Critical Review of the Evolution of Extracellular Vesicles’ Knowledge: from 1946 to Today

Total Page:16

File Type:pdf, Size:1020Kb

Critical Review of the Evolution of Extracellular Vesicles’ Knowledge: from 1946 to Today International Journal of Molecular Sciences Review Critical Review of the Evolution of Extracellular Vesicles’ Knowledge: From 1946 to Today Erica Bazzan 1,*,† , Mariaenrica Tinè 1,† , Alvise Casara 1, Davide Biondini 1, Umberto Semenzato 1 , Elisabetta Cocconcelli 1, Elisabetta Balestro 1, Marco Damin 1, Claudia Maria Radu 2,3 , Graziella Turato 1, Simonetta Baraldo 1 , Paolo Simioni 3 , Paolo Spagnolo 1 , Marina Saetta 1,‡ and Manuel G. Cosio 1,4,‡ 1 Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; [email protected] (M.T.); [email protected] (A.C.); [email protected] (D.B.); [email protected] (U.S.); [email protected] (E.C.); [email protected] (E.B.); [email protected] (M.D.); [email protected] (G.T.); [email protected] (S.B.); [email protected] (P.S.); [email protected] (M.S.); [email protected] (M.G.C.) 2 Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; [email protected] 3 Department of Medicine, University of Padova, 35128 Padova, Italy; [email protected] 4 Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada * Correspondence: [email protected]; Tel.: +39-0498213449 † These authors contributed equally to this work as first authors. ‡ These authors contributed equally to this work as senior authors. Abstract: Extracellular vesicles (EVs) are a family of particles/vesicles present in blood and body fluids, composed of phospholipid bilayers that carry a variety of molecules that can mediate cell Citation: Bazzan, E.; Tinè, M.; communication, modulating crucial cell processes such as homeostasis, induction/dampening of Casara, A.; Biondini, D.; Semenzato, inflammation, and promotion of repair. Their existence, initially suspected in 1946 and confirmed in U.; Cocconcelli, E.; Balestro, E.; 1967, spurred a sharp increase in the number of scientific publications. Paradoxically, the increasing Damin, M.; Radu, C.M.; Turato, G.; et al. Critical Review of the Evolution interest for EV content and function progressively reduced the relevance for a precise nomenclature of Extracellular Vesicles’ Knowledge: in classifying EVs, therefore leading to a confusing scientific production. The aim of this review was From 1946 to Today. Int. J. Mol. Sci. to analyze the evolution of the progress in the knowledge and definition of EVs over the years, with 2021, 22, 6417. https://doi.org/ an overview of the methodologies used for the identification of the vesicles, their cell of origin, and 10.3390/ijms22126417 the detection of their cargo. The MISEV 2018 guidelines for the proper recognition nomenclature and ways to study EVs are summarized. The review finishes with a “more questions than answers” Academic Editor: Sigrun Lange chapter, in which some of the problems we still face to fully understand the EV function and potential as a diagnostic and therapeutic tool are analyzed. Received: 10 May 2021 Accepted: 11 June 2021 Keywords: exosomes; microvesicles; multivesicular bodies; liposomes Published: 15 June 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- iations. Extracellular vesicles (EVs) are a family of particles released from the cell that are delimited by a lipid bilayer and cannot replicate, i.e., do not contain a functional nucleus, and can be detected in culture supernatants of different bodily fluids [1–5]. Once considered nothing else than sticky cell debris, they are now recognized as alternative mediators of cell communication, being able to convey a broad range of molecules such as cytokines, Copyright: © 2021 by the authors. inflammatory mediators, and miRNA [1–6], crucial in the maintenance of homeostasis, Licensee MDPI, Basel, Switzerland. This article is an open access article induction/dampening of inflammation, and promotion of repair [1–6]. Recognized today distributed under the terms and as “extracellular vesicles” (EVs), they were initially stratified and nominated based on conditions of the Creative Commons their size from <100 nm, traditionally named exosomes; 100 to 1000 nm, also recognized Attribution (CC BY) license (https:// as microvesicles, microparticles or ectosomes; and apoptotic bodies when >1000 nm [7], a creativecommons.org/licenses/by/ nomenclature that was eventually modified after the MISEV 18 guidelines. 