Exploring the Nature and Diversity of Microorganisms in Healthcare and Educational Settings

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Nature and Diversity of Microorganisms in Healthcare and Educational Settings University College London Nicola D’Arcy Exploring the Nature and Diversity of Microorganisms in Healthcare and Educational Settings Eastman Dental Institute Doctor of Philosophy Supervisors: Dr David A. Spratt and Professor Nigel Klein 2014 I, Nicola D’Arcy confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed………………………. Date………………………… Abstract Many human populations spend approximately 90 % of their time indoors, yet relatively little is known about the microbial communities associated with indoor environments. This is despite knowledge that these microorganisms can contribute to adverse health effects, including the acquisition of healthcare-associated infections, which cause significant morbidity and mortality. The concept of the ‘indoor microbiome’ is relatively new and to date, few studies have been field-based, systematic and long-term. Hospitals in particular, are unique environments which have been shown to drive microbial evolutionary processes as they contain a different sub-set of the human population. The study of the hospital microbiome could have important implications for healthcare and infection control. This thesis explores a range of methods for investigating microorganisms in different indoor environments, including a classroom and outpatient’s waiting areas and wards in a hospital. Results show that the classroom is much more heavily contaminated in terms of total viable counts (TVCs) of bacteria recovered than the hospital environment. This was thought to be attributed to the absence of a strict cleaning regime in the classroom. High-touch items were less contaminated than other objects, likely due to them being obvious cleaning targets. Potential pathogens, including a number of Enterobacteriaceae were cultured from the classroom, outpatient’s waiting area and ward. Virus nucleic acid was recovered from an outpatient’s area, including norovirus and rotavirus RNA. Adenovirus DNA was frequently isolated throughout a 3 month screening protocol and there appeared to be evidence to suggest that a viral marker may be more appropriate than TVCs for identifying viral contamination. Human-associated bacteria were found to be dominant on a hospital ward over a 12 month longitudinal screening study and the presence of numerous bacterial taxa, which may be of concern in the context of paediatrics and immunodeficient patients, was also demonstrated. 4 Acknowledgements I would first like to thank my supervisors Dave Spratt and Nigel Klein for taking on my project and for their encouragement and support. Both were exceptionally calming during the stressful times. Thanks to Louise, Melisa, Paula and Jon at HIRC for helping to kick-start the project Lena for proof-reading and Dimitrios Margaritis for the maps of sampling locations displayed throughout this thesis. I would also like to thank Anna Tymon and those at the Eastman Dental Institute for their help. Thanks to all at the Camelia Botnar labs, especially Elaine Cloutman-Green for lab space, countless cups of tea, and advice. Thanks also to Kathryn Harris, John Hartley and Garth Dixon for providing practical help, reagents and knowledge and to Paul Locke and his team for their wisdom and support. Ronan Doyle provided barcode primers used in Chapter 6 and thanks also to him for bioinformatics support. Thanks to Infection Control for access to the wards and data and to all on Tiger and Koala who put up with me getting in the way taking my swabs; particularly Tom Kennedy. Samana, thanks for the advert for the PhD! Thanks also to her and the rest of my amazing friends; Taemi, Paul, Gron, Alex, Kylie, Chris, Kara, Quinton, Paul and Kate. Without their support and that of others too many to mention, I wouldn’t have been able to focus on the task at hand and complete the project. Thanks to Chris for being so wonderful and supportive. 5 Finally, I would like to thank my family, Mum, Will, Bob and my Grandparents. Without their encouragement, love and endless support, I would not have achieved anything in life. I hope you’re proud. 6 Table of Contents Declaration 2 Abstract 3 Acknowledgements 5 Table of Contents 7 List of Figures 12 List of Tables 15 1. Introduction…………………………………………………………….18 1.1 Overview 18 1.2 The indoor microbiome: current research 21 1.3 Indoor microbial source and distribution 26 1.3.1 Human microbial sources .......................................................................... 26 1.3.2 Other sources of microorganisms .............................................................. 29 1.3.3 Spatial distribution ..................................................................................... 31 1.4 Factors influencing the indoor microbiome 32 1.4.1 Physical parameters ................................................................................... 32 1.4.2 Temporal factors ........................................................................................ 33 1.4.3 Bacterial survival on surfaces .................................................................... 34 1.5 Environmental sampling methods 35 1.5.1 Air Sampling ............................................................................................. 