</Coding in Python>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SETL for Internet Data Processing
SETL for Internet Data Processing by David Bacon A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Computer Science New York University January, 2000 Jacob T. Schwartz (Dissertation Advisor) c David Bacon, 1999 Permission to reproduce this work in whole or in part for non-commercial purposes is hereby granted, provided that this notice and the reference http://www.cs.nyu.edu/bacon/phd-thesis/ remain prominently attached to the copied text. Excerpts less than one PostScript page long may be quoted without the requirement to include this notice, but must attach a bibliographic citation that mentions the author’s name, the title and year of this disser- tation, and New York University. For my children ii Acknowledgments First of all, I would like to thank my advisor, Jack Schwartz, for his support and encour- agement. I am also grateful to Ed Schonberg and Robert Dewar for many interesting and helpful discussions, particularly during my early days at NYU. Terry Boult (of Lehigh University) and Richard Wallace have contributed materially to my later work on SETL through grants from the NSF and from ARPA. Finally, I am indebted to my parents, who gave me the strength and will to bring this labor of love to what I hope will be a propitious beginning. iii Preface Colin Broughton, a colleague in Edmonton, Canada, first made me aware of SETL in 1980, when he saw the heavy use I was making of associative tables in SPITBOL for data processing in a protein X-ray crystallography laboratory. -
1. with Examples of Different Programming Languages Show How Programming Languages Are Organized Along the Given Rubrics: I
AGBOOLA ABIOLA CSC302 17/SCI01/007 COMPUTER SCIENCE ASSIGNMENT 1. With examples of different programming languages show how programming languages are organized along the given rubrics: i. Unstructured, structured, modular, object oriented, aspect oriented, activity oriented and event oriented programming requirement. ii. Based on domain requirements. iii. Based on requirements i and ii above. 2. Give brief preview of the evolution of programming languages in a chronological order. 3. Vividly distinguish between modular programming paradigm and object oriented programming paradigm. Answer 1i). UNSTRUCTURED LANGUAGE DEVELOPER DATE Assembly Language 1949 FORTRAN John Backus 1957 COBOL CODASYL, ANSI, ISO 1959 JOSS Cliff Shaw, RAND 1963 BASIC John G. Kemeny, Thomas E. Kurtz 1964 TELCOMP BBN 1965 MUMPS Neil Pappalardo 1966 FOCAL Richard Merrill, DEC 1968 STRUCTURED LANGUAGE DEVELOPER DATE ALGOL 58 Friedrich L. Bauer, and co. 1958 ALGOL 60 Backus, Bauer and co. 1960 ABC CWI 1980 Ada United States Department of Defence 1980 Accent R NIS 1980 Action! Optimized Systems Software 1983 Alef Phil Winterbottom 1992 DASL Sun Micro-systems Laboratories 1999-2003 MODULAR LANGUAGE DEVELOPER DATE ALGOL W Niklaus Wirth, Tony Hoare 1966 APL Larry Breed, Dick Lathwell and co. 1966 ALGOL 68 A. Van Wijngaarden and co. 1968 AMOS BASIC FranÇois Lionet anConstantin Stiropoulos 1990 Alice ML Saarland University 2000 Agda Ulf Norell;Catarina coquand(1.0) 2007 Arc Paul Graham, Robert Morris and co. 2008 Bosque Mark Marron 2019 OBJECT-ORIENTED LANGUAGE DEVELOPER DATE C* Thinking Machine 1987 Actor Charles Duff 1988 Aldor Thomas J. Watson Research Center 1990 Amiga E Wouter van Oortmerssen 1993 Action Script Macromedia 1998 BeanShell JCP 1999 AngelScript Andreas Jönsson 2003 Boo Rodrigo B. -
Computer Engineer Ruchi Sanghvi
