Biogenesis and Secretion of Exosomes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Improvement of Stem Cell-Derived Exosome Release E Ciency By
Improvement of stem cell-derived exosome release eciency by surface modied nanoparticles Dong Jun Park Yonsei University Wonju College of Medicine Wan Su Yun Yonsei University - Wonju Campus Woo Cheol Kim Yonsei University - Wonju Campus Jeong-Eun Park Yonsei University Wonju College of Medicine Su Hoon Lee Yonsei University Wonju College of Medicine Sunmok Ha Yonsei University College of Health Sciences Jin Sil Choi Yonsei University Wonju College of Medicine Jaehong Key Yonsei University - Wonju Campus YoungJoon Seo ( [email protected] ) Yonsei University - Wonju Campus https://orcid.org/0000-0002-2839-4676 Research Keywords: Autophagy, Mesenchymal stem cell-derived exosome, Positively charged nanoparticle, PLGA- PEI NPs, Rab7 Posted Date: November 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-42143/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on December 7th, 2020. See the published version at https://doi.org/10.1186/s12951-020-00739-7. Page 1/28 Abstract Background: Mesenchymal stem cells (MSCs) are pluripotent stromal cells that release extracellular vesicles (EVs). EVs contain various growth factors and antioxidants that can positively affect the surrounding cells. Nanoscale MSC-derived EVs, such as exosomes, have been developed as bio-stable nano-type materials. However, some issues, such as low yield and diculty in quantication, limit their use. We hypothesized that enhancing exosome production using nanoparticles would stimulate the release of intracellular molecules. Results: The aim of this study was to elucidate the molecular mechanisms of exosome generation by comparing the internalization of surface-modied, positively charged nanoparticles and exosome generation from MSCs. -
Switch from Translation Initiation to Elongation Needs Not4 and Not5 Collaboration
bioRxiv preprint doi: https://doi.org/10.1101/850859; this version posted November 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Switch from translation initiation to elongation needs Not4 and Not5 collaboration George E Allen1°, Olesya O Panasenko1°, Zoltan Villanyi1,&, Marina Zagatti1, Benjamin Weiss1, 2 2 1* 5 Christine Polte , Zoya Ignatova , Martine A Collart 1Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Switzerland 2Biochemistry and Molecular Biology, University of Hamburg, Germany °Equally contributing first authors 10 *Correspondence to: [email protected] &Current Address: Dept of Biochemistry and Molecular Biology, University of Szeged Abstract: Not4 and Not5 are crucial components of the Ccr4-Not complex with pivotal functions in mRNA metabolism. Both associate with ribosomes but mechanistic insights on their 15 function remain elusive. Here we determine that Not5 and Not4 synchronously impact translation initiation and Not5 alone alters translation elongation. Deletion of Not5 causes elongation defects in a codon-dependent fashion, increasing and decreasing the ribosome dwelling occupancy at minor and major codons, respectively. This larger difference in codons’ translation velocities alters translation globally and enables kinetically unfavorable processes 20 such as nascent chain deubiquitination to take place. In turn, this leads to abortive translation and favors protein aggregation. These findings highlight the global impact of Not4 and Not5 in controlling the speed of mRNA translation and transition from initiation to elongation. Summary: Not4 and Not5 regulate translation synchronously but distinguishably, facilitating 25 smooth transition from initiation to elongation Results and discussion The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells (for review see (1)). -
CHML Promotes Liver Cancer Metastasis by Facilitating Rab14 Recycle
ARTICLE https://doi.org/10.1038/s41467-019-10364-0 OPEN CHML promotes liver cancer metastasis by facilitating Rab14 recycle Tian-Wei Chen1,2,3, Fen-Fen Yin1,2, Yan-Mei Yuan1,2, Dong-Xian Guan1, Erbin Zhang1,2, Feng-Kun Zhang1,2, Hao Jiang1,2, Ning Ma1,2, Jing-Jing Wang1, Qian-Zhi Ni1,2, Lin Qiu1, Jing Feng3, Xue-Li Zhang3, Ying Bao4, Kang Wang5, Shu-Qun Cheng5, Xiao-Fan Wang6, Xiang Wang7, Jing-Jing Li1,2 & Dong Xie1,2,8,9 Metastasis-associated recurrence is the major cause of poor prognosis in hepatocellular 1234567890():,; carcinoma (HCC), however, the underlying mechanisms remain largely elusive. In this study, we report that expression of choroideremia-like (CHML) is increased in HCC, associated with poor survival, early recurrence and more satellite nodules in HCC patients. CHML promotes migration, invasion and metastasis of HCC cells, in a Rab14-dependent manner. Mechanism study reveals that CHML facilitates constant recycling of Rab14 by escorting Rab14 to the membrane. Furthermore, we identify several metastasis regulators as cargoes carried by Rab14-positive vesicles, including Mucin13 and CD44, which may contribute to metastasis- promoting effects of CHML. Altogether, our data establish CHML as a potential promoter of HCC metastasis, and the CHML-Rab14 axis may be a promising therapeutic target for HCC. 1 CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Xuhui district 200031, China. 2 University of Chinese Academy of Sciences, Chinese Academy of Sciences, Xuhui district 200031, China. 3 Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, 6600 Nanfeng Road, Shanghai 201499, China. -
