Profiler Tool Selection for Curricular Support

Total Page:16

File Type:pdf, Size:1020Kb

Profiler Tool Selection for Curricular Support Profiler Tool Selection for Curricular Support Abstract Profiling software is the process of analyzing the structure and performance of software. Profiling can be used to detect patterns of use, to verify performance, to optimize code, to identify data corruption and to expose memory leaks or excessive resource demands. Components of a large system can be profiled individually or together. Profiling is accomplished through software tools – software that runs and/or instruments the application under study. Since profiling reinforces understanding of conceptual processes, it can be used effectively in computer science to strengthen programming skills and awareness of design issues. Essentially, such tool usage exposes hidden details. For example, analysis of memory usage can highlight different types of memory management. Tracing function calls can illustrate the impact of different portions of a software system (i.e. functions executed). Students thus learn to think critically in a practical setting, fostering the capacity to evaluate vendor claims and counter asumptions (such as ‘Java has no memory leaks’). In this paper, we summarize our attempts to select, evaluate, and compare profiling tools, where the computer science classroom is the targeted use of such tools. First, we derived desired characteristics for profiling tools. Then we determined availability, subject to the constraints of an academic environment. Finally, we evaluated implementation and usage details. Profiling Tool Criteria Profiling is not a standard topic in the curriculum. However, profiling can be employed as a supplementary tool to reinforce material in programming and software design courses. Hence, we reviewed the fundamental concepts that CS students need to understand. Ideally, profiling should be demonstrated at a level that students can easily understand, that can reinforce concepts that are being taught in the classroom, and that students find useful in their computer science education. We focused on selecting a tool that students could easily acquire, apply to their own code, and interpret the feedback so provided. Our criteria considered computer equipment accessible to students and programming languages familiar to most students. We also surveyed the computer science faculty, soliciting their feedback on appropriate tool usage and desirable features. Faculty were asked to rank preferred features. Presentation details such as the presence of a GUI and the display of profiling results (charts, graphs) were two features queried. Other features focused on utility. Specifically, whether the profiling tool would work with multiple languages, C++, as well as the Unix, Windows and MacOS environments. Faculty were also asked to briefly answer the following questions: • Which languages do you feel are important to consider? • Which platform or environment is most important? • What features or capabilities would you most like to see introduced to the classroom? • Is there a particular profiling focus or result you feel would benefit CS students most? We balanced results of the faculty survey with our own classroom experiences and perceived student expectations. In sum, we derive a set of features that described a tool that profiles C++, and is available for both Windows and UNIX systems. A graphical interface was considered to be less important, as long as the formatted results were easy to read and interpret. Since Java is another important language in the curriculum, profiling different languages, in particular C, C++, and Java, would be ideal. In terms of conceptual material to reinforce with a profiling tool, memory usage was emphasized. Other important concepts included: profiling disk accesses, procedure-level profiling, I/O performance tracking, identification of excessive resource use, and algorithm performance. To aid in teaching profiling, professors anticipated using a profiler to compare algorithms. This could be done by comparing different software programs, or by using one program that changes its control flow over time. Profiling Tool Availability Choosing a profiling tool was challenging. In fact, selection proved to be one of the toughest tasks encountered. Anticipated as a fairly straightforward step, we were surprised to spend (too much) time sorting through various profiling tools trying to find one that met all of our needs. The major challenges we faced were: finding free tools, encountering poor documentation, and determining whether tools met all of our criteria for language, platform, cost, features. Our project aims to integrate profiling tools into classrooms with students as the target. Thus, we sought an open-source tool. Purchasing a tool might make it inconvenient and infeasible for many students to acquire the tools for their own use and experimentation. Also, academic departments might want free distribution. Many of the most appealing tools were not free, so we did not test them. Generally, these tools