In Northeastern Illinois, USA, from 24 000 to 17 600 B

Total Page:16

File Type:pdf, Size:1020Kb

In Northeastern Illinois, USA, from 24 000 to 17 600 B Document generated on 09/23/2021 2:23 p.m. Géographie physique et Quaternaire Evidence for Stagnation of the Harvard Sublobe (Lake Michigan Lobe) in Northeastern Illinois, U.S.A., from 24 000 to 17 600 BP and Subsequent Tundra-Like Ice-Marginal Paleoenvironments from 17 600 to 15 700 BP Indices de la stagnation du sous-lobe glaciaire de Harvard (lobe du lac Michigan) dans le Nord-Est de l’Illinois, États-Unis, de 24 000 à 17 600 BP et paléoenvironnements des toundras marginales entre 17 600 et 15 700 BP Brandon B. Curry and Catherine H. Yansa Glacial History, Paleogeography and Paleoenvironments in Glaciated Article abstract North America Glacial deposits of the last glaciation associated with the Harvard sublobe Volume 58, Number 2-3, 2004 (Lake Michigan lobe) in northeastern Illinois, U.S.A., occur between sediment with dateable organics. The lower organics include fragments of Picea sp. as URI: https://id.erudit.org/iderudit/013145ar young as 24 000 ± 270 BP. The supraglacial organics occur sparsely in DOI: https://doi.org/10.7202/013145ar laminated silt and fine sand in landforms that are positioned relatively high on the landscape, such as deposits from ice-walled lakes. These terrestrial organics yield ages that are 2500 to 1300 14C years older than organics at the See table of contents base of sediment successions in nearby kettle basins. Basal 14C ages from four upland sites range from 17 610 ± 270 to 16 120 ± 80 BP. Our revised time-distance diagram of the Harvard sublobe now reflects a period of Publisher(s) stagnation from 24 000 to about 17 600 BP. The supraglacial lacustrine silt yielded plant macrofossil assemblages of primarily tundra plants, including Les Presses de l'Université de Montréal Salix herbacea and Dryas integrifolia. These plants likely grew in supraglacial and ice-marginal environments. The ostracode fauna include Cytherissa ISSN lacustris and Limnocythere friabilis. Geomorphic relations and ostracode 0705-7199 (print) ecology indicate that more than 17 m of ice buttressed some of the supraglacial 1492-143X (digital) lakes. Explore this journal Cite this article Curry, B. B. & Yansa, C. H. (2004). Evidence for Stagnation of the Harvard Sublobe (Lake Michigan Lobe) in Northeastern Illinois, U.S.A., from 24 000 to 17 600 BP and Subsequent Tundra-Like Ice-Marginal Paleoenvironments from 17 600 to 15 700 BP. Géographie physique et Quaternaire, 58(2-3), 305–321. https://doi.org/10.7202/013145ar Tous droits réservés © Les Presses de l'Université de Montréal, 2006 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research. https://www.erudit.org/en/ GPQ_58-2-3.qxd 20/06/06 09:56 Page 305 Géographie physique et Quaternaire, 2004, vol. 58, nos 2-3, p. 305-321, 9 fig., 2 tabl. EVIDENCE FOR STAGNATION OF THE HARVARD SUBLOBE (LAKE MICHIGAN LOBE) IN NORTHEASTERN ILLINOIS, U.S.A., FROM 24 000 TO 17 600 BP AND SUBSEQUENT TUNDRA-LIKE ICE-MARGINAL PALEOENVIRONMENTS FROM 17 600 TO 15 700 BP Brandon B. CURRY* and Catherine H. YANSA; respectively: Illinois State Geological Survey, 615 East Peabody Drive, Champaign, IL, 61820-6964, United States; Department of Geography, Michigan State University, 125 Natural Sciences Building, East Lansing, MI, 48824-1115, United States ABSTRACT Glacial deposits of the last glaciation associated with RÉSUMÉ Indices de la stagnation du sous-lobe glaciaire de Harvard the Harvard sublobe (Lake Michigan lobe) in northeastern Illinois, (lobe du lac Michigan) dans le Nord-Est de l’Illinois, États-Unis, de U.S.A., occur between sediment with dateable organics. The lower 24 000 à 17 600 BP et paléoenvironnements des toundras margi- organics include fragments of Picea sp. as young as 24 000 ± 270 BP. nales entre 17 