The R,Estoration of the Dinosaur Podokesaurus Holyokensis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download the Article
A couple of partially-feathered creatures about the The Outside Story size of a turkey pop out of a stand of ferns. By the water you spot a flock of bigger animals, lean and predatory, catching fish. And then an even bigger pair of animals, each longer than a car, with ostentatious crests on their heads, stalk out of the heat haze. The fish-catchers dart aside, but the new pair have just come to drink. We can only speculate what a walk through Jurassic New England would be like, but the fossil record leaves many hints. According to Matthew Inabinett, one of the Beneski Museum of Natural History’s senior docents and a student of vertebrate paleontology, dinosaur footprints found in the sedimentary rock of the Connecticut Valley reveal much about these animals and their environment. At the time, the land that we know as New England was further south, close to where Cuba is now. A system of rift basins that cradled lakes ran right through our region, from North Carolina to Nova Scotia. As reliable sources of water, with plants for the herbivores and fish for the carnivores, the lakes would have been havens of life. While most of the fossil footprints found in New England so far are in the lower Connecticut Valley, Dinosaur Tracks they provide a window into a world that extended throughout the region. According to Inabinett, the By: Rachel Marie Sargent tracks generally fall into four groupings. He explained that these names are for the tracks, not Imagine taking a walk through a part of New the dinosaurs that made them, since, “it’s very England you’ve never seen—how it was 190 million difficult, if not impossible, to match a footprint to a years ago. -
Òðàíñôîðìàöèè Ñòîïû Â Ðàííåé Ýâîëþöèè Ïòèö
Vestnik zoologii, 34(4—5): 123—127, 2000 © 2000 И. А. Богданович ÓÄÊ 591.4+575.4 : 598.2 ÒÐÀÍÑÔÎÐÌÀÖÈÈ ÑÒÎÏÛ Â ÐÀÍÍÅÉ ÝÂÎËÞÖÈÈ ÏÒÈÖ È. À. Áîãäàíîâè÷ Èíñòèòóò çîîëîãèè ÍÀÍ Óêðàèíû, óë. Á. Õìåëüíèöêîãî, 15, Êèåâ-30, ÃÑÏ, 01601 Óêðàèíà Ïîëó÷åíî 5 ÿíâàðÿ 2000 Òðàíñôîðìàöèè ñòîïû â ðàííåé ýâîëþöèè ïòèö. Áîãäàíîâè÷ È. À. – Íåäàâíÿÿ íàõîäêà Protoavis texen- sis (Chatterjee, 1995) îòîäâèãàåò âðåìÿ ïðîèñõîæäåíèÿ ïòèö ê òðèàñó è ñâèäåòåëüñòâóåò â ïîëüçó òåêî- äîíòíîãî ïòè÷üåãî ïðåäêà. Íåñìîòðÿ íà ïåðåõîä ê áèïåäàëèçìó, òåêîäîíòû èìåëè ïÿòèïàëóþ ñòîïó. Ñîõðàíåíèå õîðîøî ðàçâèòîãî è îòâåäåííîãî â ñòîðîíó 1-ãî ïàëüöà ñ äàëüíåéøèì åãî ðàçâîðîòîì íà- çàä ìîãëî áûòü ñåëåêòèâíûì ïðèçíàêîì áëàãîäàðÿ äâóì ôóíêöèîíàëüíî-ñåëåêòèâíûì ñëåäñòâèÿì. Âî- ïåðâûõ, îòñòàâëåííûé íàçàä íèçêîðàñïîëîæåííûé ïåðâûé ïàëåö ñëóæèë ýôôåêòèâíîé çàäíåé îïîðîé, ÷òî áûëî âàæíî â ïåðèîä ñòàíîâëåíèÿ áèïåäàëèçìà, ñâÿçàííîãî ñ «ïåðåóñòàíîâêîé» öåíòðà òÿæåñòè òåëà. Ýòî îò÷àñòè ðàçãðóæàëî îò îïîðíîé ôóíêöèè òÿæåëûé õâîñò (õàðàêòåðíûé äëÿ òåêîäîíòîâ â öå- ëîì) áëàãîïðèÿòñòâóÿ åãî ðåäóêöèè. Âî-âòîðûõ, óêàçàííîå ñòðîåíèå ñòîïû (èìåííî òàêîå îïèñàíî ó Protoavis) îáåñïå÷èâàëî ýôôåêòèâíîå âûïîëíåíèå õâàòàòåëüíîé ôóíêöèè. Òàêèì îáðàçîì, ïðåäïîëà- ãàåìàÿ «ïðåäïòèöà» áûëà ñïîñîáíà ïåðåäâèãàòüñÿ êàê ïî çåìëå, òàê è ïî âåòâÿì ñ îáõâàòûâàíèåì ïî- ñëåäíèõ èìåííî òàçîâûìè, à íå ãðóäíûìè, êàê ïðåäïîëàãàëîñü, êîíå÷íîñòÿìè. Ê ë þ ÷ å â û å ñ ë î â à : ïòèöû, ýâîëþöèÿ, òàçîâàÿ êîíå÷íîñòü. Foot Transformations in Early Evolution of Birds. Bogdanovich I. A. – Recent find of Protoavis texen- sis (Chatterjee, 1995) shifts the avian origin time to the Trias and support a hypothesis of a thecodontian avian ancestor. In spite of bipedalism thecodonts had a five digits foot. Preservation of well developed and abducted hallux with its farther reversing could be selective because of two functional sequences. -