had user friendly GUIs and well-developed graphical features. Most of these tools, however, were targeted to very specific audiences. The second, and perhaps the most frustrating, problem encountered was poor or completely missing documentation. With some of the most promising and free tools, we were unable to get past the installation stage because there was no documentation to support investigation and no tutorials. We suspected incomplete documentation would be much less of an issue with a purchased tool because well-documented user manuals are usually a selling point. After many hours, we abandoned two tools with good potential – most notably Eclipse and NetBeans. Eclipse is a development platform that is open source. Many Eclipse developers have created plug-in tools with various capabilities, including profiling. Although Eclipse offers a wide variety of features, the major obstacle was lack of appropriate introductory documentation. Even after hours of research, experimentation, and searching for beginner (step-by-step) instructions, we were unable to get the profiling plug-in tool installed and working. Without more detailed instruction, Eclipse did not appear to be a suitable tool for easy installation targeted toward small, low-level profiling. NetBeans presented a similar problem. The last challenge faced was finding a tool that met a variety of our desired features. Aside from cost, these included language, platform, and graphical features. We found tools that met some, but not all of our criteria, so we decided not to explore them further. For example, many tools profile only Java programs, but we desired multi-language support. In the end, we compromised and selected a tool that met all of the criteria but not necessarily in the optimal manner. For example, some tools had better graphical user interfaces than others but did not have multi-language support. Profiling Tools Examined To prepare for presentation of a profiling tool to a university classroom, we experimented with a wide range of profiling tools ourselves. Online searches and investigation led to many sources for profiling software. Experimenting with the available software provided a comprehension of the breadth of features, strengths, weaknesses, and capabilities of the accessible tools. From our initial exploration, we were able to gain a more thorough understanding of the profiling tools currently available. By understanding the limitations of the tools, we were able to determine a set of minimum functionality to demonstrate in our classroom instruction. We narrowed our selection from a couple dozen profiling tools down to three strong candidates, and then performed tests on each tool. We ran a small set of programs in each one, evaluating the ease of installation, ease of use, user interface, existence and clarity of documentation and instructions, and the usefulness and readability of the results. The programs we ran were small to medium sized C++ programs – approximately equivalent to the length and complexity of a typical program written in an introductory data structures class. Programs included different types of loops, pointers, arrays, lists, linked lists, etc. During each test, we noted any unexpected errors, confusing instructions or unclear results. These factors determined our evaluation of the tool’s ease of use. Finding answers to issues, explanations of results, and troubleshooting details during our examination of each tool helped us assess the tool’s documentation and instruction quality. The final result set for each run was considered for usefulness and readability. We compared the breadth of the tool’s analysis, the clarity of the output, and any other extra information that the tool gathered. Our three candidates were GProf, DevPartner and ValGrind. All three are available as freeware, work with C++ programs, and were downloaded and installed without problems. GProf runs on a Linux shell, which is readily available on university lab computers. It is conveniently built-in on all Unix/Linux platforms. The tool includes thorough help files. We were also able to find extensive documentation online to provide instructions and explanations of its features. GProf does not, however, include a graphical interface. Results are displayed as text in the Linux shell it is run in. The results are precise, but the impact of the tool’s output is not presented in an easily comparable format. DevPartner is a free download, providing limited features of the full cost version. The software is easy to download and install. It runs on
Recommended publications
  • Global SCRUM GATHERING® Berlin 2014