STEM TRAILBLAZER BIOS COMPUTER ENGINEER RUCHI SANGHVI THIS PAGE LEFT BLANK INTENTIONALLY STEM TRAILBLAZER BIOS COMPUTER ENGINEER RUCHI SANGHVI LAURA HAMILTON WAXMAN Lerner Publications Minneapolis For Caleb, my computer wizard Copyright © 2015 by Lerner Publishing Group, Inc. All rights reserved. International copyright secured. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of Lerner Publishing Group, Inc., except for the inclusion of brief quotations in an acknowledged review. Lerner Publications Company A division of Lerner Publishing Group, Inc. 241 First Avenue North Minneapolis, MN 55401 USA For reading levels and more information, look up this title at www.lernerbooks.com. Content Consultant: Robert D. Nowak, PhD, McFarland-Bascom Professor in Engineering, Electrical and Computer Engineering, University of Wisconsin–Madison Library of Congress Cataloging-in-Publication Data Waxman, Laura Hamilton. Computer engineer Ruchi Sanghvi / Laura Hamilton Waxman. pages cm. — (STEM trailblazer bios) Includes index. ISBN 978–1–4677–5794–2 (lib. bdg. : alk. paper) ISBN 978–1–4677–6283–0 (eBook) 1. Sanghvi, Ruchi, 1982–—Juvenile literature. 2. Computer engineers—United States— Biography—Juvenile literature. 3. Women computer engineers—United States—Biography— Juvenile literature. I. Title. QA76.2.S27W39 2015 621.39092—dc23 [B] 2014015878 Manufactured in the United States of America 1 – PC – 12/31/14 The images in this book are used with the permission of: picture alliance/Jan Haas/Newscom, p. 4; © Dinodia Photos/Alamy, p. 5; © Tadek Kurpaski/flickr.com (CC BY 2.0), p. -
Python in Education Teach, Learn, Program
ANALYZING THE ANALYZERS THE ANALYZING Python in Education Teach, Learn, Program Nicholas H. Tollervey ISBN: 978-1-491-92462-4 Python in Education Teach, Learn, Program Nicholas H.Tollervey Python in Education by Nicholas H. Tollervey Copyright © 2015 O’Reilly Media, Inc. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editor: Meghan Blanchette Interior Designer: David Futato Production Editor: Kristen Brown Cover Designer: Karen Montgomery Copyeditor: Gillian McGarvey Illustrator: Rebecca Demarest April 2015: First Edition Revision History for the First Edition 2015-03-11: First Release See http://oreilly.com/catalog/errata.csp?isbn=9781491924624 for release details. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Python in Educa‐ tion, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limi‐ tation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsi‐ bility to ensure that your use thereof complies with such licenses and/or rights. -
Study of Twitter Sentiment Analysis Using Machine Learning Algorithms on Python
International Journal of Computer Applications (0975 – 8887) Volume 165 – No.9, May 2017 Study of Twitter Sentiment Analysis using Machine Learning Algorithms on Python Bhumika Gupta, PhD Monika Negi, Kanika Vishwakarma, Goldi Assistant Professor, C.S.E.D Rawat, Priyanka Badhani G.B.P.E.C, Pauri, Uttarakhand, India B.Tech, C.S.E.D G.B.P.E.C Uttarakhand, India ABSTRACT 2. ABOUT SENTIMENT ANALYSIS Twitter is a platform widely used by people to express their Sentiment analysis is a process of deriving sentiment of a opinions and display sentiments on different occasions. particular statement or sentence. It’s a classification technique Sentiment analysis is an approach to analyze data and retrieve which derives opinion from the tweets and formulates a sentiment that it embodies. Twitter sentiment analysis is an sentiment and on the basis of which, sentiment classification application of sentiment analysis on data from Twitter is performed. (tweets), in order to extract sentiments conveyed by the user. In the past decades, the research in this field has consistently Sentiments are subjective to the topic of interest. We are grown. The reason behind this is the challenging format of the required to formulate that what kind of features will decide for tweets which makes the processing difficult. The tweet format the sentiment it embodies. is very small which generates a whole new dimension of In the programming model, sentiment we refer to, is class of problems like use of slang, abbreviations etc. In this paper, we entities that the person performing sentiment analysis wants to aim to review some papers regarding research in sentiment find in the tweets. -