600 et 15 700 BP. Les sédiments glaciaires associés The supraglacial organics occur sparsely in laminated silt and fine au sous-lobe de Harvard, dans le Nord-Est de l’Illinois, sont interca- sand in landforms that are positioned relatively high on the landscape, lés dans des sédiments dont la matière organique peut être datée. such as deposits from ice-walled lakes. These terrestrial organics Des fragments de Picea sp. sont présents dans les couches sous- yield ages that are 2500 to 1300 14C years older than organics at the jacentes et remontent au plus à 24 000 ± 270 BP. La matière orga- base of sediment successions in nearby kettle basins. Basal 14C ages nique sus-jacente est disséminée dans les limons laminés et les from four upland sites range from 17 610 ± 270 to 16 120 ± 80 BP.Our sables fins de dépôts de lacs de barrage glaciaire perchés. Cette revised time-distance diagram of the Harvard sublobe now reflects a matière organique livre des âges 14C qui sont de 2500 à 1300 ans period of stagnation from 24 000 to about 17 600 BP.The supraglacial plus vieux que la matière organique de la base des sédiments des lacustrine silt yielded plant macrofossil assemblages of primarily tun- marmites glaciaires (kettles). Les âges 14C de quatre sites perchés dra plants, including Salix herbacea and Dryas integrifolia. These vont de 17 610 ± 270 à 16 120 ± 80 BP.Notre révision du diagramme plants likely grew in supraglacial and ice-marginal environments. The distance-temps du sous-lobe de Harvard traduit l’existence d’une ostracode fauna include Cytherissa lacustris and Limnocythere fri- période de stagnation glaciaire entre 24 000 et 17 600 BP. Le limon abilis. Geomorphic relations and ostracode ecology indicate that more lacustre sus-jacent contient des assemblages macrofossiles de toun- than 17 m of ice buttressed some of the supraglacial lakes. dra, avec Salix herbacea et Dryas integrifolia. Ces plantes croissaient dans des milieux proches des glaces. Le contexte géomorphologique et l’écologie des ostracodes (Cytherissa lacustris et Limnocythere fria- bilis) indiquent que certains lacs supraglaciaires étaient étayés par plus de 17 m de glace. Manuscrit reçu le 11 juillet 2005 ; manuscrit révisé accepté le 13 janvier 2006 (publié le 2e trimestre 2006) * E-mail address: [email protected] GPQ_58-2-3.qxd 20/06/06 09:56 Page 306 306 B. B. CURRY and C. H.YANSA INTRODUCTION westerly flow of the Princeton sublobe (Fig. 1A), but the north- ern part assumed a north-south trend characteristic of the Joliet The advance and retreat of the southern margin of the sublobe. The difference in moraine orientation likely reflects Laurentide Ice Sheet has been attributed to either climatic the melting Huron-Erie lobe. The interaction of these lobes forcing factors associated with long-term ENSO cyclicity of ceased during the late Livingston Phase as suggested by the about 800 years (Wang et al., 2000, 2003) or to internal gla- north-to-south orientation of the Minooka Moraine. The Barlina cial mechanisms (Mickelson et al., 1983; Dyke and Prest, Moraine was formed by the Harvard sublobe (Fig. 2C) although 1987; Lowell et al., 1999). Testing hypotheses such as these its continuity with the aforementioned moraines associated with requires well-dated deposits associated with both glacier the Livingston Phase was obliterated by fluvial erosion during advance and retreat. Time-distance diagrams, used to illus- the subsequent Woodstock Phase. trate dynamic ice margins, are often hampered by a few unver- ified, and in some cases, unreliable radiocarbon ages, espe- During the Woodstock Phase, the Harvard and Joliet cially those obtained from bulk lake sediments (Grimm and sublobes formed the Woodstock Moraine and basal portion of Maher, 2002). Inaccuracies will eventually be resolved as key the West Chicago Moraine, respectively (Fig. 