanks dipping toward the rift margins. Additional subordinate structures, many of which are oriented parallel to the transfer zone, show strike-slip dominated motion, and indicate that the finite strain field in the transfer zone involves a component of NNW-SSE shortening in addition to the main extension along the transfer zone.
    [Show full text]
  • From Orogeny to Rifting: When and How Does Rifting Begin? Insights from the Norwegian ‘Reactivation Phase’
    EGU21-469 https://doi.org/10.5194/egusphere-egu21-469 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. From orogeny to rifting: when and how does rifting begin? Insights from the Norwegian ‘reactivation phase’. Gwenn Peron-Pinvidic1,2, Per Terje Osmundsen2, Loic Fourel1, and Susanne Buiter3 1NGU - Geological Survey of Norway, 7040 Trondheim, Norway 2NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway 3Tectonics and Geodynamics, RWTH Aachen University, 52064 Aachen, Germany Following the Wilson Cycle theory, most rifts and rifted margins around the world developed on former orogenic suture zones (Wilson, 1966). This implies that the pre-rift lithospheric configuration is heterogeneous in most cases. However, for convenience and lack of robust information, most models envisage the onset of rifting based on a homogeneously layered lithosphere (e.g. Lavier and Manatschal, 2006). In the last decade this has seen a change, thanks to the increased academic access to high-resolution, deeply imaging seismic datasets, and numerous studies have focused on the impact of inheritance on the architecture of rifts and rifted margins. The pre-rift tectonic history has often been shown as strongly influencing the subsequent rift phases (e.g. the North Sea case - Phillips et al., 2016). In the case of rifts developing on former orogens, one important question relates to the distinction between extensional structures formed during the orogenic collapse and the ones related to the proper onset of rifting. The collapse deformation is generally associated with polarity reversal along orogenic thrusts, ductile to brittle deformation and important crustal thinning with exhumation of deeply buried rocks (Andersen et al., 1994; Fossen, 2000).
    [Show full text]
  • Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J.
    [Show full text]
  • Foreland-Forearc Collisional Granitoid and Mafic Magmatism Caused By
    Foreland-forearc collisional granitoid and ma®c magmatism caused by lower-plate lithospheric slab breakoff: The Acadian of Maine, and other orogens A. Schoonmaker Department of Geology, University of Vermont, Burlington, Vermont 05405, USA W.S.F. Kidd Earth and Atmospheric Sciences, University at Albany, Albany, New York 12222, USA D.C. Bradley U.S. Geological Survey, 4200 University Drive, Anchorage, Alaska 99508, USA ABSTRACT canic belt. This model (Fig. 1) was elaborated on in Bradley et al. During collisional convergence, failure in extension of the lith- (1996), Robinson et al. (1998), Bradley and Tucker (2002), and Begeal osphere of the lower plate due to slab pull will reduce the thickness et al. (2004). Similarly, Sacks and Secor (1990) suggested lithospheric or completely remove lower-plate lithosphere and cause decom- necking to explain early granitic magmatism in the lower plate of the pression melting of the asthenospheric mantle; magmas from this southern Appalachian system during the Alleghenian orogeny. These source may subsequently provide enough heat for substantial par- models propose detachment of sections of the underthrust lower plate tial melting of crustal rocks under or beyond the toe of the colli- during the early orogenic stages of the subduction of a passive margin, sional accretionary system. In central Maine, United States, this rather than later, as proposed by Bird (1978) for the Himalaya, when type of magmatism is ®rst apparent in the Early Devonian West signi®cant lithospheric thickening and overthrusting has occurred. Branch Volcanics and equivalent ma®c volcanics, in the slightly younger voluminous ma®c/silicic magmatic event of the Moxie ACADIAN OF CENTRAL MAINEÐGEOLOGY OF THE Gabbro±Katahdin batholith and related ignimbrite volcanism, and CHESUNCOOK DOME in other Early Devonian granitic plutons.
    [Show full text]