Proteomic Analysis of Exosome-Like Vesicles Derived from Breast Cancer Cells
ANTICANCER RESEARCH 32: 847-860 (2012) Proteomic Analysis of Exosome-like Vesicles Derived from Breast Cancer Cells GEMMA PALAZZOLO1, NADIA NINFA ALBANESE2,3, GIANLUCA DI CARA3, DANIEL GYGAX4, MARIA LETIZIA VITTORELLI3 and IDA PUCCI-MINAFRA3 1Institute for Biomedical Engineering, Laboratory of Biosensors and Bioelectronics, ETH Zurich, Switzerland; 2Department of Physics, University of Palermo, Palermo, Italy; 3Centro di Oncobiologia Sperimentale (C.OB.S.), Oncology Department La Maddalena, Palermo, Italy; 4Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland FHNW, Muttenz, Switzerland Abstract. Background/Aim: The phenomenon of membrane that vesicle production allows neoplastic cells to exert different vesicle-release by neoplastic cells is a growing field of interest effects, according to the possible acceptor targets. For instance, in cancer research, due to their potential role in carrying a vesicles could potentiate the malignant properties of adjacent large array of tumor antigens when secreted into the neoplastic cells or activate non-tumoral cells. Moreover, vesicles extracellular medium. In particular, experimental evidence show could convey signals to immune cells and surrounding stroma that at least some of the tumor markers detected in the blood cells. The present study may significantly contribute to the circulation of mammary carcinoma patients are carried by knowledge of the vesiculation phenomenon, which is a critical membrane-bound vesicles. Thus, biomarker research in breast device for trans cellular communication in cancer. cancer can gain great benefits from vesicle characterization. Materials and Methods: Conditioned medium was collected The phenomenon of membrane release in the extracellular from serum starved MDA-MB-231 sub-confluent cell cultures medium has long been known and was firstly described by and exosome-like vesicles (ELVs) were isolated by Paul H. -
Rabbit Anti-RABEP1 Antibody-SL19721R
SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RABEP1 antibody SL19721R Product Name: RABEP1 Chinese Name: RABEP1蛋白抗体 Neurocrescin; Rab GTPase binding effector protein 1; RAB5EP; Rabaptin 4; Rabaptin Alias: 5; Rabaptin 5alpha; RABPT5; RABPT5A; Renal carcinoma antigen NY REN 17; Renal carcinoma antigen NYREN17. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat, ELISA=1:500-1000IHC-P=1:400-800IHC-F=1:400-800ICC=1:100-500IF=1:100- 500(Paraffin sections need antigen repair) Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 99kDa Cellular localization: The cell membrane Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human RABEP1:501-600/862 Lsotype: IgGwww.sunlongbiotech.com Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. PubMed: PubMed RABEP1 is a Rab effector protein acting as linker between gamma-adaptin, RAB4A and RAB5A. It is involved in endocytic membrane fusion and membrane trafficking of Product Detail: recycling endosomes. Stimulates RABGEF1 mediated nucleotide exchange on RAB5A. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Expression Pattern of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 Genes in Normal and Cancer Cervical Tissues
INTERNATIONAL JOURNAL OF ONCOLOGY 46: 107-112, 2015 Expression pattern of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes in normal and cancer cervical tissues ANDREJ NIKOSHKOV1, KRISTINA BROLIDEN2, SANAZ ATTARHA1,3, VITALI SVIATOHA3, ANN-CATHRIN HELLSTRÖM4, MIRIAM MINTS1 and SONIA ANDERSSON1 1Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institute, Karolinska University Hospital Solna, 171 76 Stockholm; 2Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, 171 76 Stockholm; 3Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm; 4Department of Gynecological Oncology, Radiumhemmet, Karolinska University Hospital, 171 76 Stockholm, Sweden Received July 11, 2014; Accepted August 28, 2014 DOI: 10.3892/ijo.2014.2724 Abstract. Cervical cancer is the second most prevalent RAB1B transcript occurs in normal cervical tissue and in malignancy among women worldwide, and additional preinvasive cervical lesions; not in invasive cervical tumors. objective diagnostic markers for this disease are needed. Given the link between cancer development and alternative Introduction splicing, we aimed to analyze the splicing patterns of the PRDX2, RAB1A, RAB1B, RAB5A and RAB25 genes, which Alternative splicing is a process in which either different are associated with different cancers, in normal cervical combinations of exons or parts of exons are employed to tissue, preinvasive cervical lesions and invasive cervical generate new transcripts through the use of alternative-splicing tumors, to identify new objective diagnostic markers. Biopsies sites. More than 90% of human intron-containing genes of normal cervical tissue, preinvasive cervical lesions and undergo alternative splicing, which allows a single transcript invasive cervical tumors, were subjected to rapid amplification to encode a number of RNAs that produce various protein of cDNA 3' ends (3' RACE) RT‑PCR. -