4.0/). Int. J. Mol. Sci. 2021, 22, 6417. https://doi.org/10.3390/ijms22126417 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x 2 of 13 As shown by the number of publications (Figure 1), there has been an exponential increase in the interest in EVs and their potential applications in understanding the un- derlying mechanisms of various diseases, such as cancer, cardiovascular, metabolic, neu- rological, and infectious diseases, among others, which have revealed a role for EVs as promising biomarker candidates for diagnosis, prognosis, and even therapeutic tools, in lung and other diseases [8–11]. Furthermore, investigations performed with cell cultures of peripheral and epithelial cells from various systems highlight the peculiar release of specific cargoes of these particles when exposed to different triggers, which points to the Int. J. Mol. Sci. 2021, 22, 6417 possibility that EVs might be bioengineered as shuttles of therapeutic drugs, offering2 of an 13 alternative way of drug delivery for disease treatment [9,11]. Currently, the most striking evidence of their importance comes from the study of circulating human EVs in inflammatory disorders, and even more from the recognition of As shown by the number of publications (Figure1), there has been an exponential their presence in body fluids [12]. EV-containing “liquid biopsies” such as blood [13], BAL increase in the interest in EVs and their potential applications in understanding the underly- [14],ing mechanismsurine [15], saliva of various [13], diseases,and cerebrospinal such as cancer, fluid cardiovascular, [16] can be obtained metabolic, in an neurological, easy and minimallyand infectious invasive diseases, way amongand are others,seen as which a promising have revealed alternative a role to forregular EVs asbiopsies promising [9]. Indeed,biomarker the candidatescomprehensive for diagnosis, characterization prognosis, of EVs and and even of therapeutic their content tools, in body in lung fluids and mightother diseasesoffer the [key8–11 to]. better Furthermore, understand investigations disease development performed withand treatment. cell cultures of periph- eral and epithelial cells from various systems highlight the peculiar release of specific 2.cargoes Evolution of these of the particles EVs Nomenclature: when exposed toFrom different 1946 to triggers, Today which points to the possibility thatAs EVs shown might in be Figure bioengineered 1, recent asdecades shuttles have of therapeutic seen a sharp drugs, increase offering in the an number alternative of scientificway of drug publications delivery fordescribing disease treatmentthe physiological [9,11]. and pathological functions of “extra- cellularCurrently, vesicles” the (EVs), most a collective striking evidence term covering of their various importance subtypes comes of cell-released from the study mem- of branouscirculating structures human referred EVs in inflammatoryto as exosomes, disorders, microvesicles, and even microparticles, more from theectosomes, recognition on- cosomes,of their presence apoptotic in bodies, body fluids and many [12]. EV-containingother names. Unfortunately, “liquid biopsies” these such terms, as blood even [ 13to-], day,BAL mean [14], urinedifferent [15], things saliva to [13 different], and cerebrospinal investigators, fluid which [16 creates] can be vexing obtained problems in an easy re- latedand minimallyto their nomenclature. invasive way Furthermore, and are seenas specific a promising issues alternativearise when to working regular biopsieswith these [9]. entities,Indeed, whose the comprehensive size and amount characterization often make them of EVs difficult and of to their obtain content as relatively in body fluidspure preparationsmight offer the and key to tocharacterize better understand properly. disease development and treatment. Figure 1. Number of publications per year in PubMed from 1946 to 2021. After the first annual meeting of the International Society of Extracellular Vesicles (ISEV) in 2012, the number of original papers and reviews including any extracellular- vesicle-related terms (exosomes, microvesicles, microparticles, and extracellular vesicles) increased exponentially. EVs: extracellular vesicles; EM: electron microscopy; ISEV: International Society of Extracellular Vesicles; MISEV: Minimal Information for Studies of Extracellular Vesicles. 2. Evolution of the EVs Nomenclature: From 1946 to Today As shown in Figure1, recent decades have seen a sharp increase in the number of scien- tific publications describing the physiological and pathological functions of “extracellular vesicles” (EVs), a collective term covering various subtypes of cell-released membranous structures referred to as exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. Unfortunately, these terms, even today, mean Int. J. Mol. Sci. 2021, 22, 6417 3 of 13 different things to different investigators, which creates vexing problems related to their nomenclature. Furthermore,
