Branchiostoma Lanceolatum

Total Page:16

File Type:pdf, Size:1020Kb

Branchiostoma Lanceolatum UNIVERSITA’ DEGLI STUDI DI NAPOLI FEDERICO II PhD in MODEL ORGANISMS IN BIOMEDICAL AND VETERINARY RESEARCH XXVII CICLO PhD THESIS Study of evolution, expression and function of Nitric Oxide Synthases in the cephalochordate Branchiostoma lanceolatum Coordinator: Co - Tutor: Prof. Paolo De Girolamo Dr. Salvatore D’Aniello Tutor Author: Prof Paolo De Girolamo Giovanni Annona To you and my family Index Abbreviation list .................................................................................................................. IV Abstract ............................................................................................................................ VIII Chapter 1 - Introduction ....................................................................................................... 1 1.2 The cephalochordates Amphioxus ....................................................................... 12 1.2.1 Discovery of Amphioxus ................................................................................. 12 1.2.2 Amphioxus a link between past and present ............................................... 16 1.2.2 Phylogeny .......................................................................................................... 19 1.2.3 The model system: Amphioxus ...................................................................... 21 1.2.4 Development and larval anatomy ................................................................. 25 1.2.5 Larval nervous system ..................................................................................... 32 1.3 NO/NOS Amphioxus .................................................................................................... 36 Chapter 2 - Material and Methods ...................................................................................... 40 2.1 Animal‟s culture and embryos collection ............................................................ 41 2.1.1 Adult B. lanceolatum sampling ........................................................................ 41 2.1.2 B. lanceolatum facility ........................................................................................ 44 2.1.3 B. lanceolatum spawning .................................................................................. 45 2.1.4 Embryo collection ............................................................................................. 48 2.2 Biomolecular techniques ........................................................................................ 49 2.2.1 RNA Extraction and purification ................................................................... 49 2.2.2 Reverse transcription ....................................................................................... 49 2.2.3 Polymerase Chain Reaction(PCR) .................................................................. 50 2.2.4 DNA/RNA gel electrophoresis ...................................................................... 50 2.2.5 Molecular Cloning ............................................................................................ 51 I 2.2.6 PCR colony screening ...................................................................................... 52 2.2.7 DNA sequencing .............................................................................................. 52 2.2.8 Riboprobe synthesis ......................................................................................... 53 