    Global SCRUM GATHERING Berlin 2014 SESSION DESCRIPTION TABLE OF CONTENTS SESSION TIMETABLE Monday, September 22nd – AM Sessions WELCOME & OPENING KEYNOTE - 9:00 – 10:30 Welcome Remarks ROOM Dave Sharrock & Marion Eickmann Opening Keynote Potsdam I/III Enabling the organization as a complex eco-system Dave Snowden AM BREAK – 10:30 – 11:00 90 MINUTE SESSIONS - 11:00 – 12:30 SESSION & SPEAKER TRACK LEVEL ROOM Managing Agility: Effectively Coaching Agile Teams Bring Down the Performing Tegel Andrea Tomasini, Bent Myllerup Wall Temenos – Build Trust in Yourself, Your Team, Successful Scrum Your Organization Practices: Berlin Norming Bellevue Christine Neidhardt, Olaf Lewitz Never Sleeps A Curious Mindset: basic coaching skills for Managing Agility: managers and other aliens Bring Down the Norming Charlottenburg II Deborah Hartmann Preuss, Steve Holyer Wall Building Creative Teams: Ideas, Motivation and Innovating beyond Retrospectives Core Scrum: The Performing Charlottenburg I Cara Turner Bohemian Bear Scrum Principles: Building Metaphors for Retrospectives Changing the Forming Tiergarted I/II Helen Meek, Mark Summers Status Quo Scrum Principles: My Agile Suitcase Changing the Forming Charlottenburg III Martin Heider Status Quo Game, Set, Match: Playing Games to accelerate Thinking Outside Agile Teams Forming Kopenick I/II the box Robert Misch Innovating beyond Let's Invent the Future of Agile! Core Scrum: The Performing Postdam III Nigel Baker Bohemian Bear Monday, September 22nd – PM Sessions LUNCH – 12:30 – 13:30 90 MINUTE SESSIONS - 13:30
    [Show full text]
  • Enabling Devops on Premise Or Cloud with Jenkins
    Enabling DevOps on Premise or Cloud with Jenkins Sam Rostam [email protected] Cloud & Enterprise Integration Consultant/Trainer Certified SOA & Cloud Architect Certified Big Data Professional MSc @SFU & PhD Studies – Partial @UBC Topics The Context - Digital Transformation An Agile IT Framework What DevOps bring to Teams? - Disrupting Software Development - Improved Quality, shorten cycles - highly responsive for the business needs What is CI /CD ? Simple Scenario with Jenkins Advanced Jenkins : Plug-ins , APIs & Pipelines Toolchain concept Q/A Digital Transformation – Modernization As stated by a As established enterprises in all industries begin to evolve themselves into the successful Digital Organizations of the future they need to begin with the realization that the road to becoming a Digital Business goes through their IT functions. However, many of these incumbents are saddled with IT that has organizational structures, management models, operational processes, workforces and systems that were built to solve “turn of the century” problems of the past. Many analysts and industry experts have recognized the need for a new model to manage IT in their Businesses and have proposed approaches to understand and manage a hybrid IT environment that includes slower legacy applications and infrastructure in combination with today’s rapidly evolving Digital-first, mobile- first and analytics-enabled applications. http://www.ntti3.com/wp-content/uploads/Agile-IT-v1.3.pdf Digital Transformation requires building an ecosystem • Digital transformation is a strategic approach to IT that treats IT infrastructure and data as a potential product for customers. • Digital transformation requires shifting perspectives and by looking at new ways to use data and data sources and looking at new ways to engage with customers.
    [Show full text]
  • Integrating the GNU Debugger with Cycle Accurate Models a Case Study Using a Verilator Systemc Model of the Openrisc 1000
    Integrating the GNU Debugger with Cycle Accurate Models A Case Study using a Verilator SystemC Model of the OpenRISC 1000 Jeremy Bennett Embecosm Application Note 7. Issue 1 Published March 2009 Legal Notice This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales License. To view a copy of this license, visit http://creativecommons.org/licenses/by/2.0/uk/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. This license means you are free: • to copy, distribute, display, and perform the work • to make derivative works under the following conditions: • Attribution. You must give the original author, Jeremy Bennett of Embecosm (www.embecosm.com), credit; • For any reuse or distribution, you must make clear to others the license terms of this work; • Any of these conditions can be waived if you get permission from the copyright holder, Embecosm; and • Nothing in this license impairs or restricts the author's moral rights. The software for the SystemC cycle accurate model written by Embecosm and used in this document is licensed under the GNU General Public License (GNU General Public License). For detailed licensing information see the file COPYING in the source code. Embecosm is the business name of Embecosm Limited, a private limited company registered in England and Wales. Registration number 6577021. ii Copyright © 2009 Embecosm Limited Table of Contents 1. Introduction ................................................................................................................ 1 1.1. Why Use Cycle Accurate Modeling .................................................................... 1 1.2. Target Audience ................................................................................................ 1 1.3. Open Source ..................................................................................................... 2 1.4. Further Sources of Information ......................................................................... 2 1.4.1.
