OSSOS. XXI. Collision Probabilities in the Edgeworth–Kuiper Belt
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Planetary Geologic Mappers Annual Meeting
Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m. -
Craters of the Pluto-Charon System
Icarus 287 (2017) 187–206 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Craters of the Pluto-Charon system ∗ Stuart J. Robbins a, , Kelsi N. Singer a, Veronica J. Bray b, Paul Schenk c, Tod R. Lauer d, Harold A. Weaver e, Kirby Runyon e, William B. McKinnon f, Ross A. Beyer g,h, Simon Porter a, Oliver L. White h, Jason D. Hofgartner i, Amanda M. Zangari a, Jeffrey M. Moore h, Leslie A. Young a, John R. Spencer a, Richard P. Binzel j, Marc W. Buie a, Bonnie J. Buratti i, Andrew F. Cheng e, William M. Grundy k, Ivan R. Linscott l, Harold J. Reitsema m, Dennis C. Reuter n, Mark R. Showalter g,h, G. Len Tyler l, Catherine B. Olkin a, Kimberly S. Ennico h, S. Alan Stern a, the New Horizons LORRI, MVIC Instrument Teams a Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302, United States b Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States c Lunar and Planetary Institute, Houston, TX, United States d National Optical Astronomy Observatory, Tucson, AZ 85726, United States e The Johns Hopkins University, Baltimore, MD, United States f Washington University in St. Louis, St. Louis, MO, United States g SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View CA 94043, United States h NASA Ames Research Center, Moffett Field, CA 84043, United States i NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States j Massachusetts Institute of Technology, Cambridge, MA, United States k Lowell Observatory, Flagstaff, AZ, United States l Stanford University, Stanford, CA, United States m Ball Aerospace, Boulder, CO, United States n NASA Goddard Space Flight Center, Greenbelt, MD, United States a r t i c l e i n f o a b s t r a c t Article history: NASA’s New Horizons flyby mission of the Pluto-Charon binary system and its four moons provided hu- Received 3 March 2016 manity with its first spacecraft-based look at a large Kuiper Belt Object beyond Triton. -
Col-OSSOS: Compositional Homogeneity of Three Kuiper Belt Binaries Michael Marsset, Wesley Fraser, Michele Bannister, Megan Schwamb, Rosemary Pike, Susan Benecchi, J
Col-OSSOS: Compositional Homogeneity of Three Kuiper Belt Binaries Michael Marsset, Wesley Fraser, Michele Bannister, Megan Schwamb, Rosemary Pike, Susan Benecchi, J. Kavelaars, Mike Alexandersen, Ying-Tung Chen, Brett Gladman, et al. To cite this version: Michael Marsset, Wesley Fraser, Michele Bannister, Megan Schwamb, Rosemary Pike, et al.. Col- OSSOS: Compositional Homogeneity of Three Kuiper Belt Binaries. The Planetary Science Journal, IOP Science, 2020, 1 (1), pp.16. 10.3847/PSJ/ab8cc0. hal-02884321 HAL Id: hal-02884321 https://hal.archives-ouvertes.fr/hal-02884321 Submitted on 17 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License The Planetary Science Journal, 1:16 (9pp), 2020 June https://doi.org/10.3847/PSJ/ab8cc0 © 2020. The Author(s). Published by the American Astronomical Society. Col-OSSOS: Compositional Homogeneity of Three Kuiper Belt Binaries Michaël Marsset1,2 , Wesley C. Fraser2 , Michele T. Bannister3 , Megan E. Schwamb2,4 , Rosemary E Pike5,6 , -
Charon Tectonics
