Spring 2012 Lab Notes

Total Page:16

File Type:pdf, Size:1020Kb

Spring 2012 Lab Notes Editors Thomas M. Moses | Shane F. McClure DIAMOND laboratory recently examined two type Artificially Irradiated Type IIb IIb green brilliants, a 5.84 ct pear shape and a 0.30 ct round, that were color Saturated blue color is rare in natural graded as Fancy Dark gray-yellowish diamond, and various treatment methods green and Fancy Light yellow-green, have been developed to introduce or respectively (figure 2). enhance this effect. The more common Both were very clean microscopically. techniques include the annealing of type In cross-polarized light, the pear showed IIb diamonds under high-pressure/high- the tatami strain typical of a natural temperature (HPHT) conditions and the diamond. The round brilliant did not high-energy beam irradiation of light- exhibit any strain, but did show subtle colored type Ia/IIa diamonds. In the New color zoning (figure 3). DiamondView York laboratory, we recently examined a imaging of the pear shape revealed blue very rare case of a type IIb diamond artifi - luminescence with dislocations (straight cially irradiated to enhance its blue color. lines), indicating a natural diamond, This modified step-cut shield (13.70 Figure 1. The Fancy Deep green-blue while the round brilliant displayed a 10.75 5.09 mm) weighed 4.13 ct and ¥ ¥ color of this 4.13 ct type IIb diamond typical HPHT-synthetic growth pattern was color graded Fancy Deep green-blue is due to artificial irradiation. (figure 4). Spectroscopic analysis con - (figure 1). It displayed a clear color firmed a natural color origin for the pear concentration in the culet, an important and an as-grown color for the round visual indication of artificial irradiation. transmission window in the green–light brilliant. Both were verified as type IIb by Infrared absorption spectroscopy re - blue region. From these observations, the boron bands in their mid-infrared vealed a typical spectrum for a type IIb we confirmed that this diamond had spectra at ~2927 and ~2801 cm -1. diamond, with an intense 2800 cm -1 been artificially irradiated to improve Dislocations in a natural diamond peak corresponding to an optically its color. Strong plastic deformation occur during plastic deformation, which active boron concentration of ~40 ppb. indicated by high strain suggested that usually creates a brown color. In type A type IIb diamond with this size and the diamond had a significant brown IIb diamonds, the same process adds a boron concentration usually has a clear component before the treatment. This gray component to the blue color. In blue color (with a grayish or brownish also explains the strong green coloration this pear-shaped stone, however, plastic component, depending on the intensity observed after irradiation. deformation also contributed a yellow of plastic deformation) but not enough Type IIb diamonds are rarely irradiated component. The resulting combination saturation for a Fancy Deep grade. The to improve their color. This unusual of yellow and blue produced the 5.84 ct absorption spectrum in the UV-Vis sample allowed us the opportunity to diamond’s yellowish green bodycolor. region at liquid-nitrogen temperature examine the interaction of a vacancy Interestingly, the light yellow-green showed strong GR1 absorption and a defect (GR1) with other defects in a type synthetic diamond had a different cause weak 666.7 nm peak, resulting in a IIb diamond. of color. In addition to boron bands, a Wuyi Wang and Paul Johnson small amount of single substitutional nitrogen was detected at 1344 cm -1 in Editors’ note: All items were written by staff Type IIb Green, the mid-infrared spectrum. An earlier members of GIA laboratories. Natural and Synthetic study reported mixed type IIb + Ib syn - GEMS & G EMOLOGY , Vol. 48, No. 1, pp. 47 –52, Type IIb diamonds are typically blue, thetic diamonds with blue and yellow http://dx.doi.org/10.5741/GEMS.48.1. 47 . resulting from boron defects, and it is growth sectors (J. E. Shigley et al., “Lab- © 2012 Gemological Institute of America very unusual to see a distinct green color grown colored diamonds from Chat - in such diamonds. The New York ham Created Gems,” Summer 2004 LAB NOTES GEMS & G EMOLOGY SPRING 2012 47 G&G , pp. 128–145). The article pro - posed that the combination of these growth sectors produced a green or grayish green color in faceted samples. In the 0.30 ct synthetic diamond re - ported here, the same coloring mecha - nism—the com bined effect of a boron-dominated sector and an iso - lated-nitrogen sector—caused the yel - low-green bodycolor. In both samples, the cutting orientation was critical to the proper mixing of the blue and yel - low components. Therefore, other nat - ural and synthetic diamonds con taining Figure 2. These type IIb samples consist of a Fancy Dark gray-yellowish blue and yellow color com ponents may green natural diamond (5.84 ct, left) and a Fancy