2D). The Wood- sites are dated by newer techniques such as accelerator mass stock Moraine is incised by a relatively steep-walled channel spectrometry (AMS). eroded by the Fox River, the primary drainage in the eastern half of the study area. Downstream of this breach are several large Terrestrial plant and faunal remains are present in deglacial point bars and an abandoned oxbow-like channel formed by sediments in northeastern Illinois. The aim of this investigation initial erosion of the Woodstock Moraine and subsequent aggra- is to describe the sedimentary successions in these settings, dation in the Fox River valley.These features were attributed to describe the flora and fauna, and discuss the significance of the the Fox River Torrent by Alden (1904) and Curry (2005) and inferred paleoenvironments. The reconstructions indicate that possibly formed at about the same time as the Kankakee Torrent the Harvard sublobe of the Lake Michigan lobe stagnated from described by Ekblaw and Athy (1925), Bretz (1940) and Willman about 24 000 to 17 600 BP.Probably the most significant feature and Payne (1942). Deposits that may be associated with the of this research is the discovery of terrestrial materials in mate- Kankakee/Fox River torrents have been radiocarbon dated at rial not previously known to yield reliable radiocarbon ages, and about 16 000 to 15 600 BP (Hajic and Johnson, 1989; Hansel the potential to more accurately date deglacial successions. and Johnson, 1996).The last glaciation (Michigan Subepisode) The sites described herein were discovered during map- in Illinois ended with the Crown Point Phase (not shown) and ping of surficial glacial deposits in the urban areas west of formation of the Valparaiso, Tinley, and Lake Border Moraines. Chicago, Illinois (Curry et al., 2001; Grimley and Curry, 2001; Ice finally retreated from Illinois by about 14 000 BP (Hansel Curry, 2005, in review).
Recommended publications
  • Introduction to Geological Process in Illinois Glacial
    INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base.
    [Show full text]
  • The Physical Geography of the Illinois River Valley Near Peoria
    The Physical Geography of the Illinois River Valley Near Peoria An Updated Self-Conducted Field Trip using EcoCaches and GPS Technology Donald E. Bevenour East Peoria Community High School Illinois State University Copyright, 1991 Updated by: Kevin M. Emmons Morton High School Bradley University 2007 Additional Support: Martin Hobbs East Peoria Community High School Abstract THE PHYSICAL GEOGRAPHY OF THE ILLINOIS RIVER VALLEY NEAR PEORIA: AN UPDATED SELF CONDUCTED FIELD TRIP USING ECOCACHES AND GPS TECHNOLOGY This field trip has been written so that anyone can enjoy the trip without the guidance of a professional. The trip could be taken by student groups, families, or an individual; at least two people, a driver and a reader/navigator, are the recommended minimum number of persons for maximum effectiveness and safety. Subjects of discussion include the Illinois River, the Bloomington, Shelbyville, and LeRoy Moraines, various aspects of the glacial history of the area, stream processes, floodplains, natural vegetation, and human adaptations to the physical environment such as agriculture, industry, transportation, and growth of cities. Activities include riding to the top of a lookout tower, judging distance to several landmark objects, and scenic views of the physical and cultural environment. All along the trip, GPS coordinates are supplied to aid you in your navigation. Information on EcoCaches is available at http://www.ilega.org/ Why take a self-guided field trip? A self-guided field trip is an excellent way to learn more about the area in which one lives. Newcomers or visitors to an area should find it a most enlightening manner in which to personalize the new territory.
