InternationalCouncilfor CM2000/Z:01 TheExplorationoftheSea ThemeSessionZ

SQUIDINTERSPECIFICCOMPETITION:POSSIBLEIMPACTOF ARGENTINUSONLOLIGOGAHIRECRUITMENTINTHESOUTHWEST ATLANTIC by AlexanderI.ArkhipkinandDavidA.J.Middleton

Abstract FisherystatisticsfortwoabundantSouthwestAtlantic,Illexargentinus ()andLoligogahi(Loliginidae),inFalklandwatersbetween1987 and1999wereanalysed.Despitefisheriesregulationproducingreasonablyconsistent fishingeffort,thetotalcatchandCPUEofbothsquidvariedconsiderablyfromyear toyear.Theareasofconcentrationofthetwospeciesareusuallyseparated,withI. argentinusmostabundanttothenorth-westoftheIslandsinFebruary-MayandL. gahitothesouth-eastinFebruary-May(firstseason)andAugust-October(second season).However,insomeyears,I.argentinusdointrudeingreatnumbersinto nurseryorfeedingareasofL.gahiinApril-Maypossiblyaffecting,eitherdirectly(via predation)orindirectly(bycompetitionforfood)theabundanceandrecruitmentof thesecondcohortofL.gahi.CatchesandCPUEofI.argentinusinthefirsthalfofthe season(February-March)didnotcorrelatewiththoseofL.gahiinFebruary-May.In contrast,catchesandCPUEofI.argentinusinthesecondhalfoftheseason(April- May)arenegativelycorrelatedwiththoseofL.gahiinApril-MayandAugust- Octoberofthesameyear.Possiblereasonsforsuchnegativecorrelationsin abundanceofthetwosquidspecies,andtheirimplicationsforfisheriesmanagement, arediscussed.

Keywords:squid,fishery,Illexargentinus,Loligogahi,SouthwestAtlantic.

AlexanderI.ArkhipkinandDavidA.J.Middleton:FisheriesDepartment,Falkland IslandsGovernment,P.O.Box598,Stanley,FalklandIslands

1 Introduction TheFalklandIslandsInterimConservationandManagementZoneandOuter ConservationZone(FICZandFOCZ)supporttwomainsquidfisheriesinthe SouthwestAtlantictargetingtheommastrephidsquidIllexargentinusandloliginid squidLoligogahi.ThetotalannualcatchwithintheFICZ/FOCZexceeded300,000 tonnesin1999(FIG,2000).Thecatchofeachspecieshasvariedfromyeartoyear, rangingfrom64,000to266,000tonnes(mean130,000tonnes)forI.argentinusand from26,000to98,000tonnes(mean61,000tonnes)forL.gahiin1990-1999(FIG, 2000).Thereasonsforthesevariationsincatch(and,presumably,inabundanceof squid)arelargelyunknown. IllexargentinusisthemostimportantsquidfisheryresourceoftheSouthwest Atlantic.DuringthefirsthalfoftheyearitisfishedintheFICZ/FOCZandArgentine ExclusiveEconomicZone,aswellasininternationalwatersof45-47°S.Thesouth PatagonianandFalklandshelvesareusedasfeedinggroundsbythetwomost abundantwinter-spawninggroupsofI.argentinus:theboanerensisnorthPatagonian stock(BNPS)andthesouthPatagonianstock(SPS)(Brunetti,1988).Squidofboth groupsmigratetothisareafromtheirnurserygrounds(thecontinentalslopeof northernArgentinaandUruguay)inFebruary,feedduringtheaustralsummerand autumnandemigratetotheirspawninggroundsinMay-June(Hatanaka,1988; Haimovicietal.,1998).InboththeFICZ/FOCZandArgentineEEZ,I.argentinusis fishedmainlybyAsianjiggingvessels(Csirke,1987).Twomainwavesofabundance areusuallyobservedintheI.argentinusfisheryonthesouthernPatagonianshelf (Arkhipkin,2000).ThefirstwaveappearsinFebruaryinthenorth-westofthe FICZ/FOCZandfeedsmainlyinthatregion.BythestartofAprilsquidofthiswave areconcentratedontheshelfbreakinthenorth-eastofthezonesbeforetheir northwardmigration,causingasignificantpeakincatches.Thesecondwavestartsto movefromtheArgentineEEZtothewesternpartoftheFICZinthesecondhalfof April.Squidofthiswavemigrateacrossthezonefromthesouth-westtonorth-east, andagainconcentrateontheshelfbreaknorthof50°30’S,resultinginthesecond peakofcatchesinthebeginningofMay.AggregationsofI.argentinusremaininthe zonesuntilthemiddleofJune(FIG,2000). LoligogahiisanotherimportantsquidfisheryresourcewithintheFICZ (Patterson,1988).JuvenileL.gahimovefromtheinnershelftotheoutershelfand

2 shelfbreakoftheFalklandIslands,feedandgrowthereasimmatureandmaturing adultsand,uponmaturation,returntoshallowwaterstospawn(Hatfieldand Rodhouse,1994).ItisassumedthatthereareatleasttwocohortsofL.gahiwith differentspawningperiods(autumnandspring)andgrowthrates(Agnewetal., 1998a).Thissquidistargetedbyatrawlfleetprimarilyduringitsfeedingperiod withinthe‘Loligobox’,theregionlocatedtothesouth-eastoftheFalklandIslands. Thewholefishingseasonissplitintotwoparts(February-MayandAugust-October). Duringthefirstseasonbothcohorts(withapredominanceoftheautumnspawners) arefished,whereasduringthesecondseasononlythesecondcohortisexploited (HatfieldanddesClers,1998). Untilnowlittlehasbeenknownabouttheinteractionsbetweenthetwosquid species.Bothareopportunisticpredatorseatingallpossiblepelagicprey,primarily abundantamphipodandeuphausiidcrustaceans(Guerraetal.,1991;Brunettietal., 1998).Withitsslimmerbodyandsmallersize(meanmantlelength,ML,ofadultsis 140-160mm)L.gahiisamorelikelypotentialpreyforthelargerandmorerobust (320-390mmadultML)I.argentinus,thanthereverse.OnthePatagonianshelfL. gahihasbeenreportedinthedietofI.argentinus(10-15%frequencyofoccurrence) duringtheaustralsummerandautumn(IvanovicandBrunetti,1994). IntheFalklandIslandsFisheriesDepartment,fisheriescatchandeffortdata hasbeengatheredonadailybasissincethebeginningofthelicensedfisheryin1986 (FIG,2000).Thisseriesoffersthepotentialtomakerealprogressinunderstanding fisherydynamicsandinteractions.Inthispaperweexaminetherelationshipbetween abundanceofthemajorsquidspeciesI.argentinusandL.gahi.Ouraimistobetter understandthefactorsthataffectrecruitmenttotheFalklandsquidfisheriesandso improvestockassessmentandpredictioncapabilitiesandguidemanagementfor continuedconservationofthestocks.