Evidence for in Vivo Modulation of Chloroplast RNA Stability by 3-UTR Homopolymeric Tails in Chlamydomonas Reinhardtii
Evidence for in vivo modulation of chloroplast RNA stability by 3-UTR homopolymeric tails in Chlamydomonas reinhardtii Yutaka Komine*, Elise Kikis*, Gadi Schuster†, and David Stern*‡ *Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853; and †Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel Edited by Lawrence Bogorad, Harvard University, Cambridge, MA, and approved January 8, 2002 (received for review June 27, 2001) Polyadenylation of synthetic RNAs stimulates rapid degradation in synthesizes and degrades poly(A) tails (13). E. coli, by contrast, vitro by using either Chlamydomonas or spinach chloroplast extracts. encodes a poly(A) polymerase. These differences may reflect the Here, we used Chlamydomonas chloroplast transformation to test the evolution of the chloroplast to a compartment whose gene effects of mRNA homopolymer tails in vivo, with either the endog- regulation is controlled by the nucleus. enous atpB gene or a version of green fluorescent protein developed Unlike eukaryotic poly(A) tails, the roles of 3Ј-UTR tails in for chloroplast expression as reporters. Strains were created in which, prokaryotic gene expression are largely unexplored, although after transcription of atpB or gfp, RNase P cleavage occurred upstream they are widely distributed in microorganisms including cya- Glu of an ectopic tRNA moiety, thereby exposing A28,U25A3,[A؉U]26, nobacteria (14). Polyadenylated mRNAs have also been found in or A3 tails. Analysis of these strains showed that, as expected, both plant (15, 16) and animal mitochondria (17). The functions polyadenylated transcripts failed to accumulate, with RNA being of these tails have mostly been tested in vitro, which has undetectable either by filter hybridization or reverse transcriptase– highlighted RNA degradation but not interactions with other PCR. -
Rab5 and Rab4 Regulate Axon Elongation in Thexenopus Visual System
The Journal of Neuroscience, January 8, 2014 • 34(2):373–391 • 373 Cellular/Molecular Rab5 and Rab4 Regulate Axon Elongation in the Xenopus Visual System Julien Falk, Filip A. Konopacki, Krishna H. Zivraj, and Christine E. Holt Department of Physiology, Development, and Neuroscience, Anatomy Building, University of Cambridge, Cambridge CB2 3DY, United Kingdom The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation. -
Rab5 (RAB5A) (NM 004162) Human Tagged ORF Clone – RC203873L4
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC203873L4 Rab5 (RAB5A) (NM_004162) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Rab5 (RAB5A) (NM_004162) Human Tagged ORF Clone Tag: mGFP Symbol: RAB5A Synonyms: RAB5 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC203873). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_004162 ORF Size: 645 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Rab5 (RAB5A) (NM_004162) Human Tagged ORF Clone – RC203873L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_004162.3, NP_004153.2 RefSeq Size: 2548 bp RefSeq ORF: 648 bp Locus ID: 5868 UniProt ID: P20339, A0A024R2K1 Domains: ras, RAN, RAS, RHO, RAB Protein Families: Druggable Genome Protein Pathways: Amyotrophic lateral sclerosis (ALS), Endocytosis MW: 23.7 kDa Gene Summary: The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. -
Exosome-Mediated Recognition and Degradation of Mrnas Lacking A
R EPORTS wild-type PGK1 mRNA was synthesized with a poly(A) tail of approximately 70 residues and Exosome-Mediated Recognition was subsequently deadenylated slowly (Fig. 2A) (12). In contrast, nonstop-PGK1 transcripts dis- and Degradation of mRNAs appeared rapidly without any detectable dead- enylation intermediates (Fig. 2B). In addition, in Lacking a Termination Codon a ski7⌬ strain, the nonstop mRNA persisted as a fully polyadenylated species for 8 to 10 min Ambro van Hoof,1,2* Pamela A. Frischmeyer,1,3 Harry C. Dietz,1,3 before disappearing (Fig. 2C). These data indi- Roy Parker1,2* cate that exosome function is required for rapid degradation of both the poly(A) tail and the One role of messenger RNA (mRNA) degradation is to maintain the fidelity of body of the mRNA. Based on these observa- gene expression by degrading aberrant transcripts. Recent results show that tions, we suggest that nonstop mRNAs are rap- mRNAs without translation termination codons are unstable in eukaryotic cells. idly degraded in a 3Ј-to-5Ј direction by the We used yeast mutants to demonstrate that these “nonstop” mRNAs are exosome, beginning at the 3Ј end of the poly(A) degraded by the exosome in a 3Ј-to-5Ј direction. The degradation of nonstop tail (13). transcripts requires the exosome-associated protein Ski7p. Ski7p is closely Two observations suggest a mechanism by related to the translation elongation factor EF1A and the translation termi- which nonstop mRNAs are specifically recog- nation factor eRF3. This suggests that the recognition of nonstop mRNAs nized and targeted for destruction by the exo- involves the binding of Ski7p to an empty aminoacyl-(RNA-binding) site (A site) some.