    [Show full text]
  • Rural Historic Structural Survey of Wilmington Township Will County, Illinois
    Rural Historic Structural Survey of Wilmington Township Will County, Illinois Rural Historic Structural Survey of Wilmington Township Will County, Illinois December 2009 for Will County Land Use Department and Will County Historic Preservation Commission Wiss, Janney, Elstner Associates, Inc. Wiss, Janney, Elstner Associates, Inc. 330 Pfingsten Road Northbrook, Illinois 60062 (847) 272-7400 www.wje.com Wiss, Janney, Elstner Associates, Inc. Rural Historic Structural Survey Wilmington Township Will County, Illinois TABLE OF CONTENTS Chapter 1 – Background and Methodology ! Chapter 2 – Context History of the Rural Survey Area " # $ % # & " ' ( ) '% # ! * " ) + !, Chapter 3 – American Rural Architecture - ./ ) ' ./ 0 $, 0 ' ' $& ) ' &$ " &1 Chapter 4 – Survey Summary and Recommendations - ' ' 21., 3(, ( ' (! - + ) 4" ) 4 5 (/ (3 " 67 1 " 6!7 ,! " 6.7 ,1 % 6 * " ,3 5 4 &(, ,3 4 $&$ , 4 $(1 8 4 $&3 ! # 4 $(( . 4 $,& . 96 4 &( $ 0 & +4 $/& / +4 $/$ / 4 &/( ( %70 +4 $,! 1 M 4 $& 3 Will County Rural Historic Structural Survey Wilmington Township Wiss, Janney, Elstner Associates, Inc. R* R+ 4 $1! !, 6 ! .! 2+ - 2 < - 6 #)% 6 M* 0 < !M* " 29 ' .M* " 2) ' = '" $M* " 2+ ' ' &M* " 23.3 - /M* " 2< 0 (M* " 28 Will County Rural Historic Structural Survey Wilmington Township Wiss, Janney, Elstner Associates,
    [Show full text]
  • Lesson 9. Sand Forests, Savannas, and Flatwoods
    LESSON 9. SAND FORESTS, SAVANNAS, AND FLATWOODS Wind blown sand deposits are relatively common in the northern half of Illinois accounting for about 5 percent of the land area of the state (Figure 9.1). Most occur on glacial outwash plains resulting from erosional events associated with Wisconsin glaciation. The most extensive are the Kankakee sand deposits of northeastern Illinois, the Illinois River sand deposits in the central part of the state, and the Green River Lowlands in northwestern Illinois. Other sand deposits are associated with the floodplain of the Mississippi River in northwestern Illinois, and the Chicago Lake Plain and beaches along Lake Michigan in northeastern Illinois. The Kankakee sand deposits were formed about 14,500 years ago as glacial moraines were breached during a major re-advance of the Wisconsin Glacier. These glacial meltwaters were mostly discharged into the Kankakee River Valley creating the Kankakee Torrent. The Kankakee Valley could not accommodate this extensive flood and at the peak of the flow the water spread out over the surrounding uplands forming a series of large glacial lakes (Lake Watseka, Lake Wauponsee, Lake Pontiac, and Lake Ottawa). During this period glacial sands were deposited in these lakes. Large quantities of sand were removed during the Kankakee Torrent, but extensive deposits were left behind forming the Kankakee Sand Area Section of the Grand Prairie Natural Division. The Illinois River sand deposits were also formed during the Kankakee Torrent. The outlet channel for the Kankakee Torrent was along the Illinois River Valley and the Torrent was entrenched in bedrock, moving rapidly and scouring broad areas of the bedrock.