35 1.5.2 Surface sampling ....................................................................................... 39 1.5.3 Post-sampling processing: culture methods ............................................... 41 1.5.4 Post-sampling processing: molecular methods .......................................... 44 1.5.5 16S ribosomal RNA................................................................................... 51 1.5.6 Alternatives to 16S rRNA gene PCR for culture-independent bacterial identification ............................................................................... 58 1.6 Hospitals, nosocomial infection and the role of the environmental microbiome 59 1.6.1 Infection control and the hospital environment ......................................... 60 1.7 Clinically important pathogens 63 1.7.1 Enterobacteriaceae ..................................................................................... 63 1.7.2 Clostridium difficile ................................................................................... 64 1.7.3 Acinetobacter species ................................................................................ 64 1.7.4 Pseudomonas aeruginosa .......................................................................... 65 1.7.5 Staphylococcus aureus .............................................................................. 66 1.7.6 Drug-resistant enterococci ......................................................................... 67 1.7.7 Viruses ....................................................................................................... 67 7 1.7.8 Fungi .......................................................................................................... 68 1.8 Infection and paediatric patients 68 1.9 Aims of the project 69 2. Materials and Methods………………………………………………...72 2.1 Safety, sterility and quality control 72 2.2 Environmental sampling 73 2.2.1 Contact plates ............................................................................................ 73 2.2.2 Swabbing ................................................................................................... 74 2.2.3 Air sampling .............................................................................................. 75 2.2.4 Recording of environmental parameters .................................................... 75 2.3 Culture methods 76 2.3.1 Culture for preparation of known numbers of bacteria ............................. 76 2.3.2 Miles and Misra method ............................................................................ 77 2.4 Post-culture analysis 78 2.4.1 Gram staining ............................................................................................ 78 2.4.2 Biochemical identification ......................................................................... 79 2.5 Nucleic acid extraction methods 81 2.5.1 DNA extraction from pure bacterial cultures ............................................ 81 2.5.2 DNA extraction from cotton swabs ........................................................... 81 2.5.3 DNA extraction from gelatine filters ......................................................... 83 2.6 PCR methods 83 2.6.1 16S rDNA end-point PCR ......................................................................... 83 2.6.2 Quantitative real-time PCR ....................................................................... 89 2.7 Gel electrophoresis 96 2.7.1 Standard agarose gels ................................................................................ 96 2.7.2 E-gels® ....................................................................................................... 96 2.7.3 Size SelectTM 2 % E-gels® ......................................................................... 97 2.8 PCR purification 98 2.8.1 Silica membrane column purification ........................................................ 98 2.8.2 SephadexTM column purification ............................................................... 98 2.9 DNA concentration 99 2.9.1 NanoDrop spectrophotometer .................................................................. 100 2.9.2 Qubit® 2.0 Fluorometer ........................................................................... 100 2.9.3 Agilent Bioanalyzer
Recommended publications
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • Identifying and Characterizing Novel Bacilli Capable of Degrading Recalcitrant Polymers
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2019 Breaking the Chain: Identifying and Characterizing Novel Bacilli Capable of Degrading Recalcitrant Polymers Kyle Bonifer University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Bonifer, Kyle, "Breaking the Chain: Identifying and Characterizing Novel Bacilli Capable of Degrading Recalcitrant Polymers. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5738 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Kyle Bonifer entitled "Breaking the Chain: Identifying and Characterizing Novel Bacilli Capable of Degrading Recalcitrant Polymers." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Todd Reynolds, Major Professor We have read this dissertation and recommend its acceptance: Elizabeth Fozo, Gladys Alexandre, Jennifer Debruyn Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Breaking the Chain: Identifying and Characterizing Novel Bacilli Capable of Degrading Recalcitrant Polymers A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Kyle Sabastian Bonifer December 2019 Copyright © 2019 by Kyle S.