Materials&Methods TheoveralldistributionofIllexargentinusandLoligogahiintheFalkland Island’sfisheryzoneswascomparedbyconsideringthetotalcatchreportedinthe period1987to1999inclusive(Figure1).AlllicensedvesselsintheFalkland’szones submitdailycatchreportsidentifyingmiddayandmidnightpositionona0.5° longitudeby0.25°latitudegridsystem.ThemajorityoftheI.argentinuscatchis takenbyjiggingvesselssomidnightpositionwasusedtoassigntheirdailycatchtoa

3 particulargridsquare,whereasL.gahiisfishedbytrawlersandmiddaypositionwas usedinthiscase. Fortheseparationofcatchbywaveofabundance,fishingseason,orarea,and forthecalculationofcatchperuniteffort(CPUE),weconsideredonlythosevessels licensedtotargetI.argentinusorL.gahi.Dataforthelicensedfisheryfrom1989to 1999wasincluded.AllcatchesofI.argentinusduringFebruaryandMarchwere consideredtobefromthefirstwaveofabundance(wave1=BNPS;Brunetti,1988) andallcatchesfromMayandJunewereassignedtothesecondwave(wave2=SPS; Brunetti,1988;Arkhipkin,1993,2000).InAprilcatchessouthof49.5°Sandwestof 60.25°W(Figure2)wereassignedtowave2whilecatchesnorthandeastofthisarea wereassignedtowave1.Thisdivisionissupportedbylength-frequencyandmaturity data.InthecaseofL.gahithefisheryoperatesintwoseasons.Thefirstseasonruns from1Februaryto31May,andthesecondseasonfrom1Augustto31October.L. gahilicensesallowfishingtothesouthandeastoftheFalklandIslands.Thisarea wassplitintotwosub-regions:northandsouthof52°S(Figure3).ThefisheryforI. argentinustakesplaceinasingleseason,currentlyrunningfrom15Februaryto15 June.Thefisheryseasonforeitherspeciesmaybeendedearlierthanthenormal seasonclosingdateifwithin-seasonstockassessmentsindicatethestockhasreached aminimumescapementthreshold. CalculationofCPUEforI.argentinuswasrestrictedtothelicensedjigging fleet,whichtakesthemajorityoftheannualcatch(95.4%in1999;FIG,2000).Effort wascalculatedasjiglinehours(vesselsreportthenumberoflinesusedandtime spentjiggingdaily),andCPUEexpressedaskgline-hour-1.Thelicensedfisheryfor L.gahiisrestrictedtotrawlers(whichreportdailytrawlingtime)andCPUEwas calculatedasmetrictonnes(MT)hr-1.ThemedianCPUE(whereCPUEwas calculateddailyforeachlicensedvesselfishing)inagivenperiodwasusedasa generalmeasureofabundance(usuallyreferredtosimplyasCPUEintheremainder ofthispaper).Thiswaschoseninpreferencetothestandardstockestimates (calculatedbydepletionmethods)asthesecurrentlyconsideronlytotalstockforI. argentinus(Basson,etal.1996)andtotalfirst/secondseasonstockforL.gahi (Agnew,etal.1998a)andsodonotallowaneasyseparationoftheestimatedstock sizebyarea(forL.gahi)orbywaveofabundance(forI.argentinus). Tofurtherillustratetheannualpatternsinabundanceforthevariousgroups theannualdeviationinCPUEfromthelongtermmeanCPUEofthegroupoverthe

4 period1989-1999wascalculated.Toallowcomparisonbetweenstocksthisdeviation wasexpressedasaproportionofthelongtermmean. TherelationshipbetweenCPUEforthetwowavesofI.argentinusandCPUE forL.gahiineachregionandseasonwasinvestigatedbycalculatingSpearman’srank correlationbetweenthedatasets.Allstatisticalcalculationswerecarriedoutusingthe Rstatisticalpackage,v1.1.0(IhakaandGentleman,1996).MedianCPUEwasalso calculatedonamonthlybasisforeachstockandcomparisonsbetweenmonthsalso madeusingSpearman’srankcorrelation.

Results

Distribution GenerallythedistributionsofI.argentinusandL.gahiwithintheFICZ/FOCZ arequitesimilar.BothsquidareencounteredalmosteverywherearoundtheIslands withtheexceptionofthesouthernpartoftheZones(mainlyBurdwoodBank).Inthe east,however,I.argentinustendtooccurfurtheroffshorethanL.gahi.UnlikeL. gahi,I.argentinusdonotappearintheshallownearshorewaters(<50mdepths)of theFalklands.Howeverthedispersalofbothsquidisverydifferent.Thedensest aggregations(and,correspondingly,catches)ofI.argentinusarenotedinthenorth- westernandnorth-easternpartsoftheZones,whereasL.gahiismostabundantinthe southernandeasternpartsoftheFICZ/FOCZ(the‘Loligobox’)(Figure1).Thusthe bulkofthepopulationsofI.argentinusandL.gahiareseparatedspatiallyonthe Falklandshelf. ThedispersalofI.argentinusandL.gahivariesinyearsofhighandlow abundance,toagreaterextentinI.argentinusthanL.gahi.Forexample,inayearof lowI.argentinusabundance(1994)thefirstwavewasobservedbasicallyalongthe northernperimeteroftheFICZ,neverapproachingthevicinityoftheIslands.The secondwavewasabundantonlyalongthenorth-westernperipheryoftheFICZ (Figure2a,c).Inayearofhighabundance(1999)thedispersalofbothwaveswas muchwider.Squidofwave1werealsoabundantinthecentralnorthernpartofthe Zone,evenapproachingtheshallowwaterstothenorthandnorth-eastoftheIslands. Squidofwave2penetratedingreatnumbersdownto52°Sinthewesternpartofthe FICZandalsointotheshallowwaterstothenorthoftheFalklands(Figure2b,d). TheannualvariationindispersalofL.gahiisnotasevidentasthatofI. argentinusbecausetheLoligo-licensedtrawlersareallowedtofishonlyinacertain

5 regionoftheFICZ(the“Loligobox”;HatfieldandDesClers,1998).Inayearofhigh abundance(1994)thedistributionofL.gahiwassomewhatwiderduringbothseasons thaninayearoflowabundance(1999)(Figure3).

