Cyp26b1 Limits Inappropriate Activation of Rarγ by Retinoic Acid During Murine Embryogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Cyp26b1 Limits Inappropriate Activation of Rarγ by Retinoic Acid During Murine Embryogenesis CYP26B1 LIMITS INAPPROPRIATE ACTIVATION OF RARγ BY RETINOIC ACID DURING MURINE EMBRYOGENESIS by Tracie L. Pennimpede A thesis submitted to the Department of Pathology and Molecular Medicine In conformity with the requirements for the degree of Doctorate of Philosophy Queen‟s University Kingston, Ontario, Canada March, 2010 Copyright © Tracie L. Pennimpede, 2010 Abstract Proper embryonic patterning requires precise spatio-temporal regulation of retinoic acid (RA) activity. Morphogenesis can be regulated at the level of RA distribution, mainly via its synthesis and catabolism by the RALDH and CYP26 enzymes respectively, and at the level of RA-mediated transcription through activation of its cognate nuclear receptor, the retinoic acid receptors (RARs) α, β, and γ. Loss of Cyp26b1 leads to increased local levels of RA in tissues such as the limb and craniofacial structures, and results in neonatal lethality. Visible gross phenotypic defects in neonates include phocomelia (shortening of the limbs), adactyly (missing digits), micrognathia (shortened lower jaw), and open eyes at birth. In addition, these embryos exhibit cleft palate and have a paucity of vibrissal (whisker) and pelage (hair) follicles. We have previously shown that ablating the gene encoding RARγ in a Cyp26a1-null background was able to rescue the caudal abnormalities associated with improper RA exposure in these embryos by limiting aberrant RA signalling, and thus rescuing expression domains of target genes involved in caudal development. I show here that ablating Rarg in a Cyp26b1-null background is able to partially rescue the defects associated with loss of CYP26B1. These include a reduction in the severity of limb defects, rescued vibrissae, fused eyelids, and recovered aspects of axial skeletal development. This compound-null murine model illustrates that RARγ plays a specific role in transducing the RA signal within tissues that are affected by the loss of CYP26B1. Further molecular analysis of the pathways responsible for directing limb bud outgrowth and eyelid fusion provided insight into pathways regulated by RARγ in these rescued tissues. ii Statement of Collaboration Generation of the mouse strain lacking Cyp26b1 by our laboratory was undertaken by Dr. Glenn MacLean, and has been described previously (MacLean et al., 2007; Maclean et al., 2009). Parts of this thesis concerning the limb phenotype (Chapters 2, 5 and 7) have been taken from a peer-reviewed publication (Pennimpede et al., 2010) which I prepared, but with input from my co-authors. Parts of the Literature Review (Chapter 2) and the results for Chapter 4 were prepared for my Comprehensive Examination (December 2007) and have been updated from that work. Don Cameron, co-author on the manuscript prepared with regards to the observed limb phenotype (Pennimpede et al., 2010), performed in situ hybridization for Cyp26b1 and Rarg on wild type embryos (Figure 4) and eyelid sections (Figure 20). iii Acknowledgements This has been a great journey and I have so many people to thank for making it the most wonderful time and learning experience. First and foremost I would like to thank my supervisor, Dr Petkovich, for being the best out of all the world‟s best supervisors, along with an incredible friend, mentor, punster, and person. Marty: I can‟t possibly thank you enough for this opportunity, for your creative vision and encouragement, and for the support that you and Patty have given to me (and all of us!) over the years. I wouldn‟t and couldn‟t have done this with anyone else. To my labmates, past and present, for making every day spent in Botterell (especially room 359) both interesting and entertaining. Even sometimes from a science perspective. Special thanks to Suzy, Ali, Kristen, Ana Paula, Olivier, Naomi, Hui, and Makoto for friendship and help with experiments; and the excellent summer students Helen, Katie, and Bilge. I am especially grateful to Glenn MacLean for his guidance and friendship and to Don Cameron, my compatriot – an incredible friend and benchmate. I can‟t possibly put into words how thankful I am to you both and how much I appreciated our time together. iv Thanks also to the wonderful group of colleagues and friends that I have had the pleasure of knowing in this life. Especially Team Wicked Awesome (for the many, many good times), but also countless others on the 2nd, 3rd, and 6th floors (and at this University) for chats and advice over beer on the Grad Club patio. And to my great friends Samantha, and the Chubsies (Cory and Alisha) for being there the whole time. To the Grad Club – my home away from lab – and all who work there. A place where many memories were forged (and some things forgotten). I am also grateful for the technical expertise of Matt Gordon, Jeff Mewburn, Jalna Meens, Dan Wainman, and ACS; and I would be remiss if I didn‟t express my appreciation for the many murine lives that went into making this thesis. Thanks also to