Gerhard Heilmann Og Teorierne Om Fuglenes Oprindelse
Gerhard Heilmann gav DOF et logo længe før ordet var opfundet de Viber, som vi netop med dette nr har forgrebet os på og stiliseret. Ude i verden huskes han imidlertid af en helt anden grund. Gerhard Heilmann og teorierne om fuglenes oprindelse SVEND PALM Archaeopteryx og teorierne I årene 1912 - 1916 bragte DOFT fem artikler, som fik betydning for spørgsmålet om fuglenes oprindelse. Artiklerne var skrevet af Gerhard Heilmann og havde den fælles titel »Vor nuvæ• rende Viden om Fuglenes Afstamning«. Artiklerne tog deres udgangspunkt i et fossil, der i 1861 og 1877 var fundet ved Solnhofen nær Eichstatt, og som fik det videnskabelige navn Archaeopteryx. Dyret var på størrelse med en due, tobenet og havde svingfjer og fjerhale, men det havde også tænder, hvirvelhale og trefingrede forlemmer med klør. Da Archaeopteryx-fundene blev gjort, var der kun gået få årtier, siden man havde fået det første kendskab til de uddøde dinosaurer, af hvilke nog le var tobenede og meget fugleagtige. Her kom da Archaeopteryx, der mest lignede en dinosaur i mini-format, men som med sine fjervinger havde en tydelig tilknytning til fuglene, ind i billedet (Fig. 1). Kort forinden havde Darwin (1859) med sit værk »On the Origin of Species« givet et viden Fig. 1. Archaeopteryx. Fra Heilmann (1926). skabeligt grundlag for udviklingslæren, og Ar chaeopteryx kom meget belejligt som trumfkort for Darwins tilhængere, som et formodet binde led mellem krybdyr og fugle. gernes og flyveevnens opståen. I den nulevende I begyndelsen hæftede man sig især ved lighe fauna findes adskillige eksempler på dyr med en derne mellem dinosaurer, Archaeopteryx og fug vis flyveevne, f.eks. -
Dating Dinosaurs
The PRINCETON FIELD GUIDE to DINOSAURS 2ND EDITION PRINCETON FIELD GUIDES Rooted in field experience and scientific study, Princeton’s guides to animals and plants are the authority for professional scientists and amateur naturalists alike. Princeton Field Guides present this information in a compact format carefully designed for easy use in the field. The guides illustrate every species in color and provide detailed information on identification, distribution, and biology. Albatrosses, Petrels, and Shearwaters of the World, by Derek Onley Birds of Southern Africa, Fourth Edition, by Ian Sinclair, Phil and Paul Scofield Hockey, Warwick Tarboton, and Peter Ryan Birds of Aruba, Curaçao, and Bonaire by Bart de Boer, Eric Birds of Thailand, by Craig Robson Newton, and Robin Restall Birds of the West Indies, by Herbert Raffaele, James Wiley, Birds of Australia, Eighth Edition, by Ken Simpson and Nicolas Orlando Garrido, Allan Keith, and Janis Raffaele Day Birds of Western Africa, by Nik Borrow and Ron Demey Birds of Borneo: Brunei, Sabah, Sarawak, and Kalimantan, by Carnivores of the World, by Luke Hunter Susan Myers Caterpillars of Eastern North America: A Guide to Identification Birds of Botswana, by Peter Hancock and Ingrid Weiersbye and Natural History, by David L. Wagner Birds of Central Asia, by Raffael Ayé, Manuel Schweizer, and Common Mosses of the Northeast and Appalachians, by Karl B. Tobias Roth McKnight, Joseph Rohrer, Kirsten McKnight Ward, and Birds of Chile, by Alvaro Jaramillo Warren Perdrizet Birds of the Dominican Republic and Haiti, by Steven Latta, Coral Reef Fishes, by Ewald Lieske and Robert Meyers Christopher Rimmer, Allan Keith, James Wiley, Herbert Dragonflies and Damselflies of the East, by Dennis Paulson Raffaele, Kent McFarland, and Eladio Fernandez Dragonflies and Damselflies of the West, by Dennis Paulson Birds of East Africa: Kenya, Tanzania, Uganda, Rwanda, and Mammals of Europe, by David W. -