Recommended publications
  • Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication
    International Journal of Molecular Sciences Review Role of Microbiota-Derived Extracellular Vesicles in Gut-Brain Communication Carlos M. Cuesta 1, Consuelo Guerri 1 , Juan Ureña 1 and María Pascual 1,2,* 1 Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, 46012 Valencia, Spain; [email protected] (C.M.C.); [email protected] (C.G.); [email protected] (J.U.) 2 Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain * Correspondence: [email protected] or [email protected]; Tel.: +34-961-625-635; Fax: +34-963-864-642 Abstract: Human intestinal microbiota comprise of a dynamic population of bacterial species and other microorganisms with the capacity to interact with the rest of the organism and strongly influence the host during homeostasis and disease. Commensal and pathogenic bacteria coexist in homeostasis with the intestinal epithelium and the gastrointestinal tract’s immune system, or GALT (gut-associated lymphoid tissue), of the host. However, a disruption to this homeostasis or dysbiosis by different factors (e.g., stress, diet, use of antibiotics, age, inflammatory processes) can cause brain dysfunction given the communication between the gut and brain. Recently, extracellular vesicles (EVs) derived from bacteria have emerged as possible carriers in gut-brain communication through the interaction of their vesicle components with immune receptors, which lead to neuroinflammatory immune response activation. This review discusses the critical role of bacterial EVs from the gut in the neuropathology of brain dysfunctions by modulating the immune response. These vesicles, which contain harmful bacterial EV contents such as lipopolysaccharide (LPS), peptidoglycans, toxins and Citation: Cuesta, C.M.; Guerri, C.; nucleic acids, are capable of crossing tissue barriers including the blood-brain barrier and interacting Ureña, J.; Pascual, M.
    [Show full text]
  • Extracellular Vesicle Proteomes Reflect Developmental Phases of Bacillus Subtilis Yeji Kim1, Nathan Edwards2 and Catherine Fenselau1*
    Kim et al. Clin Proteom (2016) 13:6 DOI 10.1186/s12014-016-9107-z Clinical Proteomics RESEARCH Open Access Extracellular vesicle proteomes reflect developmental phases of Bacillus subtilis Yeji Kim1, Nathan Edwards2 and Catherine Fenselau1* Abstract Background: Extracellular vesicles (EV) are spherical membrane-bound vesicles with nano-scale diameters, which are shed to the extracellular region by most eukaryotic and prokaryotic cells. Bacterial EV are proposed to contribute to intercellular communication, bacterial survival and human pathogenesis as a novel secretion system. EV have been characterized from many Gram-negative species and, more recently, from several vegetative Gram-positive bacteria. Further characterization of EV and their molecular cargos will contribute to understanding bacterial physiology and to developing therapeutic approaches. Results: Bacillus subtilis were observed to release EV to a similar extent during sporulation as during the vegetative growth phase. However, the two vesicular cargos show qualitatively and quantitatively different proteomes. Among 193 total proteins identified across both samples, 61 were shown to be significantly more abundant in EV shed by sporulating cells, with (log) ratio of spectral counts RSC > 1 and Fisher-exact test FDR < 5 %. Sixty-two proteins were found to be significantly more abundant in EV shed by vegetative cells. Membrane fusion was shown to take place between these EVs and Gram-positive cells. Conclusion: Biogenesis of EV is a continuous process over the entire life cycle of this sporulating bacterium. The formation of EV during sporulation is strongly supported by the delineation of protein content that differs from the proteome of EV formed by vegetative spores. Keywords: Label-free quantification, Bacillus subtilis, Secretome, Sporulation, Extracellular vesicles Background Gram-positive bacteria were thought not to produce EV Extracellular vesicles (EV) are universally produced because they lack outer membranes.