Light yellow-green syn - not show a green bodycolor. thetic diamond (0.30 ct, right). These type IIb specimens demon - strate that plastic deformation or a combination of boron and nitrogen defects can result in unexpected green coloration at the hand of a skilled diamond cutter. Kyaw Soe Moe With Unusual Color Zoning An optical center with a broad absorp - tion band at ~480 nm is occasionally observed in some natural yellow-orange diamonds, as well as in “chameleon” diamonds. Yet little is known about this feature’s atomic structure or its mecha - Figure 3. In cross-polarized light, the pear shape showed the tatami strain nism of formation in natural diamonds. found in natural diamond (left, magnified 30×), while the synthetic round In the New York laboratory, we recently brilliant did not feature any strain but did show subtle color zoning (right, encountered a particularly interesting magnified 55×). manifestation of this optical center. A 0.50 ct rectangular diamond (4.43 ¥4.29 ¥2.80 mm) was color graded Fancy Intense orange-yellow. Its absorption spectrum in the mid-infrared region showed moderate concentration of A- form nitrogen and some unassigned peaks. A strong absorption band at ~480 nm, detected in the UV-Vis spectrum at liquid-nitrogen temperature, appeared to be the cause of the intense orange- yellow color. An outstanding feature of this diamond, visible during microscopic examination, was its distinct color zoning. The orange-yellow color was concen - trated in parallel zones separated by near-colorless areas (figure 5). This banded color distribution was matched by the Figure 4. DiamondView imaging of the pear shape revealed blue lumines - diamond’s fluorescence reaction to cence and dislocations corresponding to a natural origin (left), while the long-wave UV radiation. The orange- round brilliant showed growth zoning indicative of an HPHT-grown syn - yellow color zones showed very strong thetic diamond (right). yellow -orange fluorescence, while the 48 LAB NOTES GEMS & G EMOLOGY SPRING 2012 Large EMERALD with Gota de Aceite Structure Gota de aceite (Spanish for “drop of oil”) is a transparent angular or hexag - onal growth structure rarely seen in emerald (R. Ringsrud, “Gota de aceite : Nomenclature for the finest Colom - bian emeralds,” Fall 2008 G&G , pp. 242–245). The New York laboratory had the opportunity to examine a 24.25 ct Figure 5. The orange-yellow color emerald showing this phenomenon in this 0.50 ct diamond is concen - (figure 7). trated in parallel zones separated Microscopic observation revealed by near-colorless bands. transparent growth structures with an oily appearance throughout the stone (figure 8, left). The effect could even be near-colorless zones displayed strong blue seen with the unaided eye. Some of the Figure 7. This 24.25 ct Colombian fluorescence (figure 6). Micro scopic obser - structures displayed six well-defined emerald showed the rare gota de vation with crossed polarizers showed arms intercalated with six growth aceite growth structure. little internal strain, and there was no sectors, forming a 12-sided outline observable strain variation between the (figure 8, right); others showed an different color zones. From these obser - angular outline without arms. These Colom bian emerald. Individual and vations and the well-known fact that the structures occurred as individuals or in compact groups of colorless, transpar - 480 nm center luminesces yellow-orange elongated groups. The c-axis of each ent prismatic inclusions were identi - to UV radiation, it became clear that the growth structure was parallel to the fied by Raman spectros copy as quartz 480 nm center was distributed with a optic axis of the host emerald. Such (see photo in the G&G Data Deposi - zoned structure. It was also obvious that columnar growth zoning may have been tory at gia.edu/gandg), a well-known this banded structure was not associated developed by the parallel growth of inclusion in Colom bian emerald but with plastic deformation, a very common numerous sub-crystals, which were not previously reported in gota de cause of color zoning in natural diamonds. overgrown by the host emerald (E. J. aceite specimens. The stone also con - While the origin of the unusual distri - Gübelin and J. I. Koivula, Photoatlas tained strong planar color zoning, as bution of the 480 nm center in this of Inclusions in Gemstones , Vol. 3, well as partially healed fissures and diamond is unknown, the skillful orien - Opinio Publishers, Basel, Switzerland, fractures that showed evidence of clar - tation of the color banding by the cutter 2008, pp. 43 3– 434). ity enhancement. produced a face-up appearance that The sample’s jagged two- and Viewed in diffused light, the emerald’s received a Fancy Intense color grade. three-phase inclusions and spectro - green color was clearly concentrated Marzena Nazz scopic features confirmed it was a within the growth structures described Figure 6.