    [Show full text]
  • Gut Microbiome Alterations in Ulcerative Colitis and After Moxibustion Intervention
    Gut Microbiome Alterations In Ulcerative Colitis And After Moxibustion Intervention Qin Qi Shanghai University of Traditional Chinese Medicine Ya-Nan Liu Shanghai University of Traditional Chinese Medicine Si-Yi Lv Shanghai University of Traditional Chinese Medicine Huan-Gan Wu Shanghai University of Traditional Chinese Medicine Lin-Shuang Zhang Zhejiang Institute for Food and Drug Control Zhan Cao Tongji University School of Medicine Hui-Rong Liu Shanghai University of Traditional Chinese Medicine Xiao-Mei Wang ( [email protected] ) Shanghai University of Traditional Chinese Medicine Lu-Yi Wu Shanghai University of Traditional Chinese Medicine Research Article Keywords: Ulcerative colitis, Moxibustion, Gut microbiota, Metagenomic Posted Date: August 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-789670/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Background: Recent studies have shown that the pathogenesis of ulcerative colitis (UC) is closely related to the gut microbiota. Moxibustion, a common treatment in traditional Chinese medicine, is the burning of the herb moxa over acupuncture points. Moxibustion has been used to improve the inammation and gastrointestinal dysfunctions in gastrointestinal disorders such as UC. In this study, we investigated whether moxibustion could improve the gut microbial dysbiosis induced by dextran sulphate sodium (DSS). Methods: Twenty-ve male rats were randomly assigned into ve groups: normal (NG), UC model (UC), moxibustion (UC+MOX), mesalazine (UC+MES), and normal rats with moxibustion (NG+MOX). The UC rat model was established by administering DSS solution. The rats in the UC+MOX and NG+MOX groups were treated with moxibustion at Tianshu (bilateral, ST25) points once daily for 7 consecutive days, and the UC+MES group rats were treated with mesalazine once daily for 7 consecutive days.
    [Show full text]
  • Identification, Molecular Epidemiology, and Antibiotic Resistance Characterization of Acinetobacter Spp
    FACULTY OF HEALTH SCIENCES DEPARTMENT OF MEDICAL BIOLOGY UNIVERSITY HOSPITAL OF NORTH NORWAY DEPARTMENT OF MICROBIOLOGY AND INFECTION CONTROL REFERENCE CENTRE FOR DETECTION OF ANTIMICROBIAL RESISTANCE Identification, molecular epidemiology, and antibiotic resistance characterization of Acinetobacter spp. clinical isolates Nabil Karah A dissertation for the degree of Philosophiae Doctor June 2011 Acknowledgments The work presented in this thesis has been carried out between January 2009 and September 2011 at the Reference Centre for Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway (UNN); and the Research Group for Host–Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø (UIT), Tromsø, Norway. I would like to express my deep and truthful acknowledgment to my main supervisor Ørjan Samuelsen. His understanding and encouraging supervision played a major role in the success of every experiment of my PhD project. Dear Ørjan, I am certainly very thankful for your indispensible contribution in all the four manuscripts. I am also very grateful to your comments, suggestions, and corrections on the present thesis. I am sincerely grateful to my co-supervisor Arnfinn Sundsfjord for his important contribution not only in my MSc study and my PhD study but also in my entire career as a “Medical Microbiologist”. I would also thank you Arnfinn for your nonstop support during my stay in Tromsø at a personal level. My sincere thanks are due to co-supervisors Kristin Hegstad and Gunnar Skov Simonsen for the valuable advice, productive comments, and friendly support. I would like to thank co-authors Christian G.
    [Show full text]
  • A Comparison of Genospecies of Clinical Isolates in the Acinetobacter Spp. Complex Obtained from Hospitalized Patients in Busan, Korea
    Biomedical Science Letters 2019, 25(1): 40 ~53 Original Article https://doi.org/10.15616/BSL.2019.25.1.40 eISSN : 2288-7415 A Comparison of Genospecies of Clinical Isolates in the Acinetobacter spp. Complex Obtained from Hospitalized Patients in Busan, Korea Gyu-Nam Park 1,*, Hye-Sook Kang 2,** , Hye-Ran Kim 3,** *, Bo-Kyung Jung 1,*, Do-Hee Kim 4,* and Kyung-Soo Chang 1, †,*** 1Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea 2Department of Laboratory Medicine, Maryknoll Medical Center, Busan 48972, Korea 3Department of Clinical Laboratory Science, College of Health and Therapy, Daegu Haany University, Gyeongsangbuk-Do 38610, Korea 4Department of Laboratory Medicine, Busan Veterans Hospital, Busan 46996, Korea Of the Acinetobacter spp., A. baumannii (genospecies 2) is the most clinically significant in terms of hospital-acquired infections worldwide. It is difficult to perform Acinetobacter -related taxonomy using phenotypic characteristics and routine laboratory methods owing to clusters of closely related species. The ability to accurately identify Acinetobacter spp. is clinically important because antimicrobial susceptibility and clinical relevance differs significantly among the different genospecies. Based on the medical importance of pathogenic Acinetobacter spp., the distribution and characterization of Acinetobacter spp. isolates from 123 clinical samples was determined in the current study using four typically applied bacterial identification methods; partial rpoB gene sequencing, amplified rRNA gene restriction analysis (ARDRA) of the intergenic transcribed spacer (ITS) region of the 16 ~23S rRNA, the VITEK ® 2 system (an automated microbial identification system) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS).