An Introduction to Python (PDF)
Introduction to Python Heavily based on presentations by Matt Huenerfauth (Penn State) Guido van Rossum (Google) Richard P. Muller (Caltech) ... Monday, October 19, 2009 Python • Open source general-purpose language. • Object Oriented, Procedural, Functional • Easy to interface with C/ObjC/Java/Fortran • Easy-ish to interface with C++ (via SWIG) • Great interactive environment • Downloads: http://www.python.org • Documentation: http://www.python.org/doc/ • Free book: http://www.diveintopython.org Monday, October 19, 2009 2.5.x / 2.6.x / 3.x ??? • “Current” version is 2.6.x • “Mainstream” version is 2.5.x • The new kid on the block is 3.x You probably want 2.5.x unless you are starting from scratch. Then maybe 3.x Monday, October 19, 2009 Technical Issues Installing & Running Python Monday, October 19, 2009 Binaries • Python comes pre-installed with Mac OS X and Linux. • Windows binaries from http://python.org/ • You might not have to do anything! Monday, October 19, 2009 The Python Interpreter • Interactive interface to Python % python Python 2.5 (r25:51908, May 25 2007, 16:14:04) [GCC 4.1.2 20061115 (prerelease) (SUSE Linux)] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> • Python interpreter evaluates inputs: >>> 3*(7+2) 27 • Python prompts with ‘>>>’. • To exit Python: • CTRL-D Monday, October 19, 2009 Running Programs on UNIX % python filename.py You could make the *.py file executable and add the following #!/usr/bin/env python to the top to make it runnable. Monday, October 19, 2009 Batteries Included • Large collection of proven modules included in the standard distribution. -
An Introduction to Python Release 2.2.2
An Introduction to Python Release 2.2.2 Guido van Rossum Fred L. Drake, Jr., editor PythonLabs Email: [email protected] A catalogue record for this book is available from the British Library. First printing, April 2003 (14/4/2003). Published by Network Theory Limited. 15 Royal Park Clifton Bristol BS8 3AL United Kingdom Email: [email protected] ISBN 0-9541617-6-9 Further information about this book is available from http://www.network-theory.co.uk/python/manual/ Additional section authors: Using Lists as Stacks by Ka-Ping Yee Floating Point Arithmetic — Issues and Limitations by Tim Peters Unicode Strings by Marc-Andre Lemburg Summary of changes made for this edition by Network Theory Ltd: Minor editing of text and examples for formatting as a book. Added Publisher’s preface. Moved Abstract to Introduction. Additional entries and modifications to index. Some paragraphs, sentences and footnotes removed/edited for con- ciseness. A complete set of differences can be found at http://www.network- theory.co.uk/python/manual/src/ Copyright c 2001Python Software Foundation. All rights reserved. Copyright c 2000 BeOpen.com. All rights reserved. Copyright c 1995-2000 Corporation for National Research Initiatives. All rights reserved. Copyright c 1991-1995 Stichting Mathematisch Centrum. All rights re- served. See the end of this document for complete license and permissions infor- mation. Contents Publisher’s Preface 1 Introduction 3 1 Whetting Your Appetite 5 1.1 WhereFromHere...................... 6 2 Using the Python Interpreter 7 2.1InvokingtheInterpreter................... 7 2.2 TheInterpreterandItsEnvironment........... 9 3 An Informal Introduction to Python 11 3.1Using Python as a Calculator ............... -
Python Is Eating the World: How One Developer’S Side Project Became the Hottest Programming Language on the Planet