the Pathology Department and my Supervisory Committee (Drs Lebrun and Davey) for advice and encouragement, and to Barb Saunders and Jason Palmer for administrative and IT support. Finally, thanks to my incredible family for understanding that being a lifelong student is an acceptable life choice and encouraging me as I pursued this endeavour. “It is not birth, marriage, or death, but gastrulation which is truly the most important time in your life.” – Professor Lewis Wolpert v Table of Contents Abstract ............................................................................................................................................ ii Statement of Collaboration ............................................................................................................. iii Acknowledgements ......................................................................................................................... iv Table of Contents ............................................................................................................................ vi List of Figures ................................................................................................................................. ix List of Tables ................................................................................................................................... x List of Abbreviations ...................................................................................................................... xi Chapter 1: General Introduction ...................................................................................................... 1 Chapter 2: Literature Review ........................................................................................................... 4 2.1 Vertebrate Morphogenesis ..................................................................................................... 4 2.1.1 Setting up the embryonic body plan and morphogenesis of the axial skeleton .............. 5 2.1.2 The developing limb as a paradigm for morphogenesis ................................................. 8 2.1.2.1 Models of limb P-D outgrowth: Progress Zone, Early Specification, and Two- Signal ................................................................................................................................. 10 2.1.3 Molecular mechanisms of eyelid closure ...................................................................... 12 2.2 Vitamin A metabolism, mechanism of action, and physiological roles ............................... 14 2.2.1 Vitamin A in nutrition ................................................................................................... 14 2.2.2 Early studies on the role of vitamin A in embryonic development ............................... 15 2.2.3 Canonical vitamin A metabolism .................................................................................. 15 2.2.4 RA binding proteins ...................................................................................................... 19 2.2.5 Transcriptional regulation by RA ................................................................................. 20 2.3 RA and morphogenesis ........................................................................................................ 24 2.4 Regulation of RA signalling during embryogenesis ............................................................ 28 2.4.1 RAR/RXR expression and function .............................................................................. 28 2.5 Regulation of RA distribution within the developing embryo ............................................. 30 2.5.1 Expression patterns of Raldh and Cyp26 isoforms in the developing mouse embryo .. 30 2.5.2 Raldh and Cyp26 knockout studies ............................................................................... 33 2.6 Rarg-null mice are resistant to RA-induced craniofacial and caudal defects ...................... 36 2.7 Cyp26a1/Rarg double knockout mice.................................................................................. 38 2.8 Hypothesis and Specific Objectives ..................................................................................... 39 Chapter 3: Materials and Methods ................................................................................................. 43 3.1 Creation of mouse strains and genotyping ........................................................................... 43 vi 3.2 Embryo Collection ..............................................................................................................
Recommended publications
  • Identification and Developmental Expression of the Full Complement Of
    Goldstone et al. BMC Genomics 2010, 11:643 http://www.biomedcentral.com/1471-2164/11/643 RESEARCH ARTICLE Open Access Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish Jared V Goldstone1, Andrew G McArthur2, Akira Kubota1, Juliano Zanette1,3, Thiago Parente1,4, Maria E Jönsson1,5, David R Nelson6, John J Stegeman1* Abstract Background: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results: Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates.