Bulletin Published Quarterly
BULLETIN PUBLISHED QUARTERLY September, 1988 No. 3 COMMENTS ON THE WING SHAPE OF THE HYPOTHETICAL PROAVIAN James McAllister The origin of avian flight has been debated since Williston (1879) and Marsh (1880) proposed the competing cursorial and arboreal theories, respectively (reviews in Ostrom 1979 and Feduccia 1980). In the arboreal theory, powered flight evolved in a climbing proavian (hypothetical avian precursor) that glided from trees. The cursorial theory proposes that the transition to powered flight was via a ground-dwelling, running proavian. Unfortunately, the fossil record is sparse for the early stages of bird evolution. Archaeopteryx and the Triassic fossil discovered and identified as a bird by Sankar Chat- terjee are the two oldest forms. Although geologically older, the Triassic fossil has not been described, evaluated, and put into the context of avian evolution at this time and so the functional stage prior to Archaeopteryx remains pre-eminent in the reconstruction of avian flight. I present the hypothesis that the arboreal proavian wing had a low aspect ratio (Figure 1) and thus was the primitive condition for birds. I also comment on prior discussions of the wing shape of an arboreal proavis, including those by Saville (1957) and Peterson (1985), and suggest refinements for reconstructions by Boker (1935) and Tarsitano (1985). -length- Aspect Ratio = width = Figure 1. (A) A silhouette of Archaeopteryx (after Heilmann 1927, fig. 141) which has a wing with a low aspect ratio - short length and wide breadth. (B) An albatross silhouette has a high aspect ratio wing - longer length compared to breadth - and is better suited for gliding. -
) Baieiicanjizseum
)SovitatesbAieiicanJizseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 1901 JULY 22, 1958 Coelurosaur Bone Casts from the Con- necticut Valley Triassic BY EDWIN HARRIS COLBERT1 AND DONALD BAIRD2 INTRODUCTION An additional record of a coelurosaurian dinosaur in the uppermost Triassic of the Connecticut River Valley is provided by a block of sandstone bearing the natural casts of a pubis, tibia, and ribs. This specimen, collected nearly a century ago but hitherto unstudied, was brought to light by the junior author among the collections (at present in dead storage) of the Boston Society of Natural History. We are much indebted to Mr. Bradford Washburn and Mr. Chan W. Wald- ron, Jr., of the Boston Museum of Science for their assistance in mak- ing this material available for study. The source and history of this block of stone are revealed in brief notices published at the time of its discovery. The Proceedings of the Boston Society of Natural History (vol. 10, p. 42) record that on June 1, 1864, Prof. William B. Rogers "presented an original cast in sand- stone of bones from the Mesozoic rocks of Middlebury, Ct. The stone was probably the same as that used in the construction of the Society's Museum; it was found at Newport among the stones used in the erec- tion of Fort Adams, and he owed his possession of it to the kindness of Capt. Cullum." S. H. Scudder, custodian of the museum, listed the 1 Curator of Fossil Reptiles and Amphibians, the American Museum of Natural History. -
Back Matter (PDF)