Icarus 287 (2017) 161–174 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Charon tectonics ∗ Ross A. Beyer a,b, , Francis Nimmo c, William B. McKinnon d, Jeffrey M. Moore b, Richard P. Binzel e, Jack W. Conrad c, Andy Cheng f, K. Ennico b, Tod R. Lauer g, C.B. Olkin h, Stuart Robbins h, Paul Schenk i, Kelsi Singer h, John R. Spencer h, S. Alan Stern h, H.A. Weaver f, L.A. Young h, Amanda M. Zangari h a Sagan Center at the SETI Institute, 189 Berndardo Ave, Mountain View, California 94043, USA b NASA Ames Research Center, Moffet Field, CA 94035-0 0 01, USA c University of California, Santa Cruz, CA 95064, USA d Washington University in St. Louis, St Louis, MO 63130-4899, USA e Massachusetts Institute of Technology, Cambridge, MA 02139, USA f Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA g National Optical Astronomy Observatories, Tucson, AZ 85719, USA h Southwest Research Institute, Boulder, CO 80302, USA i Lunar and Planetary Institute, Houston, TX 77058, USA a r t i c l e i n f o a b s t r a c t Article history: New Horizons images of Pluto’s companion Charon show a variety of terrains that display extensional Received 14 April 2016 tectonic features, with relief surprising for this relatively small world. These features suggest a global ex- Revised 8 December 2016 tensional areal strain of order 1% early in Charon’s history. Such extension is consistent with the presence Accepted 12 December 2016 of an ancient global ocean, now frozen. -
The Onset of Chaos in Permanently Deformed Binaries from Spin–Orbit and Spin–Spin Coupling
The Astrophysical Journal, 913:31 (19pp), 2021 May 20 https://doi.org/10.3847/1538-4357/abf248 © 2021. The American Astronomical Society. All rights reserved. The Onset of Chaos in Permanently Deformed Binaries from Spin–Orbit and Spin–Spin Coupling Darryl Seligman1 and Konstantin Batygin2 1 Dept. of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA; [email protected] 2 Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125, USA Received 2020 September 16; revised 2021 March 22; accepted 2021 March 24; published 2021 May 21 Abstract Permanently deformed objects in binary systems can experience complex rotation evolution, arising from the extensively studied effect of spin–orbit coupling as well as more nuanced dynamics arising from spin–spin interactions. The ability of an object to sustain an aspheroidal shape largely determines whether or not it will exhibit nontrivial rotational behavior. In this work, we adopt a simplified model of a gravitationally interacting primary and satellite pair, where each body’s quadrupole moment is approximated by two diametrically opposed point masses. After calculating the net gravitational torque on the satellite from the primary, as well as the associated equations of motion, we employ a Hamiltonian formalism that allows for a perturbative treatment of the spin–orbit and retrograde and prograde spin–spin coupling states. By analyzing the resonances individually and collectively, we determine the criteria for resonance overlap and the onset of chaos, as a function of orbital and geometric properties of the binary. We extend the 2D planar geometry to calculate the obliquity evolution. This calculation indicates that satellites in spin–spin resonances undergo precession when inclined out of the plane, but they do not tumble. -
Collision Probabilities in the Edgeworth-Kuiper Belt
Draft version April 30, 2021 Typeset using LATEX default style in AASTeX63 Collision Probabilities in the Edgeworth-Kuiper belt Abedin Y. Abedin,1 JJ Kavelaars,1 Sarah Greenstreet,2, 3 Jean-Marc Petit,4 Brett Gladman,5 Samantha Lawler,6 Michele Bannister,7 Mike Alexandersen,8 Ying-Tung Chen,9 Stephen Gwyn,1 and Kathryn Volk10 1National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 2B612 Asteroid Institute, 20 Sunnyside Avenue, Suite 427, Mill Valley, CA 94941, USA 3DIRAC Center, Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA 4Institut UTINAM, CNRS-UMR 6213, Universit´eBourgogne Franche Comt´eBP 1615, 25010 Besan¸conCedex, France 5Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, British Columbia, Canada 6Campion College and the Department of Physics, University of Regina, Regina SK, S4S 0A2, Canada 7University of Canterbury, Christchurch, New Zealand 8Minor Planet Center, Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, US 9Academia Sinica Institute of Astronomy and Astrophysics, Taiwan 