    [Show full text]
  • Scuba Diving History
    Scuba diving history Scuba history from a diving bell developed by Guglielmo de Loreno in 1535 up to John Bennett’s dive in the Philippines to amazing 308 meter in 2001 and much more… Humans have been diving since man was required to collect food from the sea. The need for air and protection under water was obvious. Let us find out how mankind conquered the sea in the quest to discover the beauty of the under water world. 1535 – A diving bell was developed by Guglielmo de Loreno. 1650 – Guericke developed the first air pump. 1667 – Robert Boyle observes the decompression sickness or “the bends”. After decompression of a snake he noticed gas bubbles in the eyes of a snake. 1691 – Another diving bell a weighted barrels, connected with an air pipe to the surface, was patented by Edmund Halley. 1715 – John Lethbridge built an underwater cylinder that was supplied via an air pipe from the surface with compressed air. To prevent the water from entering the cylinder, greased leather connections were integrated at the cylinder for the operators arms. 1776 – The first submarine was used for a military attack. 1826 – Charles Anthony and John Deane patented a helmet for fire fighters. This helmet was used for diving too. This first version was not fitted to the diving suit. The helmet was attached to the body of the diver with straps and air was supplied from the surfa 1837 – Augustus Siebe sealed the diving helmet of the Deane brothers’ to a watertight diving suit and became the standard for many dive expeditions.
    [Show full text]
  • History of Scuba Diving About 500 BC: (Informa on Originally From
    History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Impaired Hepatic Drug and Steroid Metabolism in Congenital Adrenal
    European Journal of Endocrinology (2010) 163 919–924 ISSN 0804-4643 CLINICAL STUDY Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency Dorota Tomalik-Scharte1, Dominique Maiter2, Julia Kirchheiner3, Hannah E Ivison, Uwe Fuhr1 and Wiebke Arlt School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK, 1Department of Pharmacology, University Hospital, University of Cologne, 50931 Cologne, Germany, 2Department of Endocrinology, University Hospital Saint Luc, 1200 Brussels, Belgium and 3Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, 89019 Ulm, Germany (Correspondence should be addressed to W Arlt; Email: [email protected]) Abstract Objective: Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency (ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drug- metabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. Design: We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. Methods: Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes.
    [Show full text]
  • Sexually Transmitted Diseases Treatment Guidelines, 2015
    Morbidity and Mortality Weekly Report Recommendations and Reports / Vol. 64 / No. 3 June 5, 2015 Sexually Transmitted Diseases Treatment Guidelines, 2015 U.S. Department of Health and Human Services Centers for Disease Control and Prevention Recommendations and Reports CONTENTS CONTENTS (Continued) Introduction ............................................................................................................1 Gonococcal Infections ...................................................................................... 60 Methods ....................................................................................................................1 Diseases Characterized by Vaginal Discharge .......................................... 69 Clinical Prevention Guidance ............................................................................2 Bacterial Vaginosis .......................................................................................... 69 Special Populations ..............................................................................................9 Trichomoniasis ................................................................................................. 72 Emerging Issues .................................................................................................. 17 Vulvovaginal Candidiasis ............................................................................. 75 Hepatitis C ......................................................................................................... 17 Pelvic Inflammatory
    [Show full text]