Index Note: Page numbers in italic denote figures. Page numbers in bold denote tables. Abel, Othenio (1875–1946) Ashmolean Museum, Oxford, Robert Plot 7 arboreal theory 244 Astrodon 363, 365 Geschichte und Methode der Rekonstruktion... Atlantosaurus 365, 366 (1925) 328–329, 330 Augusta, Josef (1903–1968) 222–223, 331 Action comic 343 Aulocetus sammarinensis 80 Actualism, work of Capellini 82, 87 Azara, Don Felix de (1746–1821) 34, 40–41 Aepisaurus 363 Azhdarchidae 318, 319 Agassiz, Louis (1807–1873) 80, 81 Azhdarcho 319 Agustinia 380 Alexander, Annie Montague (1867–1950) 142–143, 143, Bakker, Robert. T. 145, 146 ‘dinosaur renaissance’ 375–376, 377 Alf, Karen (1954–2000), illustrator 139–140 Dinosaurian monophyly 93, 246 Algoasaurus 365 influence on graphic art 335, 343, 350 Allosaurus, digits 267, 271, 273 Bara Simla, dinosaur discoveries 164, 166–169 Allosaurus fragilis 85 Baryonyx walkeri Altispinax, pneumaticity 230–231 relation to Spinosaurus 175, 177–178, 178, 181, 183 Alum Shale Member, Parapsicephalus purdoni 195 work of Charig 94, 95, 102, 103 Amargasaurus 380 Beasley, Henry Charles (1836–1919) Amphicoelias 365, 366, 368, 370 Chirotherium 214–215, 219 amphisbaenians, work of Charig 95 environment 219–220 anatomy, comparative 23 Beaux, E. Cecilia (1855–1942), illustrator 138, 139, 146 Andrews, Roy Chapman (1884–1960) 69, 122 Becklespinax altispinax, pneumaticity 230–231, Andrews, Yvette 122 232, 363 Anning, Joseph (1796–1849) 14 belemnites, Oxford Clay Formation, Peterborough Anning, Mary (1799–1847) 24, 25, 113–116, 114, brick pits 53 145, 146, 147, 288 Benett, Etheldred (1776–1845) 117, 146 Dimorphodon macronyx 14, 115, 294 Bhattacharji, Durgansankar 166 Hawker’s ‘Crocodile’ 14 Birch, Lt. -
Phylogeny and Avian Evolution Phylogeny and Evolution of the Aves
Phylogeny and Avian Evolution Phylogeny and Evolution of the Aves I. Background Scientists have speculated about evolution of birds ever since Darwin. Difficult to find relatives using only modern animals After publi cati on of “O rigi i in of S peci es” (~1860) some used birds as a counter-argument since th ere were no k nown t ransiti onal f orms at the time! • turtles have modified necks and toothless beaks • bats fly and are warm blooded With fossil discovery other potential relationships! • Birds as distinct order of reptiles Many non-reptilian characteristics (e.g. endothermy, feathers) but really reptilian in structure! If birds only known from fossil record then simply be a distinct order of reptiles. II. Reptile Evolutionary History A. “Stem reptiles” - Cotylosauria Must begin in the late Paleozoic ClCotylosauri a – “il”“stem reptiles” Radiation of reptiles from Cotylosauria can be organized on the basis of temporal fenestrae (openings in back of skull for muscle attachment). Subsequent reptilian lineages developed more powerful jaws. B. Anapsid Cotylosauria and Chelonia have anapsid pattern C. Syypnapsid – single fenestra Includes order Therapsida which gave rise to mammalia D. Diapsida – both supppratemporal and infratemporal fenestrae PttPattern foun did in exti titnct arch osaurs, survi iiving archosaurs and also in primitive lepidosaur – ShSpheno don. All remaining living reptiles and the lineage leading to Aves are classified as Diapsida Handout Mammalia Extinct Groups Cynodontia Therapsida Pelycosaurs Lepidosauromorpha Ichthyosauria Protorothyrididae Synapsida Anapsida Archosauromorpha Euryapsida Mesosaurs Amphibia Sauria Diapsida Eureptilia Sauropsida Amniota Tetrapoda III. Relationshippp to Reptiles Most groups present during Mesozoic considere d ancestors to bird s. -
The Origin of Birds