    [Show full text]
  • Caveolin-1 Selectively Regulates Microrna Sorting Into Microvesicles After Noxious Stimuli
    Published Online: 24 June, 2019 | Supp Info: http://doi.org/10.1084/jem.20182313 Downloaded from jem.rupress.org on October 1, 2019 ARTICLE Caveolin-1 selectively regulates microRNA sorting into microvesicles after noxious stimuli Heedoo Lee1, Chunhua Li2, Yang Zhang2, Duo Zhang1, Leo E. Otterbein3, and Yang Jin1 Emerging evidence suggests that extracellular vesicle (EV)–containing miRNAs mediate intercellular communications in response to noxious stimuli. It remains unclear how a cell selectively sorts the cellular miRNAs into EVs. We report that caveolin-1 (cav-1) is essential for sorting of selected miRNAs into microvesicles (MVs), a main type of EVs generated by outward budding of the plasma membrane. We found that cav-1 tyrosine 14 (Y14)–phosphorylation leads to interactions between cav-1 and hnRNPA2B1, an RNA-binding protein. The cav-1/hnRNPA2B1 complex subsequently traffics together into MVs. Oxidative stress induces O-GlcNAcylation of hnRNPA2B1, resulting in a robustly altered hnRNPA2B1-bound miRNA repertoire. Notably, cav-1 pY14 also promotes hnRNPA2B1 O-GlcNAcylation. Functionally, macrophages serve as the principal recipient of epithelial MVs in the lung. MV-containing cav-1/hnRNPA2B1 complex-bound miR-17/93 activate tissue macrophages. Collectively, cav-1 is the first identified membranous protein that directly guides RNA-binding protein into EVs. Our work delineates a novel mechanism by which oxidative stress compels epithelial cells to package and secrete specific miRNAs and elicits an innate immune response. Introduction Extracellular vesicles (EVs) have been shown to transfer func- This process involves an ATP-dependent, active sorting mech- tional miRNAs to neighboring or distant recipient cells as a rapid anism (Xu et al., 2013) and involves RNA-binding proteins that modality by which to manipulate gene expression in the recip- are enriched in EVs (Laffont et al., 2013; Villarroya-Beltri et al., ient cells (Phinney et al., 2015; Shipman, 2015).
    [Show full text]
  • Mirna Let-7 from TPO(+) Extracellular Vesicles Is a Potential Marker for a Differential Diagnosis of Follicular Thyroid Nodules
    cells Article MiRNA let-7 from TPO(+) Extracellular Vesicles is a Potential Marker for a Differential Diagnosis of Follicular Thyroid Nodules Lidia Zabegina 1,2,3, Inga Nazarova 1,2, Margarita Knyazeva 1,2,3, Nadezhda Nikiforova 1,2, Maria Slyusarenko 1,2, Sergey Titov 4 , Dmitry Vasilyev 1, Ilya Sleptsov 5 and Anastasia Malek 1,2,* 1 Subcellular Technology Lab., N.N. Petrov National Medical Research Center of Oncology, 195251 St. Petersburg, Russia; [email protected] (L.Z.); [email protected] (I.N.); [email protected] (M.K.); [email protected] (N.N.); [email protected] (M.S.); [email protected] (D.V.) 2 Oncosystem Ltd., 121205 Moscow, Russia 3 Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia 4 PCR Laboratory; AO Vector-Best, 630117 Novosibirsk, Russia; [email protected] 5 Department of endocrine surgery, Clinic of High Medical Technologies, St. Petersburg State University N.I. Pirogov, 190103 St. Petersburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-960-250-46-80 Received: 19 July 2020; Accepted: 15 August 2020; Published: 18 August 2020 Abstract: Background: The current approaches to distinguish follicular adenomas (FA) and follicular thyroid cancer (FTC) at the pre-operative stage have low predictive value. Liquid biopsy-based analysis of circulating extracellular vesicles (EVs) presents a promising diagnostic method. However, the extreme heterogeneity of plasma EV population hampers the development of new diagnostic tests. We hypothesize that the isolation of EVs with thyroid-specific surface molecules followed by miRNA analysis, may have improved diagnostic potency.
    [Show full text]
  • Improvement of Stem Cell-Derived Exosome Release E Ciency By
    Improvement of stem cell-derived exosome release eciency by surface modied nanoparticles Dong Jun Park Yonsei University Wonju College of Medicine Wan Su Yun Yonsei University - Wonju Campus Woo Cheol Kim Yonsei University - Wonju Campus Jeong-Eun Park Yonsei University Wonju College of Medicine Su Hoon Lee Yonsei University Wonju College of Medicine Sunmok Ha Yonsei University College of Health Sciences Jin Sil Choi Yonsei University Wonju College of Medicine Jaehong Key Yonsei University - Wonju Campus YoungJoon Seo ( [email protected] ) Yonsei University - Wonju Campus https://orcid.org/0000-0002-2839-4676 Research Keywords: Autophagy, Mesenchymal stem cell-derived exosome, Positively charged nanoparticle, PLGA- PEI NPs, Rab7 Posted Date: November 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-42143/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on December 7th, 2020. See the published version at https://doi.org/10.1186/s12951-020-00739-7. Page 1/28 Abstract Background: Mesenchymal stem cells (MSCs) are pluripotent stromal cells that release extracellular vesicles (EVs). EVs contain various growth factors and antioxidants that can positively affect the surrounding cells. Nanoscale MSC-derived EVs, such as exosomes, have been developed as bio-stable nano-type materials. However, some issues, such as low yield and diculty in quantication, limit their use. We hypothesized that enhancing exosome production using nanoparticles would stimulate the release of intracellular molecules. Results: The aim of this study was to elucidate the molecular mechanisms of exosome generation by comparing the internalization of surface-modied, positively charged nanoparticles and exosome generation from MSCs.