Recommended publications
  • The Journal of Gemmology Data Depository Photomicrographs To
    The Journal of Gemmology Data Depository Photomicrographs to accompany the article: Hänni H.A., Brunk R. and Franz L. 2021. An investigation of grinding hardness of some ornamental stones. Journal of Gemmology, 37(6), 2021, 632–643, https://doi.org/10.15506/JoG.2021.37.6.632. The following photomicrographs of thin sections of the samples were made with a Leica DFC490 camera mounted on a Leica DMRD polarising microscope with transmitted light. For each sample, figure A shows the sample in plane-polarised light (II Pol.) and figure B with crossed polarisers (X Pol.); the sample numbers correspond to those in the article. Photomicrographs © L. Franz. 1 1 Aventurine quartz, green: Foliated matrix with aligned quartz (Qz) grains, fuchsite (Fu) tablets and accessory zircon (Zrn). 2 2 Aventurine quartz, orangey red: Mylonitic fabric with quartz (Qz) ribbons and recrystallized grains as well as intergrowths of muscovite with hematite (Ms & Hem). 3 3 Chalcedony, light grey: Intensely interlocked chalcedony (Chc) crystals with random orientation. 4 4 Chrysoprase: In a matrix of tiny chalcedony (Chc) and quartz (Qz) crystals, larger quartz aggregates occur. In microfractures, palisade-shaped chalcedony crystals and quartz grains formed. 5 5 Dumortierite: A banded texture with layers rich in dumortierite (Dum), dumortierite and quartz (Dum & Qz), quartz (Qz) and tourmaline (Tur). 6 6 Granite: The holocrystalline fabric is made up of subhedral plagioclase (Pl), orthoclase (Or), biotite (Bt) and anhedral quartz (Qz). 7 7 Green quartz: A granoblastic texture made up of large quartz (Qz) crystals as well as a microfolded layer of fuchsite (Fu). 8 8 Heliotrope (bloodstone): Green, brown and colourless accumulations of chalcedony (Chc) are recognizable.