The Origin of Birds Birds have many unusual synapomorphies among modern animals: [ Synapomorphies (shared derived characters), representing new specializations evolved in the most recent common ancestor of the ingroup] • Feathers • Warm-blooded (also in mammals) • Specialized lungs & air-sacs • Hollow bones • Toothless beaks • Large brain Technical name for birds is Aves, and “avian” means “of or concerning birds”. • Cervicals very different from dorsals, allowing neck to fold into “S”-shape • Backwards-pointing pubis • Synsacrum (sacrum fused to pelves; pelvic bones • Fibula reduced to proximal splint fused together) • Astragalus & calcaneum fused to tibia • Proximal caudals very mobile • Hinge-like ankle joint • Pygostyle (distal caudals all fused together) • Furcula - (the wishbone) • Tarsometatarsus (distal tarsals fused to • Forelimb very long, has become wing metatarsals; all metatarsals fused together) • Carpometacarpus (semilunate carpal block fused • Main pedal digits II-IV to metacarpals; all metacarpals fused together) • Pedal digit I reversed, placed at bottom of • Three fingers, but digits all reduced so no unguals tarsometatarsus 1 Compare modern birds to their closest relatives, crocodilians • Difficult to find relatives using only modern animals (turtles have modified necks and toothless beaks, but otherwise very • different; bats fly and are warm-blooded, but are clearly mammals; etc.) • With discovery of fossils, other potential relations: pterosaurs had big brains, “S”- shaped neck, hinge-like foot, but wings are VERY different. • In 1859, Darwin published the Origin; some used birds as a counter-example against evolution, as there were apparently known transitional forms between birds and other vertebrates. In 1860, a feather (identical to modern birds' feathers) was found in the Solnhofen Lithographic Limestone of Bavaria, Germany: a Late Jurassic formation. -
ETD Template
EXPLAINING EVOLUTIONARY INNOVATION AND NOVELTY: A HISTORICAL AND PHILOSOPHICAL STUDY OF BIOLOGICAL CONCEPTS by Alan Christopher Love BS in Biology, Massachusetts Institute of Technology, 1995 MA in Philosophy, University of Pittsburgh, 2002 MA in Biology, Indiana University, Bloomington, 2004 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History and Philosophy of Science University of Pittsburgh 2005 UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES This dissertation was presented by Alan Christopher Love It was defended on June 22, 2005 and approved by Sandra D. Mitchell, PhD Professor of History and Philosophy of Science, University of Pittsburgh Robert C. Olby, PhD Professor of History and Philosophy of Science, University of Pittsburgh Rudolf A. Raff, PhD Professor of Biology, Indiana University, Bloomington Günter P. Wagner, PhD Professor of Ecology and Evolutionary Biology, Yale University James G. Lennox, PhD Dissertation Director Professor of History and Philosophy of Science, University of Pittsburgh ii Copyright by Alan Christopher Love 2005 iii EXPLAINING EVOLUTIONARY INNOVATION AND NOVELTY: A HISTORICAL AND PHILOSOPHICAL STUDY OF BIOLOGICAL CONCEPTS Alan Christopher Love, PhD University of Pittsburgh, 2005 Abstract Explaining evolutionary novelties (such as feathers or neural crest cells) is a central item on the research agenda of evolutionary developmental biology (Evo-devo). Proponents of Evo- devo have claimed that the origin of innovation and novelty constitute a distinct research problem, ignored by evolutionary theory during the latter half of the 20th century, and that Evo- devo as a synthesis of biological disciplines is in a unique position to address this problem. -
Body-Size Evolution in the Dinosauria