Illexargentinusfisherystatistics ThetotalcatchofbothwavesofI.argentinusbyjiggingvesselsvariedover thelastdecade.In1989-1992,thecatcheswereatahighlevel,rangingfrom50to120 thousandtonnes.In1993,therewasadeclineinthetotalcatchofwave1witha correspondingincreaseincatchofwave2.In1994-1996thecatcheswerequitelow, especiallythoseofwave2.Catchesincreasedagainattheendofthedecadewiththe highesttotalcatchoccurringin1999whenwave1catchexceededallpreviouslevels (Figure4a).CPUEofthejiggingfleetshowedsimilarvariabilityoverthewhole period,andwasusuallyhigherforwave1thanwave2(Figure4a).Totaljigging effortwashighestin1989and1991-1993.From1994itstabilisedatalevelofaround fourmillionjiglinehoursforwave2,butremainedmorevariableforwave1, droppingtotwomillionjiglinehoursin1998.TheI.argentinusseasondurationwas 91daysin1990-1993andwasincreasedto100-120daysin1994-1999(Figure4b). DailyI.argentinusCPUEshoweddifferenttrendsthroughoutthefishing seasonindifferentyears.In1992,ayearofintermediateabundance,dailyCPUEwas highinthefirsthalfofthefishingseason(February-March)butdecreasedmarkedly duringthesecondhalfoftheseason(April-May).In1999,ayearofhighabundance, CPUEwerehighforlonger(February-May),decreasingonlyinJune(Figure5).

Loligogahifisherystatistics StatisticsforbothseasonsoftheL.gahifisheryareshowninFigure6.During thefirstseason,thetotalcatchwasgreatestin1989inthesouthernarea(105,000 tonnes),decliningthereafteruntil1993.Anotherpeakincatchfromthisareaoccurred in1995.Firstseasoncatchinthenorthernareawascontinuouslylowwiththe exceptionof1996whenitreached17,000tonnes.Duringthesecondseasonthetotal catchwasgreatestinthenorthernareain1995(24,000tonnes)andinsouthernareain 1994(20,000tonnes)(Figure6a). TheCPUEtimeseriesshowedbasicallythesamepatternthroughoutthe decadeasthecorrespondingcatchseries.ThehighestCPUEwasrecordedinthe

6 southernareaforthefirstseasonin1995(5.6t/hr)andforthesecondseasonin1992 (2.0t/hr)(Figure6b).However,althoughseason1catchwasalwayshigherinthe south,CPUEinthenorthernareaexceededthatinthesouthernareainsomeyears. Lowannualcatchesinthenorthernarea,evenwhenmedianCPUEishigh,mayresult fromvariabilityincatchesinthenorthernarea.In1999itappearedthatfishing vesselspreferredtohavehighcatchesinthenorthernregionforseveraldaysthen,as soonasCPUEdropped,movedtothesouthernregionwheremedianCPUEwaslower butcatchwasmorestable. Thedurationofbothfishingseasonswaspracticallyconstantthroughoutthe decadeexcept1997,whenthesecondseasonwasclosedearlier(Figure6c).Trendsin dailyCPUEsinL.gahifisheryinyearsofhigh(1992)andlow(1999)abundanceare showninFigure5.

CorrelationbetweenI.argentinusandL.gahiabundance Toillustratepotentialrelationshipsintheabundanceofdifferentgroupingsof thetwosquidspecies,theproportionaldeviationfromthelongtermmeanofmedian CPUE(Table1)foreachgroupingwasconstructedovertheperiodfrom1989to1999 (Figure7).OfallthegroupingsofL.gahi,onlythesouthernareainthesecondseason demonstratedaconsistentinversepatterninCPUErelativetothetwoI.argentinus groupings(Figure7d).ThisL.gahigroupingwastheonlyonethatshowedanegative correlationwithI.argentinusabundance(wave2)thatwassignificantatthe5%level (Figure8). AnanalysisofmonthlymedianCPUEforbothwavesofI.argentinusandfor bothregionsofL.gahifisheryalsoshowssignificantnegativecorrelationbetween abundancesofthetwospecies.Inthenorthernareaastrongnegativecorrelationwas observedbetweenabundanceofI.argentinusinApril(bothwaves)andL.gahi abundanceinApril(p<0.05)andinAugust-September(p<0.1)ofthesameyear.The MayabundanceoftheI.argentinuswave2correlatesnegativelywiththeL.gahi abundanceinthefollowingAugust-September(Table2). Inthesouthernarea,theAprilabundancesofI.argentinuscorrelated negativelywiththefollowingMay,AugustandSeptemberabundancesofL.gahi. MedianCPUEoftheI.argentinuswave2inMayinhasanegativecorrelationwith thatofL.gahiinMayandAugust(Table3).