    [Show full text]
  • Wetedge Catalog
    PRODUCT CATALOG 1 OUR STORY 3 HOW DID WE FACILITIES 4 GET HERE? PRODUCT LINE Years ago our founder, Laurence Turley, PRIMERA STONE 8 started his career in the mining industry. His worldwide experience in mining led SERENITY STONE 12 him to source exclusive materials from PRISM MATRIX 14 remote regions of the globe. In the early 80’s he focused his energy on the SIGNATURE MATRIX 17 pool industry and later formed Wet Edge Technologies. LUNA QUARTZ 21 Wet Edge Technologies has grown into ALTIMA 25 an industry leader through constant WATER COLOR HUE GUIDE 26 innovation in manufacturing, sourcing and application of our products. We THANK YOU 30 have introduced many new concepts and materials into the pool industry. These new additions enhance both the beauty and durability of our pool finishes. wetedgetechnologies.com 3 THE WET EDGE DIFFERENCE The stones used in our products have been shaped by water over millennia. Their roundness comes from the rushing water of rivers, the ebb and flow WESTERN PRODUCTION DRYING & SCREENING PLANT of tides, the endless motion of ocean waves, the ARIZONA MISSISSIPPI slow march of glacial movement and countless cycles of ice melting. We go to great lengths and expense to discover, recover and import these exotic stones from all over the globe. The roundness of our stones give you the smoothest pool finishes possible. Additionally, we control all aspects of sourcing, sizing and bagging our pebbles to ensure consistency and quality. Our proprietary admixtures used in all Wet Edge products fortify strength and bonding quality of each pool finish, giving you the longest lasting pool finish available.
    [Show full text]
  • Crystal Structure of Triclinic Lazurite V
    Crystallography Reports, Vol. 42, No.6, 1997, pp. 938-945. Translatedfrom Kristallograftya, Vol. 42, No.6, 1997, pp. 1014-1021. Original Russian Text Copyright@ 1997 by Evsyunin, Sapozhnikov, Kashaev, Rastsvetaeva. Crystal Structure of Triclinic Lazurite v. G. Evsyunin*, A. N. Sapozhnikov**, A. A. Kashaev***, and R. K. Rastsvetaeva**** Institute of the Earth's Crust, Siberian Division, Russian Academy of Sciences, * ul. Lermontova 128, Irkutsk, 664033 Russia Vinogradov Institute of Geochemistry and Analytical Chemistry, Siberian Division, ** Russian Academy of Sciences, ul. Favorskogo la, Irkutsk, 664033 Russia Irkutsk Pedagogical Institute, Irkutsk, 664033 Russia *** Shubnikov Institute of Crystallography, Russian Academy of Sciences, **** Leninskii pro 59, Moscow, 117333 Russia Received November 11, 1996 Abstract-The structure of triclinic lazurite from the Malaya-Bystraya deposit (Southern Baikal area) has been determined (sp. gr. PI, Rhkl =0.061,5724 reflections, 210 crystallographically nonequivalent atoms). The form of the incorporation of a sulfur atom into the structure and the character of the displacement and substitution modulations of all the structure atoms have also been determined. INTRODUCTION S04-groups have two orientations that differ by a 90°_ The mineral lazurite has been known in Europe rotation about the fourfold axis. Thus, the form of the since the late 13th century. Since then, it has attracted incorporation of S atoms into the structure and the widespread attention, in particular, as a valuable orna- interpretation of the specific features of this structure mental color stone and as a source of high-quality blue reflected in the presence of superstructural reflections pigment. Being related to the sodalite group, lazurite on the diffraction patterns of lazurite stimulate the fur- has been known for quite a long time as a cubic min- ther structural study of this mineral.
    [Show full text]
  • Stability of the Modulated Structure of Baœkal Lazurite and Its Recrystallization at a Temperature of 600°C Over a Wide Range of Sulfur Dioxide Fugacities V
    Crystallography Reports, Vol. 50, Suppl. 1, 2005, pp. S1–S9. Original Russian Text Copyright © 2005 by Tauson, Sapozhnikov. STRUCTURE OF INORGANIC COMPOUNDS Stability of the Modulated Structure of BaÏkal Lazurite and Its Recrystallization at a Temperature of 600°C over a Wide Range of Sulfur Dioxide Fugacities V. L. Tauson and A. N. Sapozhnikov Vinogradov Institute of Geochemistry, Siberian Division, Russian Academy of Sciences, ul. Favorskogo 1a, Irkutsk, 664033 Russia e-mail: [email protected] Received February 8, 2005 Abstract—The stability of three-dimensional incommensurate modulation in cubic lazurite from the BaÏkal region is experimentally investigated at T = 600°C. It is found that the X-ray photoelectron spectra of the annealed samples exhibit a peak corresponding to sulfite and a split peak associated with the (Na,Ca)SO4 sul- fate. It is assumed that the splitting is caused by the ordering of the complexes not involved in the framework. This assumption is confirmed by the presence of a similar split peak in the X-ray photoelectron spectra of tri- clinic lazurite. It is demonstrated that the initial modulation is retained at the fugacity f = 8 × 10–3 bar. The SO2 decisive factors responsible for the retention of the three-dimensional incommensurate modulation are the tem- perature and the fugacity of sulfur dioxide. The latter quantity should be close to the stability boundary of the basic lazurite structure. The growth and transformation mechanisms of the modulation formation are consid- ered. © 2005 Pleiades Publishing, Inc. INTRODUCTION mum concentrations of sulfide sulfur and potassium are typical of the monoclinic modification.