10Lunar and Planetary Laboratory, University of Arizona: Tucson, AZ, USA Submitted to AJ ABSTRACT Here, we present results on the intrinsic collision probabilities, PI , and range of collision speeds, VI , as a function of the heliocentric distance, r, in the trans-Neptunian region. The collision speed is one of the parameters, that serves as a proxy to a collisional outcome e.g., complete disruption and scattering of fragments, or formation of crater, where both processes are directly related to the impact energy. We utilize an improved and de-biased model of the trans-Neptunian object (TNO) region from the \Outer Solar System Origins Survey" (OSSOS). -
“Vulcan Planum” Map Dark-Colored Ejecta Scale Maps
Charon: Geologic Map of New Horizons’ Encounter Hemisphere, III S.J. Robbins0,1, J.R. Spencer1, R.A. Beyer2,3, P. Schenk4, J.M. Moore3, W.B. McKinnon5, R.P. Binzel6, M.W. Buie1, B.J. Buratti7, A.F. Cheng8, W.M. Grundy9, I.R. Linscott10, H.J. Reitsema11, D.C. Reuter12, M.R. Showalter2, G.L. Tyler1, L.A. Young1, C.B. Olkin1, K. Ennico3, H.A. Weaver8, S.A. Stern1, the New Horizons Geology & Geophysics Investigation Team, LORRI Instrument Team, MVIC Instrument Team, and the New Horizons Encounter Team Tectonics Map Geologic Contacts Mapping Details map boundary boundary, certain Global boundary, approximate Approximate Map Area: 60% of disk* Linear Features Full Map Scale: 1:3M printed map 50” crest of buried crater crest of crater rim Mapping Scale (6×): 1:500,000 depression margin map colors used only in tectonics Vertex Spacing: 2.5 km (⅘ mm) graben trace Min. Crater: 30 km (1 cm) groove ridge crest Min. Feature Length: 15 km (½ cm) catena Min. Unit: 250 km2 scarp base *Map area covers images taken within a few scarp crest hours of closest approach and closely corre- broad warp sponds with the areas imaged at ≲1 km/px. Southern margin of “map boundary” corre- example of offset due to different versions sponds to terminator topography and is not fully of the basemap being used; all lines must Surface Features reflected in incidence / emission angle and pixel be redrafted to the same, most recent solution “Vulcan Planum” Map dark-colored ejecta scale maps. Area is ≈2,800,000 km2. -
Asteroids, Comets, Meteors -‐‑ ACM2017 -‐‑ Montevid
Asteroids, Comets, Meteors - ACM2017 - Montevideo THE GEOLOGY OF CHARON AS REVEALED BY NEW HORIZONS J. M. Moore1, J. R. Spencer2, W. B. McKinnon3, R. A. Beyer1,4, S.A. Stern2, K. Ennico1, C.B. Olkin2, H.A. Weaver5, L.A. Young2, and the New Horizons Science Team 1National Aeronautics and Space Administration (NASA) Ames Research Center, MS-245-3 Space 2 Sci. Division, Moffett Field, CA 94035, USA, Southwest Research Institute, Boulder, CO 80302, USA, 3Washington University, St. Louis, MO 63130, USA, 4SETI Institute, Mt. View, CA 94043, USA, 5Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA. Introduction: Pluto’s large moon Charon (ra- Clarke Montes appears to expose a more rugged dius 606 km; r = 1.70 g cm-3) exhibits a striking terrain, with smooth plains embaying the mar- variety of landscapes. Charon can be divided gins, two of which are lobate. In addition to the into two broad provinces separated by a roughly moats surrounding these mountains, there are aligned assemblage of ridges and canyons, two additional depressions surrounded by which span from east to west. North of this tec- rounded or lobate margins. We speculate that tonic belt is rugged, cratered terrain (Oz Terra); both the moats and depressions may be the ex- south of it are smoother but geologically com- pressions of the flow of, and incomplete enclo- plex plains (Vulcan Planum). (All place names sure by, viscous, cryovolcanic materials, such as here are informal.) Relief exceeding 20 km is proposed at Ariel and Miranda [5, 6]. The seen in limb profiles and stereo topography. -