7 ExaminationoftherelationshipbetweenthesecondseasonL.gahiCPUEin thesouthandwave2I.argentinusCPUE(Figure8)suggeststhatthereisathreshold levelofwave2I.argentinusabundanceatapproximately9kgline-hr-1.Whenthis thresholdisexceededthesecondseasonCPUEforL.gahiinthesouthernareais invariablylow(Figure8,Figure9).Itisclearthatthereisadistinctioninsecond seasonL.gahiCPUEinthesouthbetweenyearswhereI.argentinuswave2 abundanceexceededthisthresholdandyearswhereitdidnot. OncethiseffectofthesecondwaveI.argentinusabundanceistakeninto accounttheremainingvariationinmedianCPUEissuggestiveofatraditionalstock- recruitrelationshipwithhighestrecruitmentresultingfromtheintermediate populationsizesinthepreviousyear(Figure9).FittingtheRickerstock-recruitcurve separatelytoyearswherethewavetwoI.argentinusabundanceexceededthe thresholdmedianCPUEof9kgline-hr-1,andyearswhereitdidnot,didnotyield verysatisfactoryfits.Ageneralisedlinearmodel(GLM)wasthereforeconstructedfor thesecondseasonCPUEofL.gahiinthesouthernareabasedontwofactors.One factorindicatedwhetherthemedianCPUEofwave2I.argentinusinthecurrentyear exceededthethresholdlevelof9kgline-hr-1,whiletheotherfactorhadthreelevels indicatingtheCPUEofthesecondseasonL.gahiinthesouthernareainthe precedingyear.Thiswasallocated3levels:lessthan0.55tonneshr-1,between0.55 and1.2tonneshr-1,andgreaterthan1.2tonneshr-1.Agammaerrordistributionwith loglinkfunctionwasusedinthemodelfitting.ThemodelfitissummarisedinTable 4andcomparedwiththerealisedtimeseriesinFigure10.Themodelaccountsfor 75%ofthenulldeviance(Table4).

Discussion

Therecouldbeseveralreasonsforthestrongnegativecorrelationsinthe abundanceofsomegroupsofI.argentinusandL.gahiontheFalklandShelf.L.gahi isthecoldestwaterdwellingloliginidspeciesspendingitsentireontogenesis,and reachingitshighestabundance,inwatersassociatedwiththeFalklandCurrentwhich derivesfromtheAntarcticCircumpolarCurrent(HatfieldandDesClers,1998).In contrast,I.argentinusisatemperatespeciesassociatedmainlywithwatersofthe PatagonianShelf(Haimovicietal.,1998).Ithasrecentlybeenshownthatfluctuations inabundanceofbothsquiddependonenvironmentalconditionsintheirspawning grounds.CatchesofI.argentinuswithintheFICZ/FOCZwerenegativelycorrelated

8 withtheseasurfacetemperatureduringthepeakoftheirspawninginJulyofthe previousyear(Waludaetal.,1999).Agnewetal.(inprep.)havedemonstratedthat lowersea-surfacetemperaturesinOctoberprecedehigherrecruitmentofthesecond cohortofL.gahithefollowingApril.Thus,assumingthatSSTisaproxyforthe environmentalconditionsdeterminingtheabundanceofsquidpopulationsinthe SouthwestAtlantic,andtakingintoaccounttheirannuallifecycle(Arkhipkin,1990; Hatfield,1991),onecouldexpectahigherabundanceofcolderwaterspecies(inthis case,L.gahi)andalowerabundanceofwarmerwaterspecies(suchasI.argentinus) inacolderyear,andviceversa.Generally,ourdatadonotsupportthisassumption: thecorrelationbetweentotalcatchofthetwospecies,aswellasoverallCPUEinthe sameyear,islowandnon-significant. However,bysplittingbothsquidspeciesintotheirnaturalcohorts(orwavesof abundance)(Agnewetal.,1998b;Arkhipkin,2000),andbyanalysingbothcatchand CPUEseparatelyforeachperiodandmonth,evidenceofarelationshipbetweenthe speciesemerges.TherearesomegroupingsofI.argentinusandL.gahiwithstrong negativecorrelationandthereareothersthatareuncorrelated.Asnotedearlier,both squidarevoraciouspredators.L.gahi,however,isabundantonlyaroundtheFalkland Islands.ThisisfarfromthesupposedI.argentinusspawningandnurserygrounds (thesouthernBrazilianandnorthernArgentiniancontinentalslopes;Haimovicietal., 1998)and,therefore,predatoryimpactofL.gahionI.argentinusrecruitmentmaybe neglected.TheoppositesituationisobservedwithI.argentinus.Thissquidmigrates totheFalklandshelfseasonally(australsummerandautumn).Onarrivalthe migratingI.argentinusarealreadymuchlarger(>220-240mmML),andhavehigher growthrates,thanthelocalL.gahi(100-130mmML)(RodhouseandHatfield,1990; HatfieldandRodhouse,1994).

PossibleimpactofI.argentinusonL.gahi I.argentinusmayaffectL.gahipopulationseitherindirectly(bycompeting forplanktoniccrustaceanprey)ordirectly(byfeedingonadultsquidofthefirst cohortand/orsmalljuvenilesofthesecondcohortofL.gahi).Itseemsthat competitionforfoodresourcesisthelessimportantrelationshipbetweenthetwo squid,astheabundanceofthefirstwaveofI.argentinusdoesnotcorrelatewiththat ofthefirstseasonofL.gahiinFebruary-March.However,I.argentinusofsecond wavedointrudeintoareasofL.gahiaggregations(tothewestandnorthofthe

9 Islands)inApril-May.ThereareindicationsthatduringthisperiodI.argentinus quicklyswitchfromacrustaceantoasquiddiet,astheirstomachshavebeenfound fullofL.gahi(unpublishedFIFDscientificobserverdata).Inthenorthernregion fishinggroundsforbothsquidspeciesareveryclose(northwestofEastFalkland)and animmediateimpactofthesecondwave(andendofthefirstwave)ofI.argentinus onL.gahiabundanceispronouncedinApril.OurmethodofdividingtheAprilI. argentinuscatchesbetweenthetwowavesissomewhatarbitrary.Althoughitis broadlyinlinewiththebiologicalpatternsobserved,itdoesnottakeaccountofinter- annualvariationinthesizeandmaturitycharacteristicsthatdistinguishthetwo waves.ThismaywellberesponsibleforthefactthatthecorrelationbetweenL.gahi abundanceandI.argentinusabundanceinAprilaresimilarforbothwaves. Inthesouthernregionthefishinggroundsforthetwospeciesarefurtherapart (westoftheIslandsforI.argentinusandsouthforL.gahi).Itisnotsurprising, therefore,thatsignificantnegativecorrelationswereobservedbetweenApril abundanceofI.argentinusandMayabundanceofL.gahi:itshouldtakesometime (severalweeks)fortheslowlymigratingL.gahitoreachtheirmainfeedinggrounds (southoftheIslands)fromnurserygroundslocatedwestofWestFalkland(ourdata). HoweverthecorrelationbetweensecondwaveI.argentinusandsouthernregionL. gahiabundancesinMayalsosuggestssomedirectinteractionclosertothefishing grounds.ThestrongnegativecorrelationbetweenabundanceofI.argentinusin April-MayandL.gahiinthefollowingAugust-SeptembersuggeststhatlargeI. argentinusofthesecondwavemaybefeedingonsmalljuvenilesandimmaturesof thesecondcohortofL.gahi,whichstartsrecruitingtothefisheryinApril-May (Agnewetal.,1998b).ItisnotablethattheI.argentinusabundanceinApril-May seemstohaveathresholdlevelbelowwhichI.argentinusdonotappeartoaffectL. gahiabundance.However,whenthisthresholdabundanceisexceeded,thereis invariablydepletionofthoseL.gahigroupswhichareunfortunateenoughtocoincide withpre-spawningmigratoryschoolsofI.argentinus(Arkhipkin,1993). DespiteitswidedistributionintheshelfwatersoftheSouthwestAtlanticand SoutheastPacific(Roperetal.,1984),L.gahiisveryabundantonlyinarathersmall regionlocatedtothesouth-eastoftheFalklandIslandswhichseemstobean ecological‘refuge’forthisspecies.Buteveninthisrefugesquidofthesecondcohort ofL.gahiarevulnerableseasonallytopredationbyI.argentinusasitmigratesin greatnumberstofeedinshallowwatersaroundtheFalklandIslands.Itisnotablethat,