    [Show full text]
  • Download PRIM II Refractive Index Chart
    What is Refractive Index (R.I.)? What do the numbers Light travels at different speeds through in the brackets on this chart mean? different types of gemstones due to The numbers in the brackets indicate the Important Note structure of the stone. This affects the tolerance level for readings derived from All testers have been calibrated during the manufacturing process and requires no amount of light refraction and causes the the product. These slight fluctuations further adjustment or user intervention. Self-calibration should not be attempted and is bending of light. The slower the light's indicating a tolerance level are necessary not advised. speed in the material; the greater the due to the optical sensor and electronic REFRACTIVE INDEX CHART FOR bending effect. The refractive index of the components in the product. To minimize any risks associated, users should contact Presidium at gemstone can be defined as the ratio [email protected] or its service center for assistance. PRESIDIUM REFRACTIVE INDEX METER II between the speed of light in vacuum versus the speed of light in gemstone. In the event that users require the manufacturer to re-calibrate the unit, users will have to bear the associated to and fro freight cost for shipping of the unit to the Presidium service center. Presidium Instruments Please note that the gemstone tested on this product must have a flat surface and should Unit 7, 207 Henderson Road Singapore 159550 not be an opaque gemstone. www.presidium.com.sg Family Name of Stones Refractive Index Reading Family
    [Show full text]
  • The Origins of Color in Minerals Four Distinct Physical Theories
    American Mineralogist, Volume 63. pages 219-229, 1978 The origins of color in minerals KURT NASSAU Bell Laboratories Murray Hill, New Jersey 07974 Abstract Four formalisms are outlined. Crystal field theory explains the color as well as the fluores- cence in transition-metal-containing minerals such as azurite and ruby. The trap concept, as part of crystal field theory, explains the varying stability of electron and hole color centers with respect to light or heat bleaching, as well as phenomena such as thermoluminescence. The molecular orbital formalism explains the color of charge transfer minerals such as blue sapphire and crocoite involving metals, as well as the nonmetal-involving colors in lazurite, graphite and organically colored minerals. Band theory explains the colors of metallic minerals; the color range black-red-orange- yellow-colorless in minerals such as galena, proustite, greenockite, diamond, as well as the impurity-caused yellow and blue colors in diamond. Lastly, there are the well-known pseudo- chromatic colors explained by physical optics involving dispersion, scattering, interference, and diffraction. Introduction The approach here used is tutorial in nature and references are given for further reading or, in some Four distinct physical theories (formalisms) are instances, for specific examples. Color illustrations of required for complete coverage in the processes by some of the principles involved have been published which intrinsic constituents, impurities, defects, and in an earlier less technical version (Nassau, 1975a). specific structures produce the visual effects we desig- Specific examples are given where the cause of the nate as color. All four are necessary in that each color is reasonably well established, although reinter- provides insights which the others do not when ap- pretations continue to appear even in materials, such plied to specific situations.