Python is eating the world: How one developer’s side project became the hottest programming language on the planet By Nick Heath Image: Dan Stroud under the Creative Commons licence Guido van Rossum at Dropbox headquarters in 2014. Frustrated by programming language shortcomings, Guido van Rossum created Python. With the language now used by millions, Nick Heath talks to van Rossum about Python’s past and explores what’s next. In late 1994, a select group of programmers from across the US met to discuss their new secret weapon. Barry Warsaw was one of the 20 or so developers present at that first-ever workshop for the newly- created Python programming language and recalls the palpable excitement among those early users. “I can remember one person in particular who said, ‘You cannot tell anybody that I’m here because our use of Python is a competitive advantage.’ It was their secret weapon, right?” Even at that early meeting, at the then US National Standards Bureau in Maryland, Warsaw says it was evident that Python offered something new in how easy it was to write code and simply get things done. “When I first was introduced to Python, I knew there was something special. It was some combination of readability, and there was a joy to writing Python code,” he remembers. Today enthusiasm for Python has spread far beyond that initial circle of developers, and some are predicting it will soon become the most popular programming language in the world, as it continues to add new users faster than any other language. -
(Pdf) of the School of Squiggol: a History of the Bird−Meertens
The School of Squiggol A History of the Bird{Meertens Formalism Jeremy Gibbons University of Oxford Abstract. The Bird{Meertens Formalism, colloquially known as \Squig- gol", is a calculus for program transformation by equational reasoning in a function style, developed by Richard Bird and Lambert Meertens and other members of IFIP Working Group 2.1 for about two decades from the mid 1970s. One particular characteristic of the development of the Formalism is fluctuating emphasis on novel `squiggly' notation: sometimes favouring notational exploration in the quest for conciseness and precision, and sometimes reverting to simpler and more rigid nota- tional conventions in the interests of accessibility. This paper explores that historical ebb and flow. 1 Introduction In 1962, IFIP formed Working Group 2.1 to design a successor to the seminal algorithmic language Algol 60 [4]. WG2.1 eventually produced the specification for Algol 68 [63, 64]|a sophisticated language, presented using an elaborate two- level description notation, which received a mixed reception. WG2.1 continues to this day; technically, it retains responsibility for the Algol languages, but practi- cally it takes on a broader remit under the current name Algorithmic Languages and Calculi. Over the years, the Group has been through periods of focus and periods of diversity. But after the Algol 68 project, the period of sharpest focus covered the two decades from the mid 1970s to the early 1990s, when what later became known as the Bird{Meertens Formalism (BMF) drew the whole group together again. It is the story of those years that is the subject of this paper. -
Coders-Noten.Indd 1 16-05-19 09:20 1
Noten coders-noten.indd 1 16-05-19 09:20 1. DE SOFTWARE-UPDATE DIE DE WERKELIJKHEID HEEFT VERANDERD 1 Adam Fisher, Valley of Genius: The Uncensored History of Silicon Valley (As Told by the Hackers, Founders, and Freaks Who Made It Boom, (New York: Twelve, 2017), 357. 2 Fisher, Valley of Genius, 361. 3 Dit segment is gebaseerd op een interview van mij met Sanghvi, en op verscheidene boeken, artikelen en video’s over de begindagen van Facebook, waaronder: Daniela Hernandez, ‘Facebook’s First Female Engineer Speaks Out on Tech’s Gender Gap’, Wired, 12 december 2014, https://www.wired.com/2014/12/ruchi-qa/; Mark Zucker berg, ‘Live with the Original News Feed Team’, Facebookvideo, 25:36, 6 september 2016, https://www.facebook.com/zuck/ videos/10103087013971051; David Kirkpatrick, The Facebook Effect: The Inside Story of the Company That Is Connecting the World (New York: Simon & Schuster, 2011); INKtalksDirector, ‘Ruchi Sanghvi: From Facebook to Facing the Unknown’, YouTube, 11:50, 20 maart 2012, https://www.youtube.com/watch?v=64AaXC00bkQ; TechCrunch, ‘TechFellow Awards: Ruchi Sanghvi’, TechCrunch-video, 4:40, 4 maart 2012, https://techcrunch.com/video/techfellow-awards-ruchi- coders-noten.indd 2 16-05-19 09:20 sanghvi/517287387/; FWDus2, ‘Ruchi’s Story’, YouTube, 1:24, 10 mei 2013, https://www.youtube.com/watch?v=i86ibVt1OMM; alle video’s geraadpleegd op 16 augustus 2018. 