    [Show full text]
  • Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities
    cells Review Adenine-Based Purines and Related Metabolizing Enzymes: Evidence for Their Impact on Tumor Extracellular Vesicle Activities Patrizia Di Iorio 1,2 and Renata Ciccarelli 1,2,* 1 Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy; [email protected] 2 Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, 66100 Chieti, Italy * Correspondence: [email protected] Abstract: Extracellular vesicles (EVs), mainly classified as small and large EVs according to their size/origin, contribute as multi-signal messengers to intercellular communications in normal/pathological conditions. EVs are now recognized as critical players in cancer processes by promoting transformation, growth, invasion, and drug-resistance of tumor cells thanks to the release of molecules contained inside them (i.e., nucleic acids, lipids and proteins) into the tumor microenvironment (TME). Interestingly, secre- tion from donor cells and/or uptake of EVs/their content by recipient cells are regulated by extracellular signals present in TME. Among those able to modulate the EV-tumor crosstalk, purines, mainly the adenine-based ones, could be included. Indeed, TME is characterized by high levels of ATP/adenosine and by the presence of enzymes deputed to their turnover. Moreover, ATP/adenosine, interacting with their own receptors, can affect both host and tumor responses. However, studies on whether/how the purinergic system behaves as a modulator of EV biogenesis, release and functions in cancer are still poor. Thus, this review is aimed at collecting data so far obtained to stimulate further research in this regard.
    [Show full text]
  • Switch from Translation Initiation to Elongation Needs Not4 and Not5 Collaboration
    bioRxiv preprint doi: https://doi.org/10.1101/850859; this version posted November 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Switch from translation initiation to elongation needs Not4 and Not5 collaboration George E Allen1°, Olesya O Panasenko1°, Zoltan Villanyi1,&, Marina Zagatti1, Benjamin Weiss1, 2 2 1* 5 Christine Polte , Zoya Ignatova , Martine A Collart 1Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics Geneva, Faculty of Medicine, University of Geneva, Switzerland 2Biochemistry and Molecular Biology, University of Hamburg, Germany °Equally contributing first authors 10 *Correspondence to: [email protected] &Current Address: Dept of Biochemistry and Molecular Biology, University of Szeged Abstract: Not4 and Not5 are crucial components of the Ccr4-Not complex with pivotal functions in mRNA metabolism. Both associate with ribosomes but mechanistic insights on their 15 function remain elusive. Here we determine that Not5 and Not4 synchronously impact translation initiation and Not5 alone alters translation elongation. Deletion of Not5 causes elongation defects in a codon-dependent fashion, increasing and decreasing the ribosome dwelling occupancy at minor and major codons, respectively. This larger difference in codons’ translation velocities alters translation globally and enables kinetically unfavorable processes 20 such as nascent chain deubiquitination to take place. In turn, this leads to abortive translation and favors protein aggregation. These findings highlight the global impact of Not4 and Not5 in controlling the speed of mRNA translation and transition from initiation to elongation. Summary: Not4 and Not5 regulate translation synchronously but distinguishably, facilitating 25 smooth transition from initiation to elongation Results and discussion The Ccr4-Not complex is a global regulator of mRNA metabolism in eukaryotic cells (for review see (1)).
