Optimizing Internal Combustion Engine Efficiency in Hybrid Electric Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

Optimizing Internal Combustion Engine Efficiency in Hybrid Electric Vehicles Optimizing Internal Combustion Engine Efficiency in Hybrid Electric Vehicles Dylan Humenik Ben Plotnick 27 April 2016 TABLE OF CONTENTS Section Points Abstract /10 Motivation /25 Technical /25 background Future /25 development References /10 Writing/figures /5 TOTAL /100 Abstract For our final project in ME 431, we would like to investigate the topic of hybrid electric vehicles. This topic has been an active topic in the automotive community for the last couple decades, and we’re confident that it will continue to take up a significant market share of the automotive industry. Traditionally, hybrid electric vehicles use both an internal combustion engine, and an electric motor. For this project we will assume a gasoline SI engine. One class of hybrid electric vehicles utilizes the internal combustion engine as part of the powertrain to drive the wheels, while another class of hybrid electric vehicles uses the internal combustion engine solely to charge the batteries for the electric drivetrain. We’d like to investigate the ways that overall efficiency is improved with the addition of an electric motor to the powertrain. Ignoring other efficiency improving technologies like regenerative braking, our focus will solely be on the improvements and benefits that an electric motor can provide to the powertrain – all else being equal. We anticipate our inquiry to include discussions and analyses of the curves relating to efficiency (i.e. bmep, 휂푡ℎ, etc.) and how they translate into mpg. Identifying key regions of the power curve that are bad for fuel economy, and investigating how switching out internal combustion power for electric power in these regions can improve efficiency and fuel economy, is what we assume to be the heart of our project (e.g. can using battery power, that was previously generated by the internal combustion engine running at an optimal efficiency, significantly improve efficiency by eliminating the need for using the internal combustion engine at an inefficient region of its power band?). One conclusion that we may determine is which class of hybrid electric vehicle is more efficient – those that use the engine as part of the powertrain or those that use it solely as a battery charger.1–3 Motivation The hybrid sector of the automotive industry is a large and growing sector of the automotive industry, particularly in passenger vehicles. The expansion of the hybrid market is threefold: manufacturers are driven to be more efficient than their competitors, consumers are demanding more fuel efficient and environmentally friendly vehicles, and governments are incentivising and regulating fuel efficiency and emissions.4 The causes of this market trend are also numerous, and entire classes can be taught on the topic. However, the market trend can be summed up as being generally caused by a few important factors: geopolitical instability leading to volatile up- and-down oil prices leads consumers to prefer less fuel-guzzling cars5,6, fossil fuel emissions and their relation to climate change are still a factor regardless of oil price7, and increasing battery and electric drivetrain technology have made hybrids more attainable.8 It is unlikely that the industry will see a complete and rapid shift towards electric vehicles - instead, a slower market growth is expected - hybrid electrics will be an enduring fixture in the automotive industry as the market sits between fossil fuel-powered vehicles and electric vehicles. The goal of hybrid electric vehicle design is to use the architecture, the combination of electric and gasoline powertrain elements, to reduce fuel consumption below that of the gasoline- powered equivalent. There are several hybrid electric vehicle architectures that have been developed. Parallel hybrids allow both the internal combustion engine and the electric motor deliver power to the wheels. Series hybrids use the internal combustion engine to power the batteries or directly power the electric motor. Series-parallel hybrids, also known as power-split hybrids, are able to perform both functions of series and parallel hybrids.9 Trends that emerge with these architectures include the fact that series hybrids tend to do better at lower speeds and city driving, parallel hybrids tend to do better at higher speeds and highway driving, and series- parallel hybrids tend to perform the best because they combine good performance at both lower and higher speeds. However, series-parallel hybrids tend to be more expensive.9 In addition to fuel consumption, other metrics that are affected by hybrid electric vehicle architectures include emissions, torque, and efficiency. Following instructor feedback, we decided to specifically focus on fuel efficiency. We decided to narrow down to this single metric because many of the other metrics are related to fuel efficiency, including emissions. Fuel efficiency metric will most extensively capture the goals and demands of manufacturers, consumers, and governments. For this analysis, we will be focusing on fuel