10 insomeyears,denseaggregationsofL.gahiareencounteredonthePatagonianshelf breakasfarnorthas45-47°SinSeptember-October,i.e.duringthealmostcomplete absenceofI.argentinusinthatarea.AssoonasI.argentinusmigrateintotheregion of45-47°SinDecember,theabundanceofL.gahisharplydeclines(Chesheva,1990). InotherpartsofitsdistributionL.gahiisneverabundant,possiblyasaresultof predationpressurebymorepowerfulandlargerco-habitantommastrephid,I. argentinusintheSouthwestAtlanticandDosidicusgigasintheSoutheastPacific.

Implicationsforfisherymanagement Squidfisherymanagementandstockassessmenthaveprovedtobedifficult tasksduetothehighvariationinsquidabundancefromyeartoyear,acomplicated populationstructure,andshortlifecycle(Rosenbergetal.,1990).Managementinthe Falkland’szonesiscurrentlybasedlargelyonin-seasonassessmentsusingmethods basedonLeslie-DeLurydepletionanalyses,whicharegenerallyreliableonlyafterthe peakofcatchesandeventhennotinallyears(Bassonetal.,1996;Agnewetal., 1998).Thisfactmotivatesthesearchforadditionalmodelsforsquidstockassessment andpredictionthatcancontributetothemanagementofthefishery.Itwasrecently foundthatmodelsusingastock-recruitrelationshipandsea-surfacetemperatureson thespawninggroundduringspawningofagivencohortfittedthedatamore successfullythancommonstock-recruitmodels(Waludaetal.,1999,Agnewetal.,in prep).ThesimpleGLMconstructedinthepresentstudyillustratesthepotentialof incorporatinganotherimportantparameter(predatorabundance)inpredictinglikely abundanceofsquid(i.e.thesecondcohortofL.gahi)beforetheseasonopens.The modelfittedis,ofcourse,verysimplistic.Thepresenceofonlythreefactorlevelsfor precedingyearCPUE,andasinglefactorforI.argentinusabundanceinthecurrent yearratherlimitsthepossiblepredictedvalues.Nevertheless,themodelsuccessfully capturesthepatterninmedianCPUEfromyeartoyear.Withthesmallnumberof datapointsitisperhapsnotsurprisingthatthefittedvaluesforthefactors representingprecedingyearCPUEarenotsignificantlydifferentfromzero,orindeed thatthemodelcanaccountforaratherlargeproportionofthenulldeviance. However,predictingforthcomingsquidrecruitmentusingfactorssuchaspredator abundanceandenvironmentaldataisaveryusefulstepforwardforfisheries management.Itoffersthepotentialofrefiningthelicensedeffortbasedonlikely

11 abundance,withtheaimofmeetingconservationtargetswhilereducingthelikelihood ofearlyfisheryclosures,andassociateddisruptiontothefishery,shouldin-season assessmentsrevealthatrecruitmenthasbeenlow.

Acknowledgements Wegratefullyacknowledgetheworkofthescientificobserversofthe FalklandIslandsGovernmentFisheriesDepartmentwhohavecollectedsamplesfrom theIllexandLoligofisheries,andscientificstaffworkingontheenteringand processingofthedata.WethanktheDirectorofFisheries,JohnBarton,for supportingthiswork.

References Agnew,D.J.,R.Baranowski,J.R.Beddington,S.desClersandC.P.Nolan.1998a. ApproachestoassessingstocksofLoligogahiaroundtheFalklandIslands. FisheriesResearch,35,155-169. Agnew,D.J.,C.P.NolanandS.desClers.1998b.Ontheproblemofidentifyingand assessingpopulationsofFalklandIslandsquidLoligogahi.In: biodiversity,ecologyandevolution(eds.A.I.L.Payneetal.).SouthAfrican JournalofMarineScience,20,59-66. AgnewD.J.,Hill,S.,andBeddington,J.R.inprep.Predictingtherecruitmentstrength ofanannualsquidstock:LoligogahiaroundtheFalklandIslands. Arkhipkin,A.I.1990.EdadycrecimientodelcalamarIllexargentinus.Frente Maritimo,6,25-35. Arkhipkin,A.I.1993.Age,growth,stockstructureandmigratoryrateofprespawning short-finnedsquidIllexargentinusbasedonstatolithageinginvestigations. FisheriesResearch,16,313-338. ArkhipkinA.I.2000.Intrapopulationstructureofwinter-spawnedArgentineshortfin squid,Illexargentinus(Cephalopoda,Ommastrephidae),duringitsfeeding periodoverthePatagonianShelf.Fish.Bull.U.S.,98,1-13. Basson,M.,Beddington,J.R.,Crombie,J.A.,Holden,S.J.,Purchase,L.V.and Tingley,G.A.1996.Assessmentandmanagementtechniquesformigratory annualsquidstocks:theIllexargentinusfisheryintheSouthwestAtlanticasan example.FisheriesResearch,28,3-27.