    [Show full text]
  • Detection of Acinetobacter Spp. in Blood Cultures by an Improved Fluorescent in Situ Hybridization Assay
    Polish Journal of Microbiology 2018, Vol. 67, No 1, 3–10 ORIGINAL PAPER Detection of Acinetobacter spp. in Blood Cultures by an Improved Fluorescent in Situ Hybridization Assay HANIEH ASAADI1, 2, BEHROUZ NAEIMI1, 3, SOMAYYEH GHARIBI4, ABDALNASER KHOSRAVI1, SINA DOBARADARAN5, REZA TAHERKHANI1, 3 and SAEED TAJBAKHSH1, 3* 1 Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran 2 Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran 3 The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran 4 Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran 5 Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran Submitted 25 May 2017, revised 1 October 2017, accepted 28 November 2017 Abstract Fluorescent in situ hybridization (FISH) allows rapid detection of microorganisms. We aimed (i) to evaluate the sensitivity and specific- ity of FISH for the detection of Acinetobacter spp. in blood culture specimens and (ii) to test the simultaneous application of two genus- specific probes labeled with the same fluorochrome to increase the fluorescent signal intensity and improve the detection of Acinetobacter spp. Three hundred and twenty blood culture specimens were testedvia both the conventional laboratory methods and FISH to detect Acinetobacter spp. The specimens were examined separately with each genus-specific probe Aci and ACA, and also using a mixture of the both probes Aci and ACA. In all examinations, probe EUB338 was used accompanied by Aci and ACA. The specificity of FISH was 100% (97.5% confidence interval [CI] = 98.7% – 100%).
    [Show full text]
  • The Genetic Analysis of an Acinetobacter Johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer
    RESEARCH ARTICLE The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer Sabrina Montaña1, Sareda T. J. Schramm2, German Matías Traglia1, Kevin Chiem1,2, Gisela Parmeciano Di Noto1, Marisa Almuzara3, Claudia Barberis3, Carlos Vay3, Cecilia Quiroga1, Marcelo E. Tolmasky2, Andrés Iriarte4, María Soledad Ramírez1,2* 1 Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina, 2 Department of Biological Science, California State University Fullerton, Fullerton, CA, a11111 United States of America, 3 Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina, 4 Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay * [email protected] OPEN ACCESS Abstract Citation: Montaña S, Schramm STJ, Traglia GM, Chiem K, Parmeciano Di Noto G, Almuzara M, et al. Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are (2016) The Genetic Analysis of an Acinetobacter β johnsonii Clinical Strain Evidenced the Presence of susceptible to virtually all antibiotics, strains harboring a variety of -lactamases have Horizontal Genetic Transfer. PLoS ONE 11(8): recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in e0161528. doi:10.1371/journal.pone.0161528 Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtain- Editor: Ruth Hall, University of Sydney, AUSTRALIA ing the whole genome sequence of the Aj2199 strain. Genome comparison studies on Received: March 23, 2016 Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China.