efficiency from an internal combustion engine standpoint. In reality, there are other methods that can increase the overall fuel efficiency of the entire automobile. Things like regenerative braking, idling shut-down (where the internal combustion engine shuts off during idle), and plug-in technology can add further increases in fuel efficiency. However, for the following analysis, the focus will be with the role of the internal combustion engine in improving fuel efficiency. Technical Background Internal combustion engine efficiency varies with engine speed due to a number of factors. At low speeds, efficiency is reduced by throttling and the turbulence associated with it. The air restriction causes turbulence which reduces engine efficiency and reduces fuel efficiency. At high speeds, efficiency is reduced by pumping losses when air is reaching its maximum velocity. In addition, mechanical friction at high speeds contributes to the drop-off in efficiency. Engines range in peak efficiency, but generally the peak efficiency is attained around 75% of rated engine power or redline speed.10 One of the advantages of series hybrids is that the internal combustion engine can operate at its peak fuel efficiency in terms of engine speed and load. This means that the internal combustion engine can be optimized to power the vehicle at its most efficient spot in the power band. Particularly in series hybrid electric vehicles, the internal combustion engine can be optimized to run at its peak efficiency independent of the load, because the load falls entirely on the electric motor. The internal combustion engine and battery system can be optimized to achieve optimal performance and efficiency while transferring power to the battery.9 Figure 1 illustrates this optimal performance range of internal combustion engines. The brake mean effective pressure (bmep) is related to efficiency by its capacity to do work irrespective of volume.10 Also shown is the brake specific fuel consumption, which directly corresponds to fuel efficiency. It is shown in this plot that there is an optimal range for internal combustion engines in terms of efficiency, and that normal driving will not necessarily operate the engine there for most of the time. The advantage with hybrid vehicles is that the internal combustion can be allowed to spend most of its time (charging the battery or contributing to the powertrain) in its optimal efficiency range. Figure 1: Performance map of bmep and bsfc versus mean piston speed for an automotive spark ignition engine.10 One final thing that would illustrate the gains in fuel efficiency that arise from combining an internal combustion engine with an electric drive system, as in hybrid electric vehicles, would be to list the fuel efficiencies of popular hybrids on the market. However, these fuel efficiency metrics also include improvements due to other systems such as regenerative braking, idling shut-down, and plug-in technology (where the true fuel efficiency gets very complicated when considering the fuel burned at the power generating station). Only mentioning that the fuel efficiencies for hybrid electric vehicles range from just a few miles per gallon above conventional vehicles to well above 50 miles per gallon. Furthermore, the range of hybrid electric architectures, energy saving/regenerative add-ons, and variety in design make it hard to pinpoint the percentage of fuel efficiency boost directly resulting from optimizing internal combustion engine performance as discussed earlier, and the percentage of fuel efficiency boost resulting from these add-ons. However, it is estimated that a significant contribution to the boost in fuel efficiency comes from this efficiency optimization of the internal combustion engine, as evidenced in the fact that some hybrids perform better during highway driving, where regenerative braking and idle shut-off are minimized.9 Overall, the fact that hybrid electric vehicles are able to run the internal combustion engine in its optimal efficiency range, while conventional engines are subjected to the entire range of engine speeds, represents a very powerful technique for reducing the total amount of fuel consumed in driving. Figure 2: Future trends of relative fuel consumption in various automotive vehicle types.11 Future Development According to Figure 2, by the year 2030, the relative fuel consumption of hybrid-electric gasoline engines will be 17% of the fuel consumption of conventional gasoline engines from the year 2009. These trends will be dictated by advancements in several areas of Hybrid Electric Vehicle (HEV) design, including weight reduction, battery storage capabilities, and fuel improvements, among others. Figure 3: Projected market share of automotive vehicular types9 According to Figure 3, the market share of mild and full hybrid vehicles will significantly increase by the year 2022. Mild hybrids comprise hybrid vehicles with kinetic energy recovery (regenerative braking) and Full hybrids comprise hybrid vehicles that incorporate engine assist to the battery. Conventional ICE’s will likely still retain the majority of the market share, but HEV’s will likely become far more competitive in the market.