    [Show full text]
  • Code Profilers Choosing a Tool for Analyzing Performance
    Code Profilers Choosing a Tool for Analyzing Performance Freescale Semiconductor Author, Rick Grehan Document Number: CODEPROFILERWP Rev. 0 11/2005 A profiler is a development tool that lets you look inside your application to see how each component—each routine, each block, sometimes each line and even each instruction—performs. You can find and correct your application’s bottlenecks. How do they work this magic? CONTENTS 1. Passive Profilers ...............................................3 6. Comparing Passive and Active 1.1 How It Is Done—PC Sampling ................4 Profilers .................................................................9 1.2 It Is Statistical ................................................4 6.1 Passive Profilers—Advantages ...............9 6.2 Passive Profilers—Disadvantages .........9 2. Active Profilers ...................................................4 6.3 Active Profilers—Advantages ................10 2.1 Methods of Instrumentation .....................5 6.4 Active Profilers—Disadvantages ..........11 3. Source Code Instrumentation ...................5 7. Conclusion .........................................................12 3.1 Instrumenting by Hand ..............................5 8. Addendum: Recursion and 4. Object Code Instrumentation ....................5 Hierarchies ........................................................12 4.1 Direct Modification .......................................6 4.2 Indirect Modification ...................................7 5. Object Instrumentation vs. Source Instrumentation
    [Show full text]
  • Debugging and Profiling with Arm Tools
    Debugging and Profiling with Arm Tools [email protected] • Ryan Hulguin © 2018 Arm Limited • 4/21/2018 Agenda • Introduction to Arm Tools • Remote Client Setup • Debugging with Arm DDT • Other Debugging Tools • Break • Examples with DDT • Lunch • Profiling with Arm MAP • Examples with MAP • Obtaining Support 2 © 2018 Arm Limited Introduction to Arm HPC Tools © 2018 Arm Limited Arm Forge An interoperable toolkit for debugging and profiling • The de-facto standard for HPC development • Available on the vast majority of the Top500 machines in the world • Fully supported by Arm on x86, IBM Power, Nvidia GPUs and Arm v8-A. Commercially supported by Arm • State-of-the art debugging and profiling capabilities • Powerful and in-depth error detection mechanisms (including memory debugging) • Sampling-based profiler to identify and understand bottlenecks Fully Scalable • Available at any scale (from serial to petaflopic applications) Easy to use by everyone • Unique capabilities to simplify remote interactive sessions • Innovative approach to present quintessential information to users Very user-friendly 4 © 2018 Arm Limited Arm Performance Reports Characterize and understand the performance of HPC application runs Gathers a rich set of data • Analyses metrics around CPU, memory, IO, hardware counters, etc. • Possibility for users to add their own metrics Commercially supported by Arm • Build a culture of application performance & efficiency awareness Accurate and astute • Analyses data and reports the information that matters to users insight • Provides simple guidance to help improve workloads’ efficiency • Adds value to typical users’ workflows • Define application behaviour and performance expectations Relevant advice • Integrate outputs to various systems for validation (e.g.
    [Show full text]
  • Ready to Innovate?
    ReadyThe Visual COBOL 5.0to Azure innovate? DevOps and Serverless Computing Walkthrough June 2019 The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 2 Visual COBOL 5.0— blue sky thinking Ready to build your Cloud story? This is primarily a how-to technical guide that enables COBOL and non- COBOL developers to modernize legacy applications using the Cloud— it’s all about bridging the old with the new. New to Visual COBOL? This is your guided tour of everything it can do towards modernizing core COBOL applications. Already on board? This is the update that explains how to take your applications beyond the next level and on to the Cloud. What will you learn? Much of this Guide focuses on the technical, practical aspect of creating next-gen apps from COBOL code. Among other new skills, you will discover how to… • Bring a COBOL application into Visual Studio or Eclipse • Edit, compile and debug COBOL applications using the IDE • Modernize COBOL apps using .NET and C# • Create and deploy a COBOL microservice as a Serverless application in the Cloud • Build, test and publish your application via a DevOps pipeline • Understand the latest native Cloud technologies The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 3 What’s new in Visual COBOL 5.0? This latest update of our unrivalled development experience significantly extends Visual COBOL’s capabilities. It brings the Cloud closer, enabling access to DevOps and Serverless computing for COBOL systems. For Micro Focus, Visual COBOL 5.0 is where meet our customers’ need for application modernization using the Cloud.