    [Show full text]
  • Origin and Structural Character of Haüyness in Spinel Dunite Xenoliths from La Palma, Canary Islands
    American Mineralogist, Volume 85, pages 1397–1405, 2000 Origin and structural character of haüyness in spinel dunite xenoliths from La Palma, Canary Islands ERIK WULFF-PEDERSEN,1,* ELSE-RAGNHILD NEUMANN,2,† ERNST A.J. BURKE,3 RICCARDO VANNUCCI,4 PIERO BOTTAZZI,4 LUISA OTTOLINI,4 JON GJØNNES,5 AND VIDAR HANSEN5 1Mineralogical-Geological Museum, University of Oslo, Sarsgaten 1, N-0562 Oslo, Norway 2Department of Geology, P.O. Box 1047 Blindern, N-0316 Oslo, Norway 3Faculty of Earth Sciences, Vrije Universiteit, De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands 4CNR-Centro di Studio per la Cristallochimica e la Cristallografia, via Bassi 4, I-27100 Pavia, Italy 5Center of Material Science, Forskningsparken, Gaustadalleen 21, N-0371 Oslo, Norway ABSTRACT Two spinel dunite xenoliths (Fo89.8–91.2 in olivine) from La Palma contain minor amounts (<1%) of a pale-blue sodalite-group mineral with haüyne/lazurite chemistry. Selected-area electron diffrac- tion (SAED) patterns of this phase indicate a cubic unit cell with dimensions 9.12 ± 0.02 Å, and – space group P43n. Superstructure spots along three <110> directions are common, implying com- mensurate or incommensurate modulations along <110> directions. Raman spectra show peaks typical of both lazurite and haüyne. It is concluded that the mineral has a structure intermediate between those of pure lazurite and pure haüyne, and it is here referred to as haüyness. The haüyness occurs together with strongly nepheline-normative glass in thin veinlets (<0.1 mm), in interstitial glass pockets, and as inclusions in olivine porphyroclasts. To our knowledge lazurite or haüyne has not previously been described in mantle rocks.
    [Show full text]
  • GEOLOGY and ORE 7 / 2007 Diamond to Date Has Just Been Report- Southern Boundary of Palaeoproterozoic Ed at 0.122 Carats
    GEMSTONES of GREENLAND Exploration and Mining in Greenland No. 7 - January 2007 GEOLOGY AND ORE Gemstones of greenland Renewed focus on Greenland gem- Diamond occurrences in 53°W 52°W 51°W 50°W stones has been experienced since southern West Greenland . the turn of the century. Kangerlussuaq 67°N Two gemstone companies have Sisimiut demonstrated solid and continued interest in the potential of classical gemstones in Greenland in this peri- od. Diamonds and rubies are defi- nitely now in focus with the size of diamonds growing almost with every Kimberlitic occurrence Sarfartoq new exploration event. The largest Diamond occurrence GEOLOGY AND ORE 7 / 2007 diamond to date has just been report- Southern boundary of Palaeoproterozoic ed at 0.122 carats. deformation 66°N Rubies and pink sapphires are now at hand with large, high-quality stones in faceting as well as in carving types. 50 km Exploration activity targeted at both commodities may be approaching the Tupertalik Qaqqaarsuk next stage, with pre-feasibility studies Maniitsoq Greenland and production considerations. A number of other species of coloured gemstones and generally lower- Majuagaa 65°N priced semi-precious gem material have also been found, and these are often very much in demand locally as Diamonds well as internationally. Well-known examples are kornerupine, tugtupite, exploration data gathered to date. This lazurite and amazonite. Several multi- Exploration compilation is the common knowledge base coloured rock types have been pro- Diamonds are well-known from the 600 Ma for diamond exploration in West Green- duced on a small scale locally for many old North Atlantic province of carbonatites land.