  • Inhibition of the All Trans-Retinoic Acid Hydroxylases CYP26A1 and CYP26B1 Results in Dynamic, Tissue-Specific Changes in Endogenous Atra Signaling
    DMD Fast Forward. Published on April 26, 2017 as DOI: 10.1124/dmd.117.075341 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 75341 Inhibition of the all trans-retinoic acid hydroxylases CYP26A1 and CYP26B1 results in dynamic, tissue-specific changes in endogenous atRA signaling Faith Stevison, Cathryn Hogarth, Sasmita Tripathy, Travis Kent, and Nina Isoherranen Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.) School of Molecular Biosciences and the Center for Reproductive Biology, Washington State Downloaded from University, Pullman, Washington (C.H., T.K.) dmd.aspetjournals.org at ASPET Journals on September 28, 2021 1 DMD Fast Forward. Published on April 26, 2017 as DOI: 10.1124/dmd.117.075341 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 75341 Dynamic changes in atRA signaling after CYP26 inhibition Corresponding Author: Dr. Nina Isoherranen, Department of Pharmaceutics, School of Pharmacy, University of Washington, Health Sciences Building Room H-272M, Box 357610, Seattle, WA 98195-7610 USA, Phone: 206-543-2517, Fax: 206-543-3204, E-mail: [email protected] Text Pages: 20 Tables: 0 Downloaded from Figures: 7 References: 40 dmd.aspetjournals.org Words in the abstract: 248 Words in the introduction: 715 Word in discussion: 1500 at ASPET Journals on September 28, 2021 Abbreviations: ALDH1A, aldehyde dehydrogenase 1A family; atRA, all-trans retinoic acid;
    [Show full text]
  • Cyp26b1 Restrains Murine Heart Valve Growth During Development Neha
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.450958; this version posted July 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cyp26b1 restrains murine heart valve growth during development Neha Ahuja1†, Max S. Hiltabidle1†, Hariprem Rajasekhar2, Haley R. Barlow1, Edward Daniel3, Sophie Voss1, Ondine Cleaver1* and Caitlin Maynard4* 1Departments of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390, 2Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ, USA 08901, 3John T. Milliken Department of Medicine, Washington University School of Medicine, 4960 Children’s Place, Suite 6602, St. Louis, MO 63110, and 4Department of Biological Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas, USA, 75080 † These authors contributed equally. * Co-corresponding authors: Ondine Cleaver, PhD Department of Molecular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Blvd., NA8.300 Dallas, Texas 75390-9148, USA. Phone: (214) 648-1647 Fax: (214) 648-1196 E-mail: [email protected] Caitlin Maynard, PhD Department of Biological Sciences The University of Texas at Dallas 800 W. Campbell Road, FO31 Richardson, TX 75080-3021, USA Phone: (972) 883-6895 Email: [email protected] Running title: Cyp26b1 essential for murine heart valve development Keywords: Cyp26b1, endothelial cell proliferation, aortic valve, pulmonary valve, tricuspid valve, mitral valve 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.450958; this version posted July 5, 2021.
    [Show full text]
  • Robert Foti to Cite This Version
    Characterization of xenobiotic substrates and inhibitors of CYP26A1, CYP26B1 and CYP26C1 using computational modeling and in vitro analyses Robert Foti To cite this version: Robert Foti. Characterization of xenobiotic substrates and inhibitors of CYP26A1, CYP26B1 and CYP26C1 using computational modeling and in vitro analyses. Agricultural sciences. Université Nice Sophia Antipolis, 2016. English. NNT : 2016NICE4033. tel-01376678 HAL Id: tel-01376678 https://tel.archives-ouvertes.fr/tel-01376678 Submitted on 5 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université de Nice-Sophia Antipolis Thèse pour obtenir le grade de DOCTEUR DE L’UNIVERSITE NICE SOPHIA ANTIPOLIS Spécialité : Interactions Moléculaires et Cellulaires Ecole Doctorale : Sciences de la Vie et de la Santé (SVS) Caractérisation des substrats xénobiotiques et des inhibiteurs des cytochromes CYP26A1, CYP26B1 et CYP26C1 par modélisation moléculaire et études in vitro présentée et soutenue publiquement par Robert S. Foti Le 4 Juillet 2016 Membres du jury Dr. Danièle Werck-Reichhart Rapporteur Dr. Philippe Roche Rapporteur Pr. Serge Antonczak Examinateur Dr. Philippe Breton Examinateur Pr. Philippe Diaz Examinateur Dr. Dominique Douguet Directrice de thèse 1 1. Table of Contents 1. Table of Contents ..............................................................................................................................