Recommended publications
  • The Design and Validation of Engine Intake Manifold Using Physical
    International Journal of Automobile Engineering Research and Development (IJAuERD) ISSN (P): 2277–4785; ISSN (E): 2278–9413 Vol. 9, Issue 2, Dec 2019, 1–10 © TJPRC Pvt. Ltd. THE DESIGN AND VALIDATION OF ENGINE INTAKE MANIFOLD USING PHYSICAL EXPERIMENT AND CFD GURU DEEP SINGH, KESHAV KAUSHIK & PRADEEP KUMAR JAIN Department of Mechanical Engineering, Delhi Technological University, Main Bawana Road, New Delhi, India, ABSTRACT Race-car engineers aim to design an intake manifold which can maintain both low-end and top-end power without compromising the responsiveness of the engine throughout the power band. A major obstacle in achieving this goal is the rule requirement by FSAE for the mandatory presence of air intake restrictor which limits top-end power. In this paper, the selection criteria for design parameters such as runner length, plenum volume and intake geometry have been discussed. The effect of runner length and plenum volume on throttle response and manifold pressure has been studied through a physical exp. on a prototype variable geometry intake manifold. CFD simulations have been performed on ANSYS CFX to optimize the geometry for venturi and plenum. The geometry for which there was minimum pressure loss and maximum mass flow rate was chosen in the final design. The adopted approach was Original Article Article Original validated by conducting the same exp. on the designed intake manifold. KEYWORDS: Air Intake Manifold, CFD, FSAE, Engine, Converging- Diverging Nozzle & Variable Length Intake Manifold Received: Jun 13, 2019; Accepted: Jul 04, 2019; Published: Jul 22, 2019; Paper Id.: IJAuERDDEC20191 1. INTRODUCTION FSAE is the largest engineering design competition in the world which gives students an opportunity to design and manufacture a race pertaining to a series of rules whose purpose is both to ensure on-site event operations and promote clever problem solving.
    [Show full text]
  • Installation Instructions
    Part number SP1898 2003-06 Mitsubishi Evo VIII, MR,IX 2.0L 4 cyl. A. 2 3/4” Throttle body piping step down to 2 1/2” 1- Dyno-proven aluminum cast intake B. 2 1/2” Secondary piping to intercooler outlet 1- Three piece intercooler pipes C. 2” Turbo outlet step up to 2 1/2” “A” (T/B), “B” (intercooler) “C” (turbo) Congratulations! You have just purchased the best engineered, 1- 4 1/2” Injen filter (#1018) dyno-proven air intake system with intercooler piping available. 1- 1890 composite filter flange (#14031) Please check the contents of this box immediately. 1- 90 deg. silicone T/B elbow (#3139) Report any defective or missing parts to the Authorized Injen 1- 2 1/2” x 3” x 1 7/8” long (#3110) Technology dealer you purchased this product from. Turbo inlet step hose Before installing any parts of this system, please read the instructions 1- 2 1/2” straight hose A to B coupler(#3048) thoroughly. If you have any questions regarding installation please 2 1/2” long contact the dealer you purchased this product from. 1- 3 1/4” ID intake to sensor housing hose (#3045) Installation DOES require some mechanical skills. A qualified 1- 1 3/4” ID x 2 1/2” long hose (#3071) mechanic is always recommended. Turbo side hose *Do not attempt to install the intake system while the engine is hot. 2- 1 1/4” x 2” long BOV hose (#3100) The installation may require removal of radiator fluid line that may be hot.