4 Clare O’Connor, ‘Video: Mark Zucker berg in 2005, Talking Facebook (While Dustin Moskovitz Does a Keg Stand)’, Forbes, 15 augustus 2011, geraadpleegd op 7 oktober 2018, https://www.forbes.com/sites/ clareoconnor/2011/08/15/video-mark-Zucker berg-in-2005-talking- facebook-while-dustin-moskovitz-does-a-keg-stand/#629cb86571a5. -
Introduction to Computational & Quantitative Biology (G4120)
ICQB Introduction to Computational & Quantitative Biology (G4120) Fall 2019 Oliver Jovanovic, Ph.D. Columbia University Department of Microbiology & Immunology Lecture 5: Introduction to Programming October 15, 2019 History of Programming 1831 Lady Ada Lovelace writes the first computer program for Charles Babbage’s Analytical Engine. 1936 Alan Turing develops the theoretical concept of the Turing Machine, forming the basis of modern computer programming. 1943 Plankalkül, the first formal computer language, is developed by Konrad Zuse, a German engineer, which he later applies to, among other things, chess. 1945 John von Neumann develops the theoretical concepts of shared program technique and conditional control transfer. 1949 Short Code, the first computer language actually used on an electronic computer, appears. 1951 A-O, the first widely used complier, is designed by Grace Hopper at Remington Rand. 1954 FORTRAN (FORmula TRANslating system) language is developed by John Backus at IBM for scientific computing. 1958 ALGOL, the first programming language with a formal grammar, is developed by John Backus for scientific applications 1958 LISP (LISt Processing) language is created by John McCarthy of MIT for Artificial Intelligence (AI) research. 1959 COBOL is created by the Conference on Data Systems and Languages (CODASYL) for business programming, and becomes widely used with the support of Admiral Grace Hopper. 1964 BASIC (Beginner’s All-purpose Symbolic Instruction Code) is created by John Kemeny and Thomas Kurtz as an introductory programming -
“It All Started with ABC, a Wonderful Teaching Language That I Had Helped Create in the Early Eighties
ABC language the mother of Python “It all started with ABC, a wonderful teaching language that I had helped create in the early eighties. It was an incredibly elegant and powerful language, aimed at non-professional programmers.” Guido van Rossum, ABC team member and creator of Python1 ABC 1.05 Python 3.2 SIEVE TO procedure definition >>> HOW TO SIEVE TO n: >>> def sieve(n): HOW TO SIEVE TO n: ... numbers = set(range(2, n+1)) PUT {2..n} IN numbers ... while numbers: condition must be a test WHILE numbers <> {}: ... p = min(numbers) PUT min numbers IN p ... print(p, end=' ') WRITE p ... for m in range(1, int(n/p)+1): FOR m IN {1..floor(n/p)}: ... if m*p in numbers: IF m*p in numbers: ... numbers.remove(m*p) REMOVE m*p FROM numbers 21 years later, Python still has a lot of ABC in it ... >>> sieve(50) >>> SIEVE TO 50 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 1. Foreword for "Programming Python" (1st ed.) http://www.python.org/doc/essays/foreword/ Basic Types Numbers Text ▪ Numbers are either exact or inexact. ▪ Mutable ASCII strings of arbitrary length. ▪ Exact numbers are stored as ratios of ▪ First character position is @ 1. integers of arbitrary length. ▪ Slicing is done with operators @ and | (pipe), ▪ Basic arithmetic (+, -, *, /) with exact see examples below. numbers always produce exact results. ABC 1.05 ▪ Some functions, such as root, sin, log etc.