    [Show full text]
  • Table S8. Species Identified by Random Forests Analysis of Shotgun Sequencing Data That Exhibit Significant Differences In
    Table S8. Species identified by random forests analysis of shotgun sequencing data that exhibit significant differences in their representation in the fecal microbiomes between each two groups of mice. (a) Species discriminating fecal microbiota of the Soil and Control mice. Mean importance of species identified by random forest are shown in the 5th column. Random forests assigns an importance score to each species by estimating the increase in error caused by removing that species from the set of predictors. In our analysis, we considered a species to be “highly predictive” if its importance score was at least 0.001. T-test was performed for the relative abundances of each species between the two groups of mice. P-values were at least 0.05 to be considered statistically significant. Microbiological Taxonomy Random Forests Mean of relative abundance P-Value Species Microbiological Function (T-Test) Classification Bacterial Order Importance Score Soil Control Rhodococcus sp. 2G Engineered strain Bacteria Corynebacteriales 0.002 5.73791E-05 1.9325E-05 9.3737E-06 Herminiimonas arsenitoxidans Engineered strain Bacteria Burkholderiales 0.002 0.005112829 7.1580E-05 1.3995E-05 Aspergillus ibericus Engineered strain Fungi 0.002 0.001061181 9.2368E-05 7.3057E-05 Dichomitus squalens Engineered strain Fungi 0.002 0.018887472 8.0887E-05 4.1254E-05 Acinetobacter sp. TTH0-4 Engineered strain Bacteria Pseudomonadales 0.001333333 0.025523638 2.2311E-05 8.2612E-06 Rhizobium tropici Engineered strain Bacteria Rhizobiales 0.001333333 0.02079554 7.0081E-05 4.2000E-05 Methylocystis bryophila Engineered strain Bacteria Rhizobiales 0.001333333 0.006513543 3.5401E-05 2.2044E-05 Alteromonas naphthalenivorans Engineered strain Bacteria Alteromonadales 0.001 0.000660472 2.0747E-05 4.6463E-05 Saccharomyces cerevisiae Engineered strain Fungi 0.001 0.002980726 3.9901E-05 7.3043E-05 Bacillus phage Belinda Antibiotic Phage 0.002 0.016409765 6.8789E-07 6.0681E-08 Streptomyces sp.
    [Show full text]
  • Characterization of the Skin Cultivable Microbiota Composition of the Frog Pelophylax Perezi Inhabiting Different Environments
    International Journal of Environmental Research and Public Health Article Characterization of the Skin Cultivable Microbiota Composition of the Frog Pelophylax perezi Inhabiting Different Environments Diogo Neves Proença 1,† , Emanuele Fasola 2,† , Isabel Lopes 2 and Paula V. Morais 1,* 1 Department of Life Sciences and Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; [email protected] 2 CESAM and Department of Biology, University of Aveiro, 3810-005 Aveiro, Portugal; [email protected] (E.F.); [email protected] (I.L.) * Correspondence: [email protected]; Tel.: +35-1239240700 † Diogo Neves Proença and Emanuele Fasola contributed equally to this work. Abstract: Microorganisms that live in association with amphibian skin can play important roles in protecting their host. Within the scenarios of global change, it is important to understand how environmental disturbances, namely, metal pollution, can affect this microbiota. The aim of this study is to recognize core bacteria in the skin cultivable microbiota of the Perez frog (Pelophylax perezi) that are preserved regardless of the environmental conditions in which the frogs live. The characterization of these isolates revealed characteristics that can support their contributions to the ability of frogs to use metal impacted environments. Frog’s skin swabs were collected from P. perezi populations that inhabit a metal-polluted site and three reference (non-metal polluted) sites. Bacterial strains were isolated, identified, and subjected to an acid mine drainage tolerance Citation: Proença, D.N.; Fasola, E.; (AMD) test, collected upstream from a site heavily contaminated with metals, and tested to produce Lopes, I.; Morais, P.V.
    [Show full text]
  • Reorganising the Order Bacillales Through Phylogenomics
    Systematic and Applied Microbiology 42 (2019) 178–189 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm Reorganising the order Bacillales through phylogenomics a,∗ b c Pieter De Maayer , Habibu Aliyu , Don A. Cowan a School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa b Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Germany c Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa a r t i c l e i n f o a b s t r a c t Article history: Bacterial classification at higher taxonomic ranks such as the order and family levels is currently reliant Received 7 August 2018 on phylogenetic analysis of 16S rRNA and the presence of shared phenotypic characteristics. However, Received in revised form these may not be reflective of the true genotypic and phenotypic relationships of taxa. This is evident in 21 September 2018 the order Bacillales, members of which are defined as aerobic, spore-forming and rod-shaped bacteria. Accepted 18 October 2018 However, some taxa are anaerobic, asporogenic and coccoid. 16S rRNA gene phylogeny is also unable to elucidate the taxonomic positions of several families incertae sedis within this order. Whole genome- Keywords: based phylogenetic approaches may provide a more accurate means to resolve higher taxonomic levels. A Bacillales Lactobacillales suite of phylogenomic approaches were applied to re-evaluate the taxonomy of 80 representative taxa of Bacillaceae eight families (and six family incertae sedis taxa) within the order Bacillales.