    [Show full text]
  • Matching of Internal Combustion Engine
    CRANFIELD UNIVERSITY BAPTISTE BONNET MATCHING OF INTERNAL COMBUSTION ENGINE CHARACTERISTICS FOR CONTINUOUSLY VARIABLE TRANSMISSIONS SCHOOL OF ENGINEERING PHD THESIS CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING, AUTOMOTIVE DEPARTMENT PHD THESIS BAPTISTE BONNET MATCHING OF INTERNAL COMBUSTION ENGINE CHARACTERISTICS FOR CONTINUOUSLY VARIABLE TRANSMISSIONS SUPERVISOR: PROF. NICHOLAS VAUGHAN 2007 This thesis is submitted in partial fulfilment of the requirements for the Degree of Doctor in Philosophy. © Cranfield University, 2007. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder . PhD Thesis Abstract ABSTRACT This work proposes to match the engine characteristics to the requirements of the Continuously Variable Transmission [CVT] powertrain. The normal process is to pair the transmission to the engine and modify its calibration without considering the full potential to modify the engine. On the one hand continuously variable transmissions offer the possibility to operate the engine closer to its best efficiency. They benefit from the high versatility of the effective speed ratio between the wheel and the engine to match a driver requested power. On the other hand, this concept demands slightly different qualities from the gasoline or diesel engine. For instance, a torque margin is necessary in most cases to allow for engine speed controllability and transients often involve speed and torque together. The necessity for an appropriate engine matching approach to the CVT powertrain is justified in this thesis and supported by a survey of the current engineering trends with particular emphasis on CVT prospects. The trends towards a more integrated powertrain control system are highlighted, as well as the requirements on the engine behaviour itself.
    [Show full text]
  • 403D-11 Industrial Open Power Unit
    403D-11 Industrial Open Power Unit 13.7-21 kW (18.4-28.2 hp) @ 2800-3000 rpm EU Stage IIIA/U.S. EPA Tier 4 Interim equivalent The Perkins 400 Series is an extensive family of engines in the 0.5-2.2 litre range. The 3 cylinder 403-11 model is one of Perkins smallest engines, combining performance, low operating costs and an ultra-compact package. From a packaging point of view, the 403-11 is the ideal engine for small industrial applications. Its simple, robust mechanical fuel system makes it easy to install and maintain. A powerful but quiet 1.1 litre engine complete with radiator cooled unit. Designed to meet EU Stage IIIA/U.S. EPA Tier 4 Interim equivalent emission standards. Specifications Power Rating Minimum power 15.1 kW 20.2 hp Maximum power 18.1 kW 24.3 hp Rated speed 2800-3000 rpm Maximum torque 64.6 Nm @ 2100 rpm 47.6 lb-ft @ 2100 rpm Emission Standards Emissions U.S. EPA Tier 4 Interim equivalent. Less than 19 kW, EU certification not required. General Number of cylinders 3 inline Bore 77 mm 3 in Stroke 81 mm 3.2 in Displacement 1.1 litres 69 cubic in Aspiration Naturally aspirated Cycle 4 stroke Compression ratio 22.7:1 Combustion system Indirect injection Rotation (from flywheel end) Anti-clockwise www.perkins.com Photographs are for illustrative purposes only and may not reflect final specification. All information is substantially correct at time of printing and may be altered subsequently. Final weights and dimensions will depend on completed specification.
    [Show full text]
  • Variable Length Intake Manifold Operation & Maintenance
    Variable Length Intake Manifold Operation & Maintenance For most of automotive history, the intake manifold was just an inactive lump of iron or aluminum. Not anymore. 28 Mercedes-Benz StarTuned The history of the air intake manifold had These offered an advantage beyond light weight been largely uneventful. For many decades, the in that they have better thermal properties. design remained pretty much the same with They can run much cooler than aluminum, sparse innovation. It was simply plumbing improving air charge density, which can be that made the air/fuel charge available to blended with additional fuel to produce more the combustion chambers willy-nilly with power. In addition, plastics can be molded into little thought devoted to how far each intake more complex shapes than the sand casting of valve was from the typical centrally-located aluminum allows. This gives greater flexibility carburetor. The simplest way to understand this during the engineering process. function is to think of the internal combustion engine as what it is: an air pump. Magnesium alloy is another innovation that is becoming popular in certain applications. As an engine piston moves down on the Magnesium parts have been around for maybe intake stroke, a vacuum occurs the strength a century, but recent advances in high-pressure of which depends on atmospheric pressure casting have made it a favorable material. The at that time and location. In a carbureted or advantages of magnesium are its light weight throttle-body injected engine, this atmospheric along with strength and rigidity. Good thermal pressure forces the air/fuel mixture through and acoustic properties are added benefits.