    [Show full text]
  • Exploring Transcriptomic Landscapes in Red Blood Cells, in Their Extracellular Vesicles and on a Single- Cell Level
    Exploring transcriptomic landscapes in red blood cells, in their extracellular vesicles and on a single- cell level Erja Kerkelä ( erja.kerkela@bloodservice. ) Finnish Red Cross Blood Service https://orcid.org/0000-0002-2923-5300 Jenni Lahtela University of Helsinki, Institute for Molecular Medicine Finland (FIMM) Antti Larjo Finnish Red Cross Blood Service Ulla Impola Finnish Red Cross Blood Service Laura Mäenpää University of Helsinki, Research Programs Unit, Molecular Neurology Pirkko Mattila University of Helsinki, Institute of Molecular Medicine Finland (FIMM) Research article Keywords: erythrocyte, MALAT1, RNA sequencing, transcriptomics, extracellular vesicle Posted Date: September 18th, 2019 DOI: https://doi.org/10.21203/rs.2.14503/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/27 Abstract Background Circulating human red blood cells (RBCs) consist of mature erythrocytes and immature reticulocytes. Being anucleated, RBCs lack typical transcriptomes, but are known to contain small amounts of diverse long transcripts and microRNAs. However, the exact role and importance of these RNAs is lacking. Results To study this further, we explored the transcriptomes of RBCs and extracellular vesicles (EVs) of RBCs using next-generation sequencing. Furthermore, to understand the dynamics of the RBC transcriptome, we performed single-cell RNA sequencing on RBCs. An analysis of the single-cell transcriptomes revealed that approximately 10% of the cells contained detectable levels of mRNA and fell into three subpopulations based on their transcriptomes. Decrease in the mRNA quantity was observed across the populations. Qualitative changes included the differences in the globin transcripts and changes in the expression of ribosomal genes.
    [Show full text]
  • Exosomes Or Microvesicles, a Secreted Subcellular Organelle Contributing to Inflammation and Diabetes
    2154 Diabetes Volume 67, November 2018 Exosomes or Microvesicles, a Secreted Subcellular Organelle Contributing to Inflammation and Diabetes Yang D. Dai1,2 and Peter Dias1 Diabetes 2018;67:2154–2156 | https://doi.org/10.2337/dbi18-0021 Type 1 and type 2 diabetes (T1D and T2D) are generally etc., represent a pool of mixed EVs, with each subspecies recognized as distinct disease entities based on the mech- having a different cargo and function. The cargo of the EVs anism of induction of disease: T1D results from low or no contains important complex molecules such as RNA, DNA, insulin production due to the gradual loss of cells that proteins, lipids, and carbohydrates. The ratio of each sub- produce insulin, whereas T2D is generally thought to occur species and their molecular content may vary depending on as a result of the body’s development of resistance to the physiological/pathological status of the parent cells and insulin. Although the events initiating T1D and T2D might tissues that release the EVs. Thus, EVs may potentially be be very different, the progression to diabetes and compli- a powerful source for noninvasive diagnosis of diseases (10). cations are similar and involve interactions between the The study by Freeman et al. (11) in this issue of immune system and the metabolic system. Notably, chronic Diabetes is unique in that it uses an ex vivo approach to inflammation is a shared manifestation of the two types study the role and mechanism of action of EVs derived of diabetes (1,2). Recently, secreted microvesicles, particu- from blood plasma of normal patients, patients with pre- larly exosomes, were suggested to be intermediates linking diabetes, and patients with diabetes in the development of inflammation to diabetes (3).
    [Show full text]
  • Extracellular Vesicles in Immunomodulation and Tumor Progression
    REVIEW ARTICLE https://doi.org/10.1038/s41590-021-00899-0 Extracellular vesicles in immunomodulation and tumor progression Carolyn Marar1,2,6,7, Bartholomew Starich 1,3,7 and Denis Wirtz 1,3,4,5 ✉ Extracellular vesicles have emerged as prominent regulators of the immune response during tumor progression. EVs contain a diverse repertoire of molecular cargo that plays a critical role in immunomodulation. Here, we identify the role of EVs as media- tors of communication between cancer and immune cells. This expanded role of EVs may shed light on the mechanisms behind tumor progression and provide translational diagnostic and prognostic tools for immunologists. ells communicate via contact-dependent and contact- described the ability of small EVs released by dendritic cells (DCs) independent interactions through the secretion of chemo- to induce tumor suppression in vivo. In 2002, another study elabo- kines, cytokines, growth factors, and associated cell recep- rated on this work to describe a mechanism for indirect T cell stim- C 11 tors. Over the past 30 years, the secretion of EVs has also emerged ulation by DC small EVs . These discoveries established EVs as a as a major mechanism for cell–cell and cell–environment interac- major mechanism of cellular communication and provided a basis tions. These 30- to 5,000-nm lipid-membrane-bound vesicles con- for immune EV research over the past two decades. tain functional proteins, nucleic acids, lipids, and other bioactive DCs are antigen-presenting cells (APCs) that orchestrate the molecules that can modulate the behavior of recipient cells1. immune response against a specific antigen.