    [Show full text]
  • Actinobacteria Bacteroidetes Chloroflexi Firmicutes
    Table 2b. Genera of Actinobacteria, Bacterioidetes Cloroflexi and Firmicutes members of anisakids microbiota. Colors represent the clusters in which they are in Figure 5. Asterisks denote the most contributive in the ordination of Factorial Space Actinobacteria Bacteroidetes Chloroflexi Firmicutes Rubrobacteria Actinobacteria Coriobacteria Bacteroidia Flavobacteria Sphingobacteria Anaerolineae Caldilineae Chloroflexia Bacilli Mollicutes Erysipelotrichia Clostridia Rubrobacterales Acidimicrobiales Actinomycetales Bifidobacteriales Coriobacteriales Bacteroidales Flavobacteriales Sphingobacteriales Anaerolineales Caldilineales Chloroflexales Bacillales Lactobacillales Mycoplasmatales Erysipelotrichales Clostridiales Thermoanaerobacterales Rubrobacteriaceae Rubrobacter Acidimicrobiaceae (5) unclassified Actinomyces* Actinomycetaceae (2) Mobiluncus Brevibacteriaceae (2) Brevibacterium* Cellulomonadaceae unclassified Corynebacteriaceae Corynebacterium* Dermabacteraceae Brachybacterium* Dermatophilaceae unclassified Dietziaceae Dietzia Blastococcus Geodermatophilaceae Geodermatophilus Glycomycetaceae Glycomyces Intrasporangiaceae Ornithinicoccus Kineosporiaceae Kineococcus Microbacteriaceae unclassified Micrococcus* Rothia * Micrococcaceae Kocuria Arthrobacter Micromonosporaceae Actinoplanes Mycobacteriaceae Mycobacterium* Rhodococcus Nocardiaceae Gordonia Nocardia Nocardioides* Nocardioidaceae Aeromicrobium Kribbella Propionibacterium* Propionibacteriaceae Friedmanniella Pseudonocardia Pseudonocardiaceae Amycolatopsis Sporichthyaceae hgcI_clade
    [Show full text]
  • Kroppenstedtia Eburnea Gen. Nov., Sp. Nov., A
    International Journal of Systematic and Evolutionary Microbiology (2011), 61, 2304–2310 DOI 10.1099/ijs.0.026179-0 Kroppenstedtia eburnea gen. nov., sp. nov., a thermoactinomycete isolated by environmental screening, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006 emend. Yassin et al. 2009 Mathias von Jan,1 Nicole Riegger,2 Gabriele Po¨tter,1 Peter Schumann,1 Susanne Verbarg,1 Cathrin Spro¨er,1 Manfred Rohde,3 Bettina Lauer,2 David P. Labeda4 and Hans-Peter Klenk1 Correspondence 1DSMZ – German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany Hans-Peter Klenk 2Microbiology, Vetter Pharma-Fertigung GmbH & Co. KG, 88212 Ravensburg, Germany [email protected] 3HZI – Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany 4National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA A Gram-positive, spore-forming, aerobic, filamentous bacterium, strain JFMB-ATET, was isolated in 2008 during environmental screening of a plastic surface in grade C in a contract manufacturing organization in southern Germany. The isolate grew at temperatures of 25–50 6C and at pH 5.0–8.5, forming ivory-coloured colonies with sparse white aerial mycelia. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the family Thermoactinomycetaceae, except that the cell-wall peptidoglycan contained LL-diaminopimelic acid, while all previously described members of this family display this diagnostic diamino acid in meso-conformation. The DNA G+C content of the novel strain was 54.6 mol%, the main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol, and the major menaquinone was MK-7. The major fatty acids had saturated C14–C16 branched chains.
    [Show full text]