    [Show full text]
  • Bugs and Debugging
    CS50 Bugs and Debugging Overview Key Terms A bug is an error in code which results in a program either failing, or exhibiting a be- • bugs havior that is different from what the programmer expects. Bugs can be frustrating to • debugging deal with, but every programmer encounters them. Debugging is the process of trying • debugger to identify and fix bugs that exist in code. Programmers will often do this by making use of a program called a debugger, which assists in the debugging process. • breakpoint • debug50 Debugging Basics Programs generally perform computations much faster than a human possibly could, which makes it difficult to see what's wrong with a program just by running it all the way through. Debuggers are valuable because they allow a programmer to freeze a program at a particular line, known as a breakpoint, so that the programmer can see what's happening at that point in time. It also allows the programmer to execute the program one line at a time, so that the programmer can follow along with every decision that a program makes. Using debug50 debug50 is a program that we've created that runs a built-in graphical debugger in the CS50 IDE. Before you run debug50, you must set at least one breakpoint. If you have a general sense for where your program seems to be going wrong, it may be wise to set a breakpoint a few lines before there, so that you can see what's happening in your program as it moves into the section that you believe is causing the problem.
    [Show full text]
  • Software Debugging Techniques
    Software debugging techniques P. Adragna Queen Mary, University of London Abstract This lecture provides an introduction to debugging, a crucial activity in ev- ery developer's life. After an elementary discussion of some useful debugging concepts, the lecture goes on with a detailed review of general debugging tech- niques, independent of any specific software. The final part of the lecture is dedicated to analysing problems related to the use of C++ , the main program- ming language commonly employed in particle physics nowadays. Introduction According to a popular definition [1], debugging is a methodical process of finding and reducing the number of bugs, or defects, in a computer program. However, most people involved in spotting and removing those defects would define it as an art rather then a method. All bugs stem from a one basic premise: something thought to be right, was in fact wrong. Due to this simple principle, truly bizarre bugs can defy logic, making debugging software challenging. The typical behaviour of many inexperienced programmers is to freeze when unexpected problems arise. Without a definite process to follow, solving problems seems impossible to them. The most obvious reaction to such a situation is to make some random changes to the code, hoping that it will start working again. The issue is simple: the programmers have no idea of how to approach debugging [2]. This lecture is an attempt to review some techniques and tools to assist non-experienced pro- grammers in debugging. It contains both tips to solve problems and suggestions to prevent bugs from manifesting themselves. Finding a bug is a process of confirming what is working until something wrong is found.
    [Show full text]
  • The Design of a Debugger Unit for a RISC Processor Core
    Rochester Institute of Technology RIT Scholar Works Theses 3-2018 The Design of a Debugger Unit for a RISC Processor Core Nikhil Velguenkar [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Velguenkar, Nikhil, "The Design of a Debugger Unit for a RISC Processor Core" (2018). Thesis. Rochester Institute of Technology. Accessed from This Master's Project is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. The Design of a Debugger Unit for a RISC Processor Core by Nikhil Velguenkar Graduate Paper Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Approved by: Mr. Mark A. Indovina, Lecturer Graduate Research Advisor, Department of Electrical and Microelectronic Engineering Dr. Sohail A. Dianat, Professor Department Head, Department of Electrical and Microelectronic Engineering Department of Electrical and Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York March 2018 To my family and friends, for all of their endless love, support, and encouragement throughout my career at Rochester Institute of Technology Abstract Recently, there has been a significant increase in design complexity for Embedded Sys- tems often referred to as Hardware Software Co-Design. Complexity in design is due to both hardware and firmware closely coupled together in-order to achieve features forlow power, high performance and low area. Due to these demands, embedded systems consist of multiple interconnected hardware IPs with complex firmware algorithms running on the device.