    [Show full text]
  • Rostocker Meeresbiologische Beiträge
    Rostocker Meeresbiologische Beiträge Beiträge Zum Rostocker Forschungstauchersymposium 2019 Heft 30 Universität Rostock Institut für Biowissenschaften 2020 HERAUSGEBER DIESES HEFTES: Hendrik Schubert REDAKTION: Dirk Schories Gerd Niedzwiedz Hendrik Schubert HERSTELLUNG DER DRUCKVORLAGE: Christian Porsche CIP-KURZTITELAUFNAHME Rostocker Meeresbiologische Beiträge. Universität Rostock, Institut für Biowissenschaften. – Rostock, 2020. – 136 S. (Rostocker Meeresbiologische Beiträge; 30) ISSN 0943-822X © Universität Rostock, Institut für Biowissenschaften, 18051 Rostock REDAKTIONSADRESSE: Universität Rostock Institut für Biowissenschaften 18051 Rostock e-mail: [email protected] Tel. 0381 / 498-6071 Fax. 0381 / 498-6072 BEZUGSMÖGLICHKEITEN: Universität Rostock Universitätsbibliothek, Schriftentausch 18051 Rostock e-mail: [email protected] DRUCK: Druckerei Kühne & Partner GmbH & Co KG Umschlagfoto Titel: Unterwasseraufnahmen und Abbildung des Riffs in Nienhagen, [Uwe Friedrich, style-kueste.de] Rückseite: Gruppenbild der Forschungstauchertagung [Thomas Rahr, Universität Rostock, ITMZ] 2 Inhalt Seite FISCHER, P. 5 Vorwort NIEDZWIEDZ, G. 7 25 Jahre Forschungstaucherausbildung in Rostock – eine Geschichte mit langer Vorgeschichte VAN LAAK, U. 39 Der Tauchunfall als misslungene Prävention: Ergebnisse aus der DAN Europe Feldforschung MOHR, T. 51 Überblick zum Forschungsprojekt „Riffe in der Ostsee“ NIEDZWIEDZ, G. & SCHORIES, D. 65 Georeferenzierung von Unterwasserdaten: Iststand und Perspektiven SCHORIES, D. 81 Ein kurzer Ausschnitt über wissenschaftliches Fotografieren Unter- wasser und deren Anwendung WEIGELT, R., HENNICKE, J. & VON NORDHEIM, H. 93 Ein Blick zurück, zwei nach vorne – Forschungstauchen am Bundes- amt für Naturschutz zum Schutz der Meere AUGUSTIN, C. B., BÜHLER, A. & SCHUBERT, H. 103 Comparison of different methods for determination of seagrass distribution in the Southern Baltic Sea Coast SCHORIES, D., DÍAZ, M.-J., GARRIDO, I., HERAN, T., HOLTHEUER, J., KAPPES, J. 117 J., KOHLBERG, G.