    [Show full text]
  • Extracellular Vesicles and Host–Pathogen Interactions: a Review of Inter-Kingdom Signaling by Small Noncoding RNA
    G C A T T A C G G C A T genes Review Extracellular Vesicles and Host–Pathogen Interactions: A Review of Inter-Kingdom Signaling by Small Noncoding RNA Bruce A. Stanton Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; [email protected] Abstract: The focus of this brief review is to describe the role of noncoding regulatory RNAs, including short RNAs (sRNA), transfer RNA (tRNA) fragments and microRNAs (miRNA) secreted in extracellular vesicles (EVs), in inter-kingdom communication between bacteria and mammalian (human) host cells. Bacteria secrete vesicles that contain noncoding regulatory RNAs, and recent studies have shown that the bacterial vesicles fuse with and deliver regulatory RNAs to host cells, and similar to eukaryotic miRNAs, regulatory RNAs modulate the host immune response to infection. Recent studies have also demonstrated that mammalian cells secrete EVs containing miRNAs that regulate the gut microbiome, biofilm formation and the bacterial response to antibiotics. Thus, as evidence accumulates it is becoming clear that the secretion of noncoding regulatory RNAs and miRNAs in extracellular vesicles is an important mechanism of bidirectional communication between bacteria and mammalian (human) host cells. However, additional research is necessary to elucidate how noncoding regulatory RNAs and miRNA secreted in extracellular vesicles mediate inter-kingdom communication. Keywords: outer membrane vesicles (OMV); extracellular vesicles (EVs); bacterial extracellular Citation: Stanton, B.A. Extracellular vesicles (BEV); small non-coding RNA (sRNA); inter-kingdom communication Vesicles and Host–Pathogen Interactions: A Review of Inter-Kingdom Signaling by Small Noncoding RNA. Genes 2021, 12, 1010.
    [Show full text]
  • Proteomic Analysis of Exosome-Like Vesicles Derived from Breast Cancer Cells
    ANTICANCER RESEARCH 32: 847-860 (2012) Proteomic Analysis of Exosome-like Vesicles Derived from Breast Cancer Cells GEMMA PALAZZOLO1, NADIA NINFA ALBANESE2,3, GIANLUCA DI CARA3, DANIEL GYGAX4, MARIA LETIZIA VITTORELLI3 and IDA PUCCI-MINAFRA3 1Institute for Biomedical Engineering, Laboratory of Biosensors and Bioelectronics, ETH Zurich, Switzerland; 2Department of Physics, University of Palermo, Palermo, Italy; 3Centro di Oncobiologia Sperimentale (C.OB.S.), Oncology Department La Maddalena, Palermo, Italy; 4Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland FHNW, Muttenz, Switzerland Abstract. Background/Aim: The phenomenon of membrane that vesicle production allows neoplastic cells to exert different vesicle-release by neoplastic cells is a growing field of interest effects, according to the possible acceptor targets. For instance, in cancer research, due to their potential role in carrying a vesicles could potentiate the malignant properties of adjacent large array of tumor antigens when secreted into the neoplastic cells or activate non-tumoral cells. Moreover, vesicles extracellular medium. In particular, experimental evidence show could convey signals to immune cells and surrounding stroma that at least some of the tumor markers detected in the blood cells. The present study may significantly contribute to the circulation of mammary carcinoma patients are carried by knowledge of the vesiculation phenomenon, which is a critical membrane-bound vesicles. Thus, biomarker research in breast device for trans cellular communication in cancer. cancer can gain great benefits from vesicle characterization. Materials and Methods: Conditioned medium was collected The phenomenon of membrane release in the extracellular from serum starved MDA-MB-231 sub-confluent cell cultures medium has long been known and was firstly described by and exosome-like vesicles (ELVs) were isolated by Paul H.
    [Show full text]