    [Show full text]
  • Y ...Signature Redacted
    Modeling Brake Specific Fuel Consumption to Support Exploration of Doubly Fed Electric Machines in Naval Engineering Applications by Michael R. Rowles, Jr. B.E., Electrical Engineering, Naval Architecture, State University of New York, Maritime College, 2006 Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degrees of Naval Engineer and Master of Science in Naval Architecture and Marine Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2016. 2016 Michael R. Rowles, Jr. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter c: A uth or ........................................... Signature redacted Department of Mechanical Engineering A may 22,k 2016 C ertified by ............................ Signature redacted .... Weston L. Gray, CDR, USN Associate Professor of the Practice, Naval Construction and Engineering redacted ..Thesis Reader Certified by .......... Signature Ll James L. Kirtley Professor of Electrical Engineering redacted Isis Supervisor Accepted by ............ SSignatu gnatu re ...................... Rohan Abeyaratne MASSACHUSETTS INSTITUTE Chairman, Committee on Graduate Students OF TECHNOLOGY Quentin Berg Professor of Mechanics Department of Mechanical Engineering JUN 02 2016 LIBRARIES ARCHIVES Modeling Brake Specific Fuel Consumption to Support Exploration of Doubly Fed Electric Machines in Naval Engineering Applications by Michael R. Rowles, Jr. Submitted to the Department of Mechanical Engineering on May 12, 2016 in Partial Fulfillment of the Requirements for Degrees of Naval Engineer and Master of Science in Mechanical Engineering Abstract The dynamic operational nature of naval power and propulsion requires Ship Design and Program Managers to design and select prime movers using a much more complex speed profile rather than typical of commercial vessels.
    [Show full text]
  • Jennings: Two-Stroke Tuner's Handbook
    Two-Stroke TUNER’S HANDBOOK By Gordon Jennings Illustrations by the author Copyright © 1973 by Gordon Jennings Compiled for reprint © 2007 by Ken i PREFACE Many years have passed since Gordon Jennings first published this manual. Its 2007 and although there have been huge technological changes the basics are still the basics. There is a huge interest in vintage snowmobiles and their “simple” two stroke power plants of yesteryear. There is a wealth of knowledge contained in this manual. Let’s journey back to 1973 and read the book that was the two stroke bible of that era. Decades have passed since I hung around with John and Jim. John and I worked for the same corporation and I found a 500 triple Kawasaki for him at a reasonable price. He converted it into a drag bike, modified the engine completely and added mikuni carbs and tuned pipes. John borrowed Jim’s copy of the ‘Two Stoke Tuner’s Handbook” and used it and tips from “Fast by Gast” to create one fast bike. John kept his 500 until he retired and moved to the coast in 2005. The whereabouts of Wild Jim, his 750 Kawasaki drag bike and the only copy of ‘Two Stoke Tuner’s Handbook” that I have ever seen is a complete mystery. I recently acquired a 1980 Polaris TXL and am digging into the inner workings of the engine. I wanted a copy of this manual but wasn’t willing to wait for a copy to show up on EBay. Happily, a search of the internet finally hit on a Word version of the manual.