A White Paper on Pluto Follow on Missions: Background, Rationale
A White Paper on Pluto Follow On Missions: Background, Rationale, and New Mission Recommendations 2018 March 12 1 Signatories In Alphabetical Order: Caitlin Ahrens, Michelle T. Bannister, Tanguy Bertrand, Ross Beyer, Richard Binzel, Maitrayee Bose, Paul Byrne, Robert Chancia, Dale Cruikshank, Rajani Dhingra, Cynthia Dinwiddie, David Dunham, Alissa Earle, Christopher Glein, Cesare Grava, Will Grundy, Aurelie Guilbert, Doug Hamilton, Jason Hofgartner, Brian Holler, Mihaly Horanyi, Sona Hosseini, James Tuttle Keane, Akos Kereszturi, Eduard Kuznetsov, Rosaly Lopes, Renu Malhotra, Kathleen Mandt Jeff Moore, Cathy Olkin, Maurizio Pajola, Lynnae Quick, Stuart Robbins, 2 Gustavo Benedetti Rossi, Kirby Runyon, Pablo Santos Sanz, Paul Schenk Jennifer Scully, Kelsi Singer, Alan Stern, Timothy Stubbs, Mark Sykes, Laurence Trafton, Anne Verbiscer, Larry Wasserman, and Amanda Zangari 3 Executive Summary The exploration of the binary Pluto-Charon and its small satellites during the New Horizons flyby in 2015 revealed not only widespread geologic and compositional diversity across Pluto, but surprising complexity, a wide range of surface unit ages, evidence for widespread activity stretching across billion of years to the near-present, as well as numerous atmospheric puzzles, and strong atmospheric coupling with its surface. New Horizons also found an unexpected diversity of landforms on its binary companion, Charon. Pluto’s four small satellites yielded surprises as well, including their unexpected rapid and high obliquity rotation states, high albedos, and diverse densities. Here we briefly review the findings made by New Horizons and the case for a follow up mission to investigate the Pluto system in more detail. As the next step in the exploration of this spectacular planet-satellite system, we recommend an orbiter to study it in considerably more detail, with new types of instrumentation, and to observe its changes with time. -
Spaceflight a British Interplanetary Society Publication
SpaceFlight A British Interplanetary Society publication Volume 60 No.8 August 2018 £5.00 The perils of walking on the Moon 08> Charon Tim Peake 634072 Russia-Sino 770038 9 Space watches CONTENTS Features 14 To Russia with Love Philip Corneille describes how Russia fell in love with an iconic Omega timepiece first worn by NASA astronauts. 18 A glimpse of the Cosmos 14 Nicholas Da Costa shows us around the Letter from the Editor refurbished Cosmos Pavilion – the Moscow museum for Russian space achievements. In addition to the usual mix of reports, analyses and commentary 20 Deadly Dust on all space-related matters, I am The Editor looks back at results from the Apollo particularly pleased to re- Moon landings and asks whether we are turning introduce in this month’s issue our a blind eye to perils on the lunar surface. review of books. And to expand that coverage to all forms of 22 Mapping the outer limits media, study and entertainment be SpaceFlight examines the latest findings it in print, on video or in a concerning Charon, Pluto’s major satellite, using 18 computer game – so long as it’s data sent back by NASA's New Horizons. related to space – and to have this as a regular monthly contribution 27 Peake Viewing to the magazine. Rick Mulheirn comes face to face with Tim Specifically, it is gratifying to see a young generation stepping Peake’s Soyuz spacecraft and explains where up and contributing. In which this travelling display can be seen. regard, a warm welcome to the young Henry Philp for having 28 38th BIS Russia-Sino forum provided for us a serious analysis Brian Harvey and Ken MacTaggart sum up the of a space-related computer game latest Society meeting dedicated to Russian and which is (surprisingly, to this Chinese space activities. -