12 Brunetti,N.1988.Contribucionalconocimientobiologico-pesquerodelcalamar argentino(Cephalopoda,Ommastrephidae,Illexargentinus).TrabajodeTesis presentadoparaoptaralgradodeDoctorenCienciasNaturales,Universidad delaPlata,135pp. Brunetti,N.,Ivanovic,M.,Rossi,G.,Elena,B.,andPineda,S.1998.Fisherybiology andlifehistoryofIllexargentinus.InContributedpaperstointernational symposiumonlargepelagicsquids(July18-19,1996)(ed.T.Okutani), JAMARC,Tokyo,217-232. Chesheva,Z.A.1990.BiologyofLoligopatagonicafromsouth-westAtlantic.Zool. Zh.,69,126-129. Csirke,J.1987.Losrecursospesquerospatagonicosylaspesqueriasdealturaenel AtlanticoSud-occidental.FAODoc.Tec.Pesca,280,78pp. FIG,2000.FisheriesDepartmentFisheriesStatistics,Vol.4.FalklandIslands GovermentFisheriesDepartment,Stanley,71pp. Guerra,A.,Castro,B.G.andNixon,M.1991.Preliminarystudyonthefeedingof Loligogahi(Cephalopoda:Loliginidae).Bull.Mar.Sci.,49,309-311. Haimovici,M.,Brunetti,N.,Rodhouse,P.G.,Csirke,J.andLeta,R.H.1998.Illex argentinus.InSquidrecruitmentdynamics.ThegenusIllexasamodel,the commercialIllexspeciesandinfluencesonvariability.(eds.Rodhouse,P.G., Dawe,E.G.&O’Dor,R.K.).FAOFish.Tech.Pap.,376.FAO,Rome,27-58. Hatanaka,H.,1988.Feedingmigrationofshort-finnedsquidIllexargentinusinthe watersoffArgentina.NipponSuisanGakkaishi,54(8),1343-1349. Hatfield,E.M.C.1991.Post-recruitgrowthofthePatagoniansquidLoligogahi (d’Orbigny).Bull.Mar.Sci.,49,349-361. Hatfield,E.M.C.andS.desClers.1998.Fisheriesmanagementandresearchfor LoligogahiintheFalklandIslands.CalCOFIRep.,39,81-91. Hatfield,E.M.C.andP.G.Rodhouse.1994.Migrationasasortofbiasinthe measurementofcephalopodgrowth.In:SouthernOcean:lifecycles andpopulations(eds.Rodhouse,P.G.,Piatkowski,U.andLu,C.C.).Antarctic Science,6,179-184. Ihaka,R.andGentleman,R.1996.R:ALanguageforDataAnalysisandGraphics,J. Comp.Graph.Stat.,5,299-314.

13 Ivanovic,M.L.andBrunetti,N.E.1994.FoodandfeedingofIllexargentinus.In: SouthernOceancephalopods:lifecyclesandpopulations(eds.Rodhouse,P.G., Piatkowski,U.andLu,C.C.).AntarcticScience,6,185-193. McGill,R.,Tukey,J.W.,andLarsen,W.A.1978.Variationsofboxplots.The AmericanStatistician,32,12-16. Patterson,K.R.1988.LifehistoryofPatagoniansquidLoligogahiandgrowth parameterestimatesusingleastsquarefitstolinearandvonBertalanffymodels. MarineEcologyProgressSeries,47,65-74. Rodhouse,P.G.andHatfield,E.M.C.1990.Dynamicsofgrowthandmaturationin thecephalopodIllexargentinusdeCastellanos,1960(Teuthoidea, Ommastrephidae).PhilosophicalTransactionsoftheRoyalSocietyofLondon Ser.B,329,229-241.

Roper,C.F.E.,Sweeney,M.J.andNauen,C.E.1984.FAOSpeciesCatalogue,3. CephalopodsoftheWorld.FisheriesSynopsisNo.125.Rome,FAO,1-277. Rosenberg,A.A.,Kirkwood,G.P.,Crombie,J.A.andBeddington,J.R.1990.The assessmentofstocksofannualsquidspecies.FisheriesResearch,8,335- 350. WaludaC.M.,TrathanP.N.andRodhouseP.G.1999.Influenceofoceanographic variabilityonrecruitmentintheIllexargentinus(Cephalopoda: Ommastrephidae)fisheryintheSouthAtlantic.MarineEcologyProgressSeries, 183,159-167.

14 Table1.LongtermmeanofmedianCPUEforeachgroupingofsquidovertheperiod 1989to1999intheFICZ/FOCZ. Species Region Grouping Mean Illexargentinus wave1 15.7kgline-hr-1 Illexargentinus wave2 8.7kgline-hr-1 Loligogahi northernregion season1 1.46thr-1 Loligogahi northernregion season2 0.78thr-1 Loligogahi southernregion season1 2.20thr-1 Loligogahi southernregion season2 0.85thr-1

Table2.Spearman’srankcorrelation(and,inparenthesis,probabilitythatcorrelation isnon-zero)betweenmonthlymedianCPUEforLoligogahiinthenorthernareaand IllexargentinusmonthlymedianCPUEinthecurrentyear.Boldtypehighlights correlationsthataresignificantatthe5%level,whileitalicsindicatesignificanceat the10%level. Illexargentinuswave1 Illexargentinuswave2 Feb Mar Apr Apr May Jun Feb 0.400(0.750) Mar 0.143(0.803) -0.282(0.402) Apr 0.314(0.564) -0.291(0.386) -0.682(0.025) -0.692(0.023) May 0.714(0.136) 0.036(0.924) -0.309(0.356) -0.301(0.371) -0.309(0.356) Aug 0.200(0.714) -0.196(0.558) -0.597(0.056) -0.589(0.061) -0.556(0.082) -0.600(0.350) Sep 0.257(0.658) -0.209(0.539) -0.591(0.061) -0.574(0.071) -0.700(0.021) -0.900(0.083) Oct -0.200(0.783) 0.067(0.838) -0.080(0.838) -0.049(0.892) -0.006(1.000) 0.400(0.750)