    [Show full text]
  • Cx50sr (King) Is a Competition Model Only and Is Not Manufactured For, Nor Should It Be Used on Public Streets, Roads Or Highways
    For parts orders contact your local dealer To locate your closest Cobra dealer log on to www.cobramoto.com or call (517) 437-9100 If you need technical assistance contact your local dealer or call the Cobra Technical Support Hotline at (517) 437-9100 Cobra Moto, LLC 240 Uran Street Hillsdale, Michigan 49242 DISCLAIMER OF WARRANTY This motorcycle is sold “as is” with all faults, obvious or not. There are no warranties expressed or implied, including any warranty of merchantability and warranty of fitness for any particular purpose. “WARNING” THE COBRA CX50SR (KING) IS A COMPETITION MODEL ONLY AND IS NOT MANUFACTURED FOR, NOR SHOULD IT BE USED ON PUBLIC STREETS, ROADS OR HIGHWAYS. THE USE OF THIS BIKE SHOULD BE LIMITED TO PARTICIPATION IN SANCTIONED COMPETITION EVENTS UPON A CLOSED COURSE BY A SUFFICIENTLY SKILLED RIDER AND SHOULD NOT BE USED FOR GENERAL OFF-ROAD RECREATIONAL RIDING. IMPROPER USE OF THIS MOTORCYCLE CAN CAUSE INJURY OR DEATH. THIS BIKE IS INTENDED FOR EXPERIENCED RACERS ONLY AND NOT FOR BEGINNERS. IT IS YOUR RESPONSIBILITY AS THE OWNER OF THIS COBRA MOTORCYCLE OR AS THE PARENT, OR LEGAL GUARDIAN OF THE OPERATOR, TO KEEP THIS COBRA MOTORCYCLE IN PROPER OPERATING CONDITION. THIS BIKE WAS DESIGNED FOR RIDERS THAT WEIGH LESS THAN 80 LBS WITH FULL RIDING GEAR AND SHOULD NOT BE OPERATED BY RIDERS THAT WEIGH MORE THAN THAT. BE SURE THAT THE RIDER ALWAYS WEARS ADEQUATE SAFETY GEAR EVERYTIME HE OR SHE RIDES THEIR COBRA MOTORCYCLE. IMPORTANT SAFETY NOTICE Failure to follow WARNING instructions could result in severe injury or death to the machine operator, a bystander, or a person inspecting or repairing the machine.
    [Show full text]
  • Automotive Engineer Technical Update MARCH 2014
    Automotive Engineer Technical Update MARCH 2014 Welcome to the March 2014 issue of the Automotive Engineer Technical update for IMI Certificated Automotive Engineers (CAE) and Advanced Automotive Engineers (AAE). In this issue, we discuss the significance of the powertrain revolution and the future of vehicle propulsion. Powertrain evolution – or revolution? It is difficult to assess the significance of any era whilst living through it. What seems to be utterly new or ground breaking could, with the passage of time, turn out to be far less significant. However the automotive world is emphatically in the midst of the unthinkable. After a century of steady progress, everything from where vehicles are built to how they are built and even operated, is up for grabs. We have, in the past decade, seen more development than in the previous century, and that pace is picking up. Are all ideas good? In the context that all ideas have aspects which are positive, yes. But trying to tell what the technology trends are going to be in 20 years’ time is far tougher than the same exercise viewed from 1980. Take powertrain. Firstly, what is a ‘powertrain’? It is the system and all the supporting systems required to take stored energy and translate that to power, in order to drive the road wheels. For more than a century that has meant an internal combustion engine and a mechanical transmission via a gearing system. Now that is openly challenged. Not just a choice of energy source – petrol or diesel – but even the way power reaches the road wheels.