    [Show full text]
  • Global SCRUM GATHERING® Berlin 2014
    Global SCRUM GATHERING Berlin 2014 SESSION DESCRIPTION TABLE OF CONTENTS SESSION TIMETABLE Monday, September 22nd – AM Sessions WELCOME & OPENING KEYNOTE - 9:00 – 10:30 Welcome Remarks ROOM Dave Sharrock & Marion Eickmann Opening Keynote Potsdam I/III Enabling the organization as a complex eco-system Dave Snowden AM BREAK – 10:30 – 11:00 90 MINUTE SESSIONS - 11:00 – 12:30 SESSION & SPEAKER TRACK LEVEL ROOM Managing Agility: Effectively Coaching Agile Teams Bring Down the Performing Tegel Andrea Tomasini, Bent Myllerup Wall Temenos – Build Trust in Yourself, Your Team, Successful Scrum Your Organisation Practices: Berlin Norming Bellevue Christine Neidhardt, Olaf Lewitz Never Sleeps A Curious Mindset: basic coaching skills for Managing Agility: managers and other aliens Bring Down the Norming Charlottenburg II Deborah Hartmann Preuss, Steve Holyer Wall Building Creative Teams: Ideas, Motivation and Innovating beyond Retrospectives Core Scrum: The Performing Charlottenburg I Cara Turner Bohemian Bear Scrum Principles: Building Metaphors for Retrospectives Changing the Forming Tiergarted I/II Helen Meek, Mark Summers Status Quo Scrum Principles: My Agile Suitcase Changing the Forming Charlottenburg III Martin Heider Status Quo Game, Set, Match: Playing Games to accelerate Thinking Outside Agile Teams Forming Kopenick I/II the box Robert Misch Innovating beyond Let's Invent the Future of Agile! Core Scrum: The Performing Postdam III Nigel Baker Bohemian Bear Monday, September 22nd – PM Sessions LUNCH – 12:30 – 13:30 90 MINUTE SESSIONS - 13:30
    [Show full text]
  • Software Debugging Using the Debugger SAM4E Xplained Pro
    Faculty of Technology and Society Computer Engineering Bachelor’s thesis 15 credits Software debugging using the debugger SAM4E Xplained Pro Mjukvarufelsökning med användning av felsökningsverktyget SAM4E Xplained Pro Hamoud Abdullah Nadia Manoh Exam: Bachelor of Science in Engineering Examiner: Ulrik Ekedahl Area: Computer Engineering Supervisor: Magnus Krampell Date of final seminar: 2018-08-21 Abstract Embedded systems are found in almost every device used in our daily lives, including cell phones, refrigerators, and cars. Some devices may be significantly more sensitive than others, meaning a bug appearing in a system could cause harm, even loss of human lives or cause no harm at all. To reduce bugs in a system, software testing and software debugging are performed. The Computer Science program at Malmö University does not focus on teaching software debugging using a debugger. Thus, this thesis presents a debugging lab created for Computer Science students, considered to help them gain knowledge in how to use the debugger SAM4E Xplained Pro to locate bugs. As a result, four students performed the debugging lab of which 75 percent of the bugs were found and remedied. Keywords: embedded system, software testing, software debugging, software failure, software bugs debugging techniques Sammanfattning Inbyggda system finns i nästan alla enheter som används i vårt dagliga liv, som exempelvis mobiltelefoner, kylskåp och bilar. En del enheter kan vara betydligt känsligare än andra, vilket innebär att en bugg som existerar i ett system kan orsaka skada, till och med förlust av människoliv, eller orsakar ingen skada alls. Mjukvarutestning och mjukvarufelsökning genomförs för att reducera buggar i ett system.
    [Show full text]
  • Software Testing Strategies and Methods CONTENTS
    Software Engineering Software Testing Strategies and Methods CONTENTS I. Software Testing Fundamentals 1. Definition of Software Testing II. Characteristics of Testing Strategies III. Software Verification and Validation (V&V) IV. Testing Strategies 1. Unit Testing 2. Integration Testing V. Alpha and Beta Testing ( Concept and differences) VI. System Testing 1. Concept of System Testing VII. Concept of White-box and Black-Box Testing VIII. Debugging 1. Concept and need of Debugging 2. Characteristics of bugs IX. Debugging Strategies 1. Concept of Brute Force, Back Tracking, Induction, Deduction Anuradha Bhatia Software Engineering I. Software Testing Fundamentals 1. Definition of Software Testing i. Software testing is a method of assessing the functionality of a software program. ii. There are many different types of software testing but the two main categories are dynamic testing and static testing. II. Characteristics of Testing Strategies Figure 1: Software Testing Software Testing Myths and Facts: Just as every field has its myths, so does the field of Software Testing. Software testing myths have arisen primarily due to the following: i. Lack of authoritative facts. ii. Evolving nature of the industry. iii. General flaws in human logic. Some of the myths are explained below, along with their related facts: 1. MYTH: Quality Control = Testing. FACT: Testing is just one component of software quality control. Quality Control includes other activities such as Reviews. Anuradha Bhatia Software Engineering 2. MYTH: The objective of Testing is to ensure a 100% defect- free product. FACT: The objective of testing is to uncover as many defects as possible. Identifying all defects and getting rid of them is impossible.
    [Show full text]