Table3.Spearman’srankcorrelation(and,inparenthesis,probabilitythatcorrelation isnon-zero)betweenmonthlymedianCPUEforLoligogahiinthesouthernareaand IllexargentinusmonthlymedianCPUEinthecurrentyear.SeeTable2fordetails. Illexargentinuswave1 Illexargentinuswave2 Feb Mar Apr Apr May Jun Feb 0.257(0.658) Mar 0.200(0.714) -0.055(0.881) Apr 0.086(0.919) -0.355(0.286) -0.473(0.146) -0.478(0.137) May 0.086(0.919) -0.309(0.356) -0.655(0.034) -0.620(0.048) -0.791(0.006) Aug 0.429(0.419) -0.209(0.539) -0.564(0.076) -0.524(0.100) -0.600(0.056) -0.300(0.683) Sep 0.200(0.714) -0.456(0.163) -0.629(0.044) -0.614(0.048) -0.497(0.121) -0.500(0.450) Oct -0.359(0.517) -0.280(0.427) -0.353(0.313) -0.317(0.368) -0.164(0.657) -0.316(0.750)

15 Table4.SummaryoftheparametersandfitoftheGLMformedianCPUEofL.gahi inthesecondseasonsouthof52°S.Inthecoefficientsx1representsthemedian CPUEintheprecedingyearandx2representsthemedianCPUEofthesecondwave ofI.argentinusinthecurrentyear.Fittingwascarriedoutusingtreatmentcontrasts, sovaluesarerelativetothecasewhereCPUEintheprecedingseasonwas<0.55 tonneshr-1andtheI.argentinusthresholdwasnotexceeded. Coefficients: Estimate Std.Error tvalue Pr(>|t|) (Intercept) -0.211 0.217 -0.972 0.3686 0.55<=x1<=1.2 0.516 0.273 1.890 0.1077 x1>1.2 -0.030 0.325 -0.093 0.9288 x2>9 -0.788 0.217 -3.633 0.0109

DevianceResiduals: Min 1Q Median 3Q Max -0.4235 -0.1636 -0.0007 0.1104 0.4379

Fittingstatistics: DispersionparameterforGammafamilytakentobe0.0940 Nulldeviance: 2.29047on9degreesoffreedom Residualdeviance: 0.55644on6degreesoffreedom AIC:4.5769

16 Figurecaptions

Figure1.Totalcatch(metrictonnes)byreportinggrid(seetext)inFalklandIsland fisheryzonesintheperiod1987-1999of(a)Illexargentinusand(b)Loligogahi.

Figure2.TotalcatchofIllexargentinusbylicensedjiggersreportinggridsquarein 1994(leftcolumn)and1999(rightcolumn).Thetoprowshowsthecatchassignedto thefirstwave,andthebottomrowthecatchassignedtothesecondwave.The heavierlinesdenotetheareausedtoseparatethecatchbywaveinApril.

Figure3.TotallicensedcatchofLoligogahibyreportinggridsquarein1994(left column)and1999(rightcolumn).Thetoprowofshowsthecatchduringthefirst seasonandthebottomrowthesecondseason.Theheavylineshowstheseparation betweenthenorthernandsouthernfisheryareas.

Figure4.Timeseriesof(a)totalcatchandmedianCPUE,and(b)totaleffortand seasondurationforvesselslicensedtotargetIllexargentinusintheFalklandIslands’ fisheryzonesfrom1989to1999.

Figure5.DailyCPUEforIllexargentinus(leftcolumn)andthesecondseasonof Loligogahisouthof52°S(rightcolumn)in1992and1999.DailyCPUEis calculatedforeachlicensedvesselwhichisfishing,andeachday’sCPUEvaluesare presentedasaboxplot(McGill,etal.1978)toillustrateboththevariabilityand centraltendencyofthedailydata.

Figure6.Timeseriesof(a)totalcatch,(b)medianCPUE,and(c)totaleffortand seasondurationforvesselslicensedtotargetLoligogahiintheFalklandIsland’s fisheryzonesfrom1989to1999.Separatetimeseriesarepresentedforthetwo seasonsinthenorthernandsouthernareas.

Figure7.DeviationsinL.gahiCPUEfromthelongtermmeangroupvalueoverthe period1989-1999expressedasaproportionofthelongtermmean(a)firstseason northof52°;(b)firstseasonsouthof52°S;(c)secondseasonnorthof52°S;(d) secondseasonsouthof52°S.Ineachcasethedeviationfromthelongtermmean groupCPUEisalsoshownforI.argentinuswavesoneandtwo.

17 Figure8.RelationshipbetweenmedianCPUEforthetwowavesofI.argentinusand medianCPUEforeachseasonofL.gahiinthenorthernandsouthernfisheryareas.

Figure9.RelationshipbetweenmedianCPUEinthecurrentyearandthatinthe previousyearforL.gahiinthesecondseasonsouthof52°S.Circlesmarkthose pointswherethemedianCPUEofsecondwave1.argentinusinthecurrentyearwas lessthan9kgline-hr-1,starsmarkthosepointswherethisthresholdwasexceeded. ThedashedverticallinesillustratethedivisionofmedianCPUEinthepreceding seasonintothethreefactorlevelsusedintheGLM(seetext).

Figure10.Circlesandsolidlines:realisedtimeseriesformedianCPUEofsecond seasonL.gahiinthesouthernareacomparedwith(crossesanddashedlines)outputof theGLMwiththreefactorlevelsforprecedingyearL.gahiCPUEandafactor indicatingwhetherthethresholdabundanceofwave2I.argentinuswasexceededin thecurrentyear.

18 (a) (b)

48ÊS 48ÊS

MT 49ÊS 49ÊS 250000.00

5000.00 50ÊS 50ÊS 500.00 C a 51ÊS 51ÊS 100.00 t c 50.00 52ÊS 52ÊS h 5.00

53ÊS 53ÊS 0.01

54ÊS 54ÊS

64ÊW 62ÊW 60ÊW 58ÊW 56ÊW 64ÊW 62ÊW 60ÊW 58ÊW 56ÊW

Arkhipkin&Middleton,Figure1 (a) (b)

48ÊS 48ÊS

MT 49ÊS 49ÊS 50000.00

5000.00 50ÊS 50ÊS 500.00 C a 51ÊS 51ÊS 100.00 t c 50.00 52ÊS 52ÊS h 5.00

53ÊS 53ÊS 0.01

54ÊS 54ÊS

64ÊW 62ÊW 60ÊW 58ÊW 56ÊW 64ÊW 62ÊW 60ÊW 58ÊW 56ÊW

(c) (d)