    [Show full text]
  • R132r1am1e.Pdf
    E/ECE/324/Rev.2/Add.131/Rev.1/Amend.1−E/ECE/TRANS/505/Rev.2/Add.131/Rev.1/Amend.1 24 June 2019 Agreement Concerning the Adoption of Harmonized Technical United Nations Regulations for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of these United Nations Regulations* (Revision 3, including the amendments which entered into force on 14 September 2017) _________ Addendum 131 – UN Regulation No. 132 Revision 1 - Amendment 1 Supplement 1 to the 01 series of amendments – Date of entry into force: 28 May 2019 Uniform provisions concerning the approval of Retrofit Emission Control Devices (REC) for heavy duty vehicles, agricultural and forestry tractors and non-road mobile machinery equipped with compression ignition engines This document is meant purely as documentation tool. The authentic and legal binding texts is: ECE/TRANS/WP.29/2018/151. _________ UNITED NATIONS * Former titles of the Agreement: Agreement concerning the Adoption of Uniform Conditions of Approval and Reciprocal Recognition of Approval for Motor Vehicle Equipment and Parts, done at Geneva on 20 March 1958 (original version); Agreement concerning the Adoption of Uniform Technical Prescriptions for Wheeled Vehicles, Equipment and Parts which can be Fitted and/or be Used on Wheeled Vehicles and the Conditions for Reciprocal Recognition of Approvals Granted on the Basis of these Prescriptions, done at Geneva on 5 October 1995 (Revision 2). GE.19-10465(E) E/ECE/324/Rev.2/Add.131/Rev.1/Amend.1 E/ECE/TRANS/505/Rev.2/Add.131/Rev.1/Amend.1 Paragraph 3.13., amend to read: "3.13.
    [Show full text]
  • Audi Competes with Diesel Sports Car at Le Mans
    Paris/Ingolstadt, 13 December 2005 13:00 Motorsport Audi competes with diesel sports car at Le Mans • Audi R10 world premiere in Paris • V12 TDI engine produces over 650 hp • First test successfully completed AUDI AG is once again one step ahead of the opposition: The inventor of ‘TDI’ AUDI AG Kommunikation will become the world’s first automobile manufacturer to fight for overall victory 85045 Ingolstadt www.audi.com with a diesel engine at the famous 24 Hours of Le Mans. The all-new Audi R10, which was unveiled on Tuesday in Paris, is powered by a totally new 5.5-litre, twelve-cylinder bi-turbo TDI engine, which is extremely quiet and economical. The Le Mans Prototype, with over 650 hp and more than 1,100 Newton metres torque, significantly exceeds the power produced by the majority of previous Audi racing cars – including that of its victorious R8 predecessor. Audi ventures into previously unexplored diesel-engine terrain with the V12 power plant manufactured completely from aluminium. As with the TFSI technology, which triumphed initially at Le Mans before being adopted for mass-production, Audi customers should benefit once again from the lessons learnt in motorsport. “With the A8 4.2 TDI quattro, Audi already builds one of the most powerful diesel cars in the world,” explained Prof Dr Martin Winterkorn, Chairman of the Board of Management of AUDI AG, at the R10 presentation in Paris. “The Le Mans project will help our technicians to extract even more from TDI technology. Nowadays, every second Audi is delivered with a TDI engine.
    [Show full text]
  • Engine Optimisation and Performance Characteristics for a Formula SAE Race Car
    University of Southern Queensland Faculty of Engineering and Surveying Engine Optimisation and Performance Characteristics for a Formula SAE Race Car A dissertation submitted by Melinda Rachel Plank in fulfilment of the requirements of Courses ENG4111 and 4112 Research Project towards the degree of Bachelor of Engineering (Mechanical) Submitted: October, 2005 i Abstract This dissertation documents an investigation into determining methods of achieving optimised engine performance. Designs for improved intake and exhaust systems are also presented, and have formed an important focus of the project overall. Methods for modifying a dynamometer and results of engine testing using this equipment comprise another important aspect of this dissertation. Optimisation of engine performance in this case was required for a specific application. Therefore, preliminary research involved identifying specific engine performance requirements in the application of Formula SAE, together with determining full specification of engine characteristics for a 1994 Yamaha YZF600 engine. The most crucial aspects of engine operation requiring improved performance were identified, to determine directions for pursuing modifications to existing components. As a result, custom intake and exhaust systems have been designed for use on the YZF600, according to the relevant fundamental engineering principles and empirical correlations. A mechanism for determining engine operating characteristics and quantifying and comparing engine performance also formed an integral component of this project. Research into potential dynamometer options was carried out to determine the most suitable option to be modified for use in Formula SAE engine testing. Modification of this dynamometer enabled determination of benchmark performance characteristics; however, attempts to test the 2004 inlet manifold indicated that the dynamometer itself was not suitable for determining the performance of an engine in this configuration.
    [Show full text]