    [Show full text]
  • Quaternary Geology of the Indiana Portion of the Eastern Extent of The
    Quaternary Geology of the Indiana Portion of the Eastern TODD A. THOMPSON, STATE GEOLOGIST Extent of the South Bend 30- x 60-Minute Quadrangle By José Luis Antinao and Robin F. Rupp Bloomington, Indiana OVERVIEW OF THE GEOLOGY, STRATIGRAPHY, AND MORPHOLOGY 2021 The map area is underlain by unconsolidated deposits of Pleistocene and Holocene age having thicknesses greater than 350 ft north of South Bend, and more than 450 ft -86°7'30" 580000E -86°0'00" -86°15'00" 5 575 northeast of Mishawaka, usually reaching 200 ft elsewhere. All surficial deposits are -86°22'30" 5 5 565 70 -86°30'00" 5 5 55 60 800 45 50 800 mid- to late Wisconsin Episode or younger (<50,000 years ago, or <50 ka), occurring Qma 31 Qas Qac 800 as a minor (<100 ft) cover above a thicker pre-Wisconsin package. A thin, Qml Qwv2 % Dreamwold ? Qwe1 Qwv1 Qwpp1 Heights Qwe1 Qwe1 discontinuous cover of postglacial alluvial, lacustrine, paludal, and aeolian deposits Qwv3 800 800 41°45'00" Qac5 % Qwe1 41°45'00" Qao5 % not exceeding 25 ft caps the glacial sequence. 80 Qwe2 700 800 Qwpp3 Qwe1 Qao5 % 23 Qwpp3 800 Landforms and near-surface deposits reflect the interplay between the Saginaw and I 800 ND % Qao3 I % AN Qao5 Lake Michigan Lobes of the Laurentide Ice Sheet. In the Mishawaka fan upland Qwpp2 A T Granger INDI OL ANA TOLL RD 80 L RD Qwpp2 Qwpp2 Qao4 (Bleuer and Melhorn, 1989) at the center of the map, the morphology is marked by a 31 ? Qac 46 Qml BUS 46 shallow (30–50 ft depth) pre-Wisconsin buried surface, similar to the one present in 20 Qao4 Roseland 800 20 Qao4 800 800 southwestern Elkhart County (Fleming and Karaffa, 2012).
    [Show full text]
  • A Thesis Entitled the Chronology of Glacial Landforms Near Mongo
    A Thesis entitled The Chronology of Glacial Landforms Near Mongo, Indiana – Evidence for the Early Retreat of the Saginaw Lobe by Thomas R. Valachovics Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Geology ___________________________________________ Timothy G. Fisher, PhD., Committee Chair ___________________________________________ James M. Martin-Hayden, PhD., Committee Member ___________________________________________ Jose Luis Antinao-Rojas, PhD., Committee Member ___________________________________________ Cyndee Gruden, PhD, Dean College of Graduate Studies The University of Toledo August 2019 Copyright 2019 Thomas R. Valachovics This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Chronology of Glacial Landforms Near Mongo, Indiana – Evidence for the Early Retreat of the Saginaw Lobe by Thomas R. Valachovics Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Geology The University of Toledo August 2019 The Saginaw Lobe of the Laurentide Ice Sheet occupied central Michigan and northern Indiana during the last glacial maximum. Evidence exists that the Saginaw Lobe retreated earlier than its neighboring lobes but attempts to constrain this retreat using radiocarbon dating methods has led to conflicting results. Optically stimulated luminescence dating (OSL) offers an alternative methodology to date deglacial deposits. The Pigeon River Meltwater Channel (PRMC) was formed by a large, erosional pulse of meltwater that exited the ice sheet and eroded through the deglaciated landscape previously occupied by the Saginaw Lobe. Sediments that partially fill the PRMC were dated using OSL. Minimum ages for the retreat of the Saginaw Lobe were acquired to test the hypothesis that the Mongo area is ice free by 23 ka.