    [Show full text]
  • 2 Accidents De Décompression D'origine Médullaire En
    AIX-MARSEILLE UNIVERSITE Président : Yvon BERLAND FACULTE DES SCIENCES MEDICALES ET PARAMEDICALES Administrateur provisoire: Georges LEONETTI Affaires Générales : Patrick DESSI Professions Paramédicales : Philippe BERBIS Assesseurs : aux Etudes : Jean-Michel VITON à la Recherche : Jean-Louis MEGE aux Prospectives Hospitalo-Universitaires : Frédéric COLLART aux Enseignements Hospitaliers : Patrick VILLANI à l’Unité Mixte de Formation Continue en Santé : Fabrice BARLESI pour le Secteur Nord : Stéphane BERDAH aux centres hospitaliers non universitaires : Jean-Noël ARGENSON Chargés de mission : 1er cycle : Jean-Marc DURAND et Marc BARTHET 2ème cycle : Marie-Aleth RICHARD 3eme cycle DES/DESC : Pierre-Edouard FOURNIER Licences-Masters-Doctorat : Pascal ADALIAN DU-DIU : Véronique VITTON Stages Hospitaliers : Franck THUNY Sciences Humaines et Sociales : Pierre LE COZ Préparation à l’ECN : Aurélie DAUMAS Démographie Médicale et Filiarisation : Roland SAMBUC Relations Internationales : Philippe PAROLA Etudiants : Arthur ESQUER Chef des services généraux : Déborah ROCCHICCIOLI Chefs de service : Communication : Laetitia DELOUIS Examens : Caroline MOUTTET Intérieur : Joëlle FAVREGA Maintenance : Philippe KOCK Scolarité : Christine GAUTHIER DOYENS HONORAIRES M. Yvon BERLAND M. André ALI CHERIF M. Jean-François PELLISSIER Mis à jour 01/01/2019 PROFESSEURS HONORAIRES MM AGOSTINI Serge MM FAVRE Roger ALDIGHIERI René FIECHI Marius ALESSANDRINI Pierre FARNARIER Georges ALLIEZ Bernard FIGARELLA Jacques AQUARON Robert FONTES Michel
    [Show full text]
  • Pacific Northwest Diver BI-MONTHLY MAGAZINE & WEB SITE PROMOTING UNDERWATER PHOTOGRAPHY, EDUCATION, & TRAVEL in the PACIFIC NORTHWEST | JANUARY, 2012
    PPacificUBLICATION OF THE PACIFIC Northwest NORTHWEST UNDERWATER PHOTOGRA DiverPHIC SOCIETY BRITISH COLUMBIA | WASHINGTON | OREGON | JANUARY, 2012 Page 1 Gunnel Condo | Janna Nichols Pacific Northwest Diver BI-MONTHLY MAGAZINE & WEB SITE PROMOTING UNDERWATER PHOTOGRAPHY, EDUCATION, & TRAVEL IN THE PACIFIC NORTHWEST | JANUARY, 2012 In this Issue 3 Nanaimo to Corvallis 3 Subscribing to Pacific Northwest Diver 3 From the Archives: First Underwater Photo, 1893 3 Featured Photographer: Janna Nichols 4 News Corner 7 REEF 7 Andy Lamb Joins PNW Diver Team 7 Underwater Photo Workshops 7 Call for Critter Photos 8 Nudibranch ID App 8 Congrats to Pat Gunderson & Laurynn Evans 8 Feartured Operator/Resort: Sea Dragon Charters 9 Photographers & Videographers 11 British Columbia: John Melendez 11 Washington: Mike Meagher 13 Oregon: Aaron Gifford 15 Dive Travel Corner 17 Grand Bahama Island: Dolphins, Sharks, & Cavern 17 La Paz: Whale Sharks, Sea Lions, & Hammerheads 17 Technical Corner 18 Subsee Super Macro 18 PNW Diver Team 20 iPhone Users: Your PDF viewer does not support active links. To view video and use other links, we suggest the ap Goodreader <http://www.goodiware.com/goodreader.html>. Page 2 Pacific Northwest Diver: In This Issue Welcome to the January issue of Pacific Northwest Diver! This issue’s featured photographer is Janna Nichols. Janna is well know to the dive community, as she is the outreach coordinator for REEF. Not only is she an outstanding creature ID”er”, she is an excellent photographer. Our featured operator is Sea Dragon Charters in Howe Sound and Nanaimo, and we will be checking out photos from John Melendez in Vancouver, BC, Mike Meagher in Bellingham (be sure to watch the newly hatched wolf eel swimming in front of dad), and Aaron Giffords from Corvallis diving off of Newport, Oregon.
    [Show full text]