8 Body-Size Evolution in the Dinosauria Matthew T. Carrano Introduction The evolution of body size and its influence on organismal biology have received scientific attention since the earliest decades of evolutionary study (e.g., Cope, 1887, 1896; Thompson, 1917). Both paleontologists and neontologists have attempted to determine correlations between body size and numerous aspects of life history, with the ultimate goal of docu- menting both the predictive and causal connections involved (LaBarbera, 1986, 1989). These studies have generated an appreciation for the thor- oughgoing interrelationships between body size and nearly every sig- nificant facet of organismal biology, including metabolism (Lindstedt & Calder, 1981; Schmidt-Nielsen, 1984; McNab, 1989), population ecology (Damuth, 1981; Juanes, 1986; Gittleman & Purvis, 1998), locomotion (Mc- Mahon, 1975; Biewener, 1989; Alexander, 1996), and reproduction (Alex- ander, 1996). An enduring focus of these studies has been Cope’s Rule, the notion that body size tends to increase over time within lineages (Kurtén, 1953; Stanley, 1973; Polly, 1998). Such an observation has been made regarding many different clades but has been examined specifically in only a few (MacFadden, 1986; Arnold et al., 1995; Jablonski, 1996, 1997; Trammer & Kaim, 1997, 1999; Alroy, 1998). The discordant results of such analyses have underscored two points: (1) Cope’s Rule does not apply universally to all groups; and (2) even when present, size increases in different clades may reflect very different underlying processes. Thus, the question, “does Cope’s Rule exist?” is better parsed into two questions: “to which groups does Cope’s Rule apply?” and “what process is responsible for it in each?” Several recent works (McShea, 1994, 2000; Jablonski, 1997; Alroy, 1998, 2000a, 2000b) have begun to address these more specific questions, attempting to quantify patterns of body-size evolution in a phylogenetic (rather than strictly temporal) context, as well as developing methods for interpreting the resultant patterns. -
LSNY Proceedings 54-57, 1941-1945
Nf\- i\l HARVARD UNIVERSITY LIBRARY OF THE Museum of Comparative Zoology \ - .>v 4 _ ' /I 1941-1945 Nos. 54-57 PROCEEDINGS OF THE . LINNAEAN SOCIETY OF NEW YORK For the Four Years Ending March, 1945 Date of Issue, September 16, 1946 J • r'-' ;; :j 1941-1945 Nos. 54-57 PROCEEDINGS OF THE LINNAEAN SOCIETY OF NEW YORK For the Four Years Ending March, 1945 Date of Issue, September 16, 1946 S^t-, .7- Table of Contents Some Critical Phylogenetic Stages Leading to the Flight of Birds William K. Gregory 1 The Chickadee Flight of 1941-1942 Hustace H. Poor 16 The Ornithological Year 1944 in the New York City Region John L. Bull, Jr. 28 Suggestions to the Field Worker and Bird Bander Avian Pathology 36 Collecting Mallophaga 38 General Notes Rare Gulls at The Narrows, Brooklyn, in the Winter of 1943-1944 40 Comments on Identifying Rare Gulls 42 Breeding of the Herring Gull in Connecticut — 43 Data on Some of the Seabird Colonies of Eastern Long Island 44 New York City Seabird Colonies 46 Royal Terns on Long Island 47 A Feeding Incident of the Black-Billed Cuckoo 49 Eastern Long Island Records of the Nighthawk 50 Proximity of Occupied Kingfisher Nests 51 Further Spread of the Prairie Horned Lark on Long Island 52 A Late Black-Throated Warbler 53 Interchange of Song between Blue-Winged and Golden-Winged Warblers 1942- 53 Predation by Grackles 1943- 54 1944- Observations on Birds Relative to the Predatory New York Weasel 56 Clinton Hart Merriam (1855-1942) First President of the Linnaean Society of New York A.