    [Show full text]
  • Illinois State Geological Survey Guide Leaflets
    3tate of Illinois Department of Registration and Education STATE GEOLOGICAL SURVEY DIVISION Morris M. Leighton, Chief • " t .•· , · r · - .. ,·· ' L). ( , .. •\.! l.. 1- . ·-· I - '-- : L . '-. L I I L - fJIJI[)I IJf/\flllf ~ill<fl\ GRUNDY COUNTY MOORIS AND WILMIOOTON QUAOOAtliLES Leader Gilbert o. Raasch Urbana, Illinois October 26, 1949 GUIDE LEAFLET 46-E HOST: WILMIOOTON HIGH SCHOOL ITINERARY o.o Street intersection at southwest corner of high school. Straight ahead {south) one block, to u. S. Highway Alternate No. 66. Turn left {east) on highway. 2.3 §TOP NO. 1. - Relatively flat bottom of channelway of glacial Kankakee Torrent. Wall of channelway appears prominently to east. Kankakee Torrent is the name applied to the great flood of glacial water that poured down Kankakee Valley at the time that the Valparaiso moraine was being built. The torrent originated in what is now lower Michigan, at the junction of the Michigan, Saginaw, and Erie lobes. The volume of water prob­ ably varied according to the season; but at maximum stages, which were up to an elevation of 640 feet above sea-level, it was so great that it could not escape through the gaps that the Illinois River had eroded through the Mar­ seilles and Farm Ridge moraines and consequently it spread widely over the drift plains behind the moraines, as shown on the glacial map of northeastern Illinois. The torrent had great erosive and carrying power in the channelway. It removed most of the glacial drift, especially the finer materials, so only the largest boulders were left, and it built local bars of sand, gravel, and rubble.
    [Show full text]
  • 1. Hello, My Name Is Dr. Jim Paul. John Was So Debonair in His Suit
    Local History 101: Making Life-Changing Decisions in the Kankakee River Valley Episode 1: Potawatomi Peril (to 1838) Dr. James Paul’s Narrative with Slides 1. Hello, my name is Dr. Jim Paul. John was so debonair in his suit and derby hat as he, and other Bourbonnais Grove Historical Society members who wore 19th century clothing, greeted guests to the gardens of the Letourneau Home/Museum. It was late June 2013, and the event was “Remembering Bourbonnais Grove: 1832-75” on the Sunday ending the Bourbonnais Friendship Festival. We were photographed after my portrayal of George Letourneau and no longer wearing my fake beard. John grew up near Kankakee River State Park. As a boy, he explored the former Potawatomi village nearby. He was impressed with their local contributions and burial mound. He studied Potawatomi history throughout his life. John and I planned to team teach this course, but now I will present it by myself as tribute to him. There are two parts to this course presentation: 1) the Potawatomi conflict and crises to 1838, and 2) the Potawatomi interaction with Noel LeVasseur. 1 2. The first part of this course presentation, to slide 55, is based on John’s fall 2019 Lifelong Learning Institute course entitled “Potawatomi Flashback—A Life Long Leaner’s View”. Since he and I had team taught several travelogues for the Lifelong Learning Institute, we decided to team teach this history course by combining his Potawatomi narrative with my insights into Noel LeVasseur’s life with the Potawatomi. We considered this course to be the first in a series of courses entitled Local History 101: Making Life-Changing Decisions in the Kankakee River Valley.
    [Show full text]
  • Illinois ​Woodlands
    1 WEEK 1. HISTORICAL FOREST AND PRESENT NATURAL DIVISIONS OF ILLINOIS The structure and compositions of temperate climate forests changed continually throughout the Quaternary. During this period of geological time, which started about 2 million years ago, the surface of the earth was shaped and modified by numerous glacial events, and the diverse climatic conditions responsible for these events. The geographic position and the extent of our present biotic communities have been determined by these geological and climatic events that have occurred during this period. The Pleistocene, or age of glaciation, is very extensive and accounts for all but the last 10,000 years of the Quaternary Period. This last 10,000 years is commonly referred to as the Holocene. We are living in the Holocene, or modern era. During the Quaternary Period North America has experienced a trend toward climatic cooling and climatic oscillation. These climatic changes have resulted in a series of at least 20 glacial-interglacial cycles, and this alternating cycle of glacial and interglacial regimes have created numerous environmental changes. The increase in the magnitude and the frequency of these climatic oscillations has resulted in the development of our modern flora and created the natural biotic divisions that currently exist in the Midwestern United States as well as the rest of the world. Glaciation and the Illinois landscape The state of Illinois occupies a unique position in Pleistocene glacial geology of North America. In this region there are glacial deposits from glaciers that invaded from the northeast that are overlapped by glacial deposits from glaciers entering Illinois from the northwest.