Enabling Effective Exoplanet / Planetary Collaborative Science a White Paper for the Planetary Science and Astrobiology Decadal Survey 2023-2032
Enabling Effective Exoplanet / Planetary Collaborative Science A White Paper for the Planetary Science and Astrobiology Decadal Survey 2023-2032 Mark S. Marley ([email protected] 650-604-0805 NASA Ames Research Center (ARC), Moffett Field CA, USA) Co-authors: Chester ‘Sonny’ Harman (NASA Ames Research Center); Heidi B. Hammel (AURA) Paul K. Byrne (NCSU); Jonathan Fortney (University of California, Santa Cruz); Alberto Accomazzi (Center for Astrophysics | Harvard & Smithsonian); Sarah E. Moran (JHU Earth & Planetary Sciences); M. J. Way (NASA Goddard Institute for Space Studies); Jessie L. Christiansen (NASA Exoplanet Science Inst./IPAC-Caltech); Noam R. Izenberg (JHU Applied Physics Laboratory); Timothy Holt (Univ. of Southern Queensland); Sanaz Vahidinia (BAERI - NASA Ames Research Center); Erika Kohler (NASA Goddard Space Flight Center); Karalee K. Brugman (Arizona State Univ.) Co-signers: Kathleen Mandt (Johns Hopkins Univ. APL); Victoria Meadows (U. Washington); Sarah Horst (JHU); Edwin Kite (University of Chicago); Dawn Gelino (NASA Exoplanet Science Institute/IPAC-Caltech); Britney Schmidt (Georgia Tech); Niki Parenteau (NASA ARC); Giada Arney (NASA GSFC); Julie Moses (SSI); Michael Line (Ariz. State U.); Kimberly Bott (UCR); Leigh N. Fletcher (U. of Leicester); Sarah Stewart (UC Davis); Tim Lichtenberg (Univ. of Oxford); Giada Arney (NASA GSFC); Channon Visscher (Space Science Institute; Dordt University); David Sing (JHU); Nancy Chanover (NMSU); Abel Méndez (Planetary Hab. Lab., UPR); Ed Rivera-Valentín (LPI); Tiffany Kataria (JPL); Chuanfei Dong (Princeton U.); Ryan MacDonald (Cornell U.); Sang- Heon Dan Shim (Ariz. State U.); Sarah Casewell (University of Leicester); Courtney Dressing (UC Berkeley); Aki Roberge (NASA GSFC); Emily Rickman (Univ. of Geneva); Joshua Lothringer (JHU); Ishan Mishra (Cornell Univ.); Ludmila Carone (Max Planck Inst. -
Arxiv:2001.11605V1 [Astro-Ph.EP] 30 Jan 2020 Formation Process from Systems Other Than Our Own
Draft version February 3, 2020 Typeset using LATEX twocolumn style in AASTeX63 Interstellar comet 2I/Borisov as seen by MUSE: C2, NH2 and red CN detections Michele T. Bannister,1, 2 Cyrielle Opitom,3, 4 Alan Fitzsimmons,1 Youssef Moulane,3, 5, 6 Emmanuel Jehin,5 Darryl Seligman,7 Philippe Rousselot,8 Matthew M. Knight,9, 10 Michael Marsset,11 Megan E. Schwamb,1 Aurelie´ Guilbert-Lepoutre,12 Laurent Jorda,13 Pierre Vernazza,13 and Zouhair Benkhaldoun6 1Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom 2School of Physical and Chemical Sciences { Te Kura Mat¯u,University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand 3ESO (European Southern Observatory) - Alonso de Cordova 3107, Vitacura, Santiago Chile 4Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ, UK 5STAR Institute, Universit´ede Li`ege,All´eedu 6 aout, 19C, 4000 Li`ege,Belgium 6Oukaimeden Observatory, Cadi Ayyad University, Marrakech, Morocco 7Department of Astronomy, Yale University, 52 Hillhouse Ave., New Haven, CT 06517 8Institut UTINAM UMR 6213, CNRS, Univ. Bourgogne Franche-Comt, OSU THETA, BP 1615, 25010 Besanon Cedex, France 9Department of Physics, United States Naval Academy, 572C Holloway Rd, Annapolis, MD 21402, USA 10University of Maryland, Department of Astronomy, College Park, MD 20742, USA 11Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 12Laboratoire de G´eologie de Lyon, LGL-TPE, UMR 5276 CNRS / Universit´ede Lyon / Universit´eClaude Bernard Lyon 1 / ENS Lyon, 69622 Villeurbanne, France 13Aix Marseille Univ, CNRS, LAM, Laboratoire d'Astrophysique de Marseille, Marseille, France (Received 29 Jan 2020; Revised; Accepted) Submitted to ApJ Letters ABSTRACT We report the clear detection of C2 and of abundant NH2 in the first prominently active interstellar comet, 2I/Borisov.