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM\Lazurite.Wpd
    Cdbdladq1//8Lhmdq`knesgdLnmsg9K`ytqhsd From one of the world’s oldest mines in one of the world’s most remote and dangerous localities comes one of the best loved gemstone minerals, straight to your door! Our write-up explains the relationship of lazurite and lapis lazuli, Afghanistan’s legacy of lapis, and the fascinating history of its ancient mines. OVERVIEW PHYSICAL PROPERTIES Chemistry: (Na,Ca)8Si6Al6O24[(SO4),S,Cl,(OH)]2 Basic Sodium Calcium Aluminum Sulfate Chlorosilicate (Sodium Calcium Sulfate Chloroaluminosilicate Hydroxide) Class: Silicates Subclass: Tectosilicates Group: Sodalite Crystal System: Isometric (Cubic) Crystal Habit: Usually dodecahedral, occasionally cubic; most often in granular, compact, or massive form. Color: Azure-blue to violet-blue, occasionally greenish-blue. Luster: Dull to greasy Transparency: Usually opaque; occasionally translucent. Streak: Pale blue Refractive Index: 1.502-1.522 Cleavage: Poor in six directions Fracture: Uneven, brittle Hardness: 5.0-5.5 Specific Gravity: 2.4-2.5 Luminescence: None Distinctive Features and Tests: Best field marks are deep-blue color and association with pyrite [iron disulfide, FeS2]. Can be confused visually with sodalite [sodium aluminum chlorosilicate, Na8Al6Si6O24Cl2], which has coarser grain and paler color, and lazulite [basic magnesium aluminum phosphate, MgAl2(PO4)2(OH)2], which is softer and more dense. Dana Classification Number: 76.2.3.4.1 NAME The name “lazurite,” pronounced LAH-zhur-ite, stems from the Arabic lazaward, variously meaning “sky,” “heaven,” or “azure,” in reference to the mineral’s blue color. Lazurite has also been known as “cyaneus,” “ultramarine,” “lasurite,” “Lasurstein,” “lapis lazuli,” “lapis stone,” “sapphis,” and “sapphirus.” In European mineralogical literature, lazurite appears as lazurit and lazurita.
    [Show full text]
  • Volume 20 / No. 7-8 / 1987
    Volume 20 Nos. 7 & 8 July & October 1987 TheJournal of Gemmology GEMMOLOGICAL ASSOCIATION OF GREAT BRITAIN OFFICERS AND COUNCIL President: *Sir Frank Claringbull, Ph.D., F.lnst.P., FGS Vice-Presidents: J. R. H. Chisholm, M.A., FGA R. K. Mitchell, FGA Chairman: *D. J. Callaghan, FGA Vice-Chairman: *N. W. Deeks, FGA Honorary Treasurer: *N. B. Israel, FGA Members elected to Council: *A. J. Allnutt, M.Sc., J. A. W. Hodgkinson, FGA *J. B. Nelson, Ph.D., Ph.D., FGA D. Inkersole, FGA FRMS, F.Inst.P., FGA *E. M. Bruton, FGA B. Jackson, FGA W. Nowak, C.Eng., *C. R. Cavey, FGA *E. A. Jobbins, B.Sc., C.Eng., F.R.Ae.S., FGA L. F. Cole, FGA FIMM, FGA M. J. Q'Donoghue, P. J. E. Daly, B.Sc., C. B. Jones, FGA MA, FGS, FGA FGA *G. H. Jones, B.Sc., Ph.D., *P. G. Read, C.Eng., *A. E. Farn, FGA FGA MIEE, MIERE, FGA A. J. French, FGA D.G.Kent,FGA A. W. R. Round, FGA *R. R. Harding, B.Sc., D. M. Larcher, FGA E. Stern, FGA D.Phil, FGA D. Morgan, FGA *C. H. Winter, FGA J. W. Harris, B.Sc., M.Sc., Ph.D. * Members of the Executive Committee Branch Chairmen: Midlands Branch: P. J. West, FGA North-West Branch: S. G. Hill, FGA South Yorkshire & District Branch: G. A. Massie~ FGA Examiners: A. J. Allnutt, M.Sc., Ph.D., FGA D. G. Kent, FGA E. M. Bruton, FGA P. Sadler, B.Sc., FGS, FGA A. E. Farn, FGA K.