48ÊS 48ÊS

MT 49ÊS 49ÊS 50000.00

5000.00 50ÊS 50ÊS 500.00 C a 51ÊS 51ÊS 100.00 t c 50.00 52ÊS 52ÊS h 5.00

53ÊS 53ÊS 0.01

54ÊS 54ÊS

64ÊW 62ÊW 60ÊW 58ÊW 56ÊW 64ÊW 62ÊW 60ÊW 58ÊW 56ÊW

Arkhipkin&Middleton,Figure2 (a) (b)

48ÊS 48ÊS

MT 49ÊS 49ÊS 50000.00

5000.00 50ÊS 50ÊS 500.00 C a 51ÊS 51ÊS 100.00 t c 50.00 52ÊS 52ÊS h 5.00

53ÊS 53ÊS 0.01

54ÊS 54ÊS

64ÊW 62ÊW 60ÊW 58ÊW 56ÊW 64ÊW 62ÊW 60ÊW 58ÊW 56ÊW

(c) (d)

48ÊS 48ÊS

MT 49ÊS 49ÊS 50000.00

5000.00 50ÊS 50ÊS 500.00 C a 51ÊS 51ÊS 100.00 t c 50.00 52ÊS 52ÊS h 5.00

53ÊS 53ÊS 0.01

54ÊS 54ÊS

64ÊW 62ÊW 60ÊW 58ÊW 56ÊW 64ÊW 62ÊW 60ÊW 58ÊW 56ÊW

Arkhipkin&Middleton,Figure3 Wave 1 total jigger catch

100 (a) Wave 2 total jigger catch Wave 1 median jigger CPUE Wave 2 median jigger CPUE 150 80 60 100 40 Catch (MT/1000) CPUE (KG/line/hr) 50 20 0 0

1990 1992 1994 1996 1998

Wave 1 total jigging effort

200 (b) 8000 Wave 2 total jigging effort Season duration 180 6000 160 140 4000 Jig line hours/1000 Season length (days) 120 2000 100 0 80 1990 1992 1994 1996 1998

Arkhipkin&Middleton,Figure4 20/10/99 20/10/92 30/09/99 30/09/92 10/09/99 10/09/92

Loligo gahi, second season

21/08/99 21/08/92

10 8 6 4 2 0 10 8 6 4 2 0

CPUE (MT/hr) CPUE (MT/hr) CPUE 27/05/92 27/05/99 17/04/92 17/04/99 Illex argentinus

08/03/92 08/03/99

200 150 100 50 0 200 150 100 50 0

CPUE (KG/line/hr) CPUE (KG/line/hr) CPUE

Arkhipkin&Middleton,Figure5 120 (a) Northern area, season 1 Southern area, season 1 Northern area, season 2 100 Southern area, season 2 80 60 40 Catch (MT/1000) 20 0 1990 1992 1994 1996 1998

(b) Northern area, season 1 Southern area, season 1 5 Northern area, season 2 Southern area, season 2 4 3 CPUE (MT/hr) 2 1

1990 1992 1994 1996 1998

50 (c) Northern area, season 1 Southern area, season 2 Southern area, season 1 First season duration Northern area, season 2 Second season duration 150 40 30 100 20 50 Fishing time (h/1000) Season length (days) 10 0 0 1990 1992 1994 1996 1998

Arkhipkin&Middleton,Figure6 (b) (d) 1998 1998 1996 1996 1994 1994 1992 1992 Illex wave 1 Illex wave 2 Loligo southern area, season 1 Illex wave 1 Illex wave 2 Loligo southern area, season 2

1990 1990

2.5 2.0 1.5 1.0 0.5 0.0 −1.0 2.5 2.0 1.5 1.0 0.5 0.0 −1.0

Proportional deviation from mean from deviation Proportional mean from deviation Proportional (c) (a) 1998 1998 1996 1996 1994 1994 1992 1992 Illex wave 1 Illex wave 2 Loligo northern area, season 1 Illex wave 1 Illex wave 2 Loligo northern area, season 2

1990 1990

2.5 2.0 1.5 1.0 0.5 0.0 −1.0 2.5 2.0 1.5 1.0 0.5 0.0 −1.0

Proportional deviation from mean from deviation Proportional mean from deviation Proportional

Arkhipkin&Middleton,Figure7 Spearman’s rank correlation rho −0.236 5 Spearman’s rank correlation rho −0.145 3.0 p = 0.485 p = 0.673 4 3 2.0 2 1.0 1 Loligo season 1, northern area 10 15 20 25 30 35 Loligo season 1, southern area 10 15 20 25 30 35 Illex wave 1 median jigger CPUE Illex wave 1 median jigger CPUE

Spearman’s rank correlation rho −0.564 5 Spearman’s rank correlation rho −0.373 3.0 p = 0.076 p = 0.261 4 3 2.0 2 1.0 1 Loligo season 1, northern area 5 10 15 Loligo season 1, southern area 5 10 15 Illex wave 2 median jigger CPUE Illex wave 2 median jigger CPUE

Spearman’s rank correlation rho −0.232 2.0 Spearman’s rank correlation rho −0.455

1.2 p = 0.485 p = 0.163 1.5 1.0 0.8 0.5 0.4 Loligo season 2, northern area 10 15 20 25 30 35 Loligo season 2, southern area 10 15 20 25 30 35 Illex wave 1 median jigger CPUE Illex wave 1 median jigger CPUE

Spearman’s rank correlation rho −0.569 2.0 Spearman’s rank correlation rho −0.718

1.2 p = 0.071 p = 0.017 1.5 1.0 0.8 0.5 0.4 Loligo season 2, northern area 5 10 15 Loligo season 2, southern area 5 10 15 Illex wave 2 median jigger CPUE Illex wave 2 median jigger CPUE

Arkhipkin&Middleton,Figure8 2.0 Illex wave 2 median CPUE < 9 KG/line/hr Illex wave 2 median CPUE > 9 KG/line/hr 1.5 1.0 0.5 Median CPUE in current year (MT/hr) 0.5 1.0 1.5 2.0 Median CPUE in preceding year (MT/hr)

Arkhipkin&Middleton,Figure9 2.0 Observed median CPUE GLM model CPUE 1.5 1.0 Median CPUE (MT/hr) 0.5

1990 1992 1994 1996 1998

Arkhipkin&Middleton,Figure10