    [Show full text]
  • Periglacial Involutions in Northeastern Illinois
    1 !;';;,.• i. »! ' 1- i m ; : * iliiillftU mittRfflffl t' i H till] •if: : i. ; ,' « :;:;»; ;' i \\ B : wfim hi URBANA A Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/periglacialinvol74shar STATE OF ILLINOIS DWIGHT H. GREEN, Governor DERARTMENT OF REGISTRATION AND EDUCATION FRANK G. THOMPSON, Director DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief URBANA CIRCULAR 74 PERIGLACIAL INVOLUTIONS IN NORTHEASTERN ILLINOIS ROBERT P. SHARP Reprinted from the Journal of Geology, Vol. L, No. 2, February-March, 1942 PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS URBANA, ILLINOIS 1942 — VOLUME L NUMBER 2 THE JOURNAL OF GEOLOGY February-March 1942 PERIGLACIAL INVOLUTIONS IN NORTH- EASTERN ILLINOIS ROBERT P. SHARP University of Illinois ABSTRACT Certain beds of glaciofluvial sand, silt, and clay in the upper Illinois Valley are com- plexly deformed into variously shaped masses of silt and clay intruded into sand. Rounded forms and downward intrusions predominate. Individual structures are termed "involutions," and layers of deformed beds are called "involution layers" equivalents of the Brodelboden and Brodelzonen of German writers. Deformation has not been observed below a depth of 1 2 feet and may extend within 3 or 4 feet of the sur- face. Single involution layers are from a few inches to 6 feet thick. These involutions are attributed to intense differential freezing and thawing and to the development and melting of masses of ground ice. It is postulated that this occurred in a surficial layer above perennially frozen ground in an area peripheral to a glacier where periglacial (arctic) conditions prevailed.
    [Show full text]
  • Reconstruction of North American Drainage Basins and River Discharge Since the Last Glacial Maximum
    Earth Surf. Dynam., 4, 831–869, 2016 www.earth-surf-dynam.net/4/831/2016/ doi:10.5194/esurf-4-831-2016 © Author(s) 2016. CC Attribution 3.0 License. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum Andrew D. Wickert Department of Earth Sciences and Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA Correspondence to: Andrew D. Wickert ([email protected]) Received: 1 February 2016 – Published in Earth Surf. Dynam. Discuss.: 17 February 2016 Revised: 6 October 2016 – Accepted: 12 October 2016 – Published: 8 November 2016 Abstract. Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and some- times delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combin- ing models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of obser- vational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions.
    [Show full text]
  • The Late-Glacial and Early Holocene Geology, Paleoecology, and Paleohydrology of the Brewster Creek Site, a Proposed Wetland Re
    State of Illinois Rod. R. Blagojevich, Governor Illinois Department of Natural Resources Illinois State Geological Survey The Late-Glacial and Early Holocene Geology, Paleoecology, and Paleohydrology of the Brewster Creek Site, a Proposed Wetland Restoration Site, Pratt’s Wayne Woods Forest Preserve, and James “Pate” Philip State Park, Bartlett, Illinois B. Brandon Curry, Eric C. Grimm, Jennifer E. Slate, Barbara C.S. Hansen, and Michael E. Konen A A' north south 31498 31495 “Beach” BC-10 monolith Circular 571 2007 Equal opportunity to participate in programs of the Illinois Department of Natural Resources (IDNR) and those funded by the U.S. Fish and Wildlife Service and other agencies is available to all individuals regardless of race, sex, national origin, disability, age, religion, or other non-merit factors. If you believe you have been discriminated against, contact the funding source’s civil rights office and/or the Equal Employment Opportunity Officer, IDNR, One Natural Resources Way, Springfield, Illinois 62701-1271; 217-785-0067; TTY 217-782-9175. This information may be provided in an alternative format if required. Contact the IDNR Clearinghouse at 217-782-7498 for assistance. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Gov- ernment. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to a specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]