    [Show full text]
  • Bulletin 30, Gem Stone Resources of South Carolina
    GEM STONE RESOURCES OF SOUTH CAROLINA By CAMILLA K. McCAULEY BULLETIN NO. 30 DIVISION OF GEOLOGY STATE DEVELOPMENT BOARD COLUMBIA, SOUTH CAROLINA 1964 STATE DEVELOPMENT BOARD Columbia, South Carolina MEMBERS OF BOARD W. W. Harper Director J. Bratton Davis, Chairman Columbia Hampton G. Anderson Anderson Russell E. Bennett Cheraw „.,., „ Sumter Clifton Brown Elting L. Chapman, Jr. Florence John F. Clarkson Newberry W. K. Gunter, Jr. Gaffney A. Foster McKissick Easley Connie R. Morton Rock Hill R. RoyPearce Columbia Walter P. Rawl Gilbert Joseph P. Riley Charleston Thomas S. Taylor Orangeburg Stathy J. Verenes Aiken E. Craig Wall Conway Bernard Warshaw Walterboro R. M. Cooper (honorary) Wisacky mm mm* STATE DEVELOPMENT BOARD Columbia, South Carolina To The Honorable Donald S. Russell Governor of South Carolina Sir: Submitted herewith is State Development Board Bulletin 30, Gem Stone Resources of South Carolina. This report by Camilla K. McCauley was prepared as part of the Division of Geology's continuing program of investigation of the geo logy and mineral resources of the State. mi Sincerely, Walter W. Harper, Director Henry S. Johnson, Jr. , State Geologist 3H CONTENTS Page Abstract 1 Introduction 1 History and production 2 Occurrence 11 Igneous rocks 11 Metamorphic rocks 12 Aqueous solutions and organic accumulations 13 Placer deposits 13 South Carolina gem stone deposits 13 Beryl (emerald) 16 Beryl (other varieties) 16 Corundum (ruby and sapphire) 16 Diamond 17 Garnet 18 Quartz 18 S illimanit e 19 Topaz 19 Tourmaline 20 Zircon 20 Uses 26 Properties of gem stones 26 Mining and beneficiation methods 27 Prices 27 Reserves 28 29 Synthetics 29 Outlook 30 References 31 Index ILLUSTRATIONS Page Figure 1- Generalized geologic map of South Carolina 14 2.
    [Show full text]
  • Refractive Index Chart for Presidium Refractive Index
    REFRACTIVE INDEX CHART FOR PRESIDIUM REFRACTIVE INDEX METER II What is Refractive Index (R.I.)? What do the numbers Light travels at different speeds through in the brackets on this chart mean? different types of gemstones due to The numbers in the brackets indicate the structure of the stone. This affects the tolerance level for readings derived from amount of light refraction and causes the the product. These slight fluctuations bending of light. The slower the light's indicating a tolerance level are necessary speed in the material; the greater the due to the optical sensor and electronic bending effect. The refractive index of the components in the product. gemstone can be defined as the ratio between the speed of light in vacuum versus the speed of light in gemstone. Please note that the gemstone tested on this product must have a flat surface and should not be an opaque gemstone. Family Name of Stones Refractive Index Reading Family Name of Stones Refractive Index Reading Family Name of Stones Refractive Index Reading Moissanite 2.648 - 2.691 Spinel Spinel 1.702 - 1.762 Quartz Ametrine 1.544 - 1.553 Diamond 2.415 (±0.005) Spinel Synthetic Spinel 1.702 - 1.762 Beryl Aquamarine 1.560 (-0.016) - 1.600 (+0.010) Titanium Strontium Titanite 2.160 - 2.880 Garnet Garnet 1.696 - 2.030 Scapolite 1.536 - 1.579 Titanium Rutile 2.160 - 2.880 Garnet Grossularite 1.734 (-0.038, +0.012) Feldspar Aveturine 1.532 - 1.542 Cubic Zirconia 2.150 - 2.180 Vesuvianite Idocrase 1.700 (-0.012) - 1.723 (+0.011) Quartz Agate 1.530 - 1.540 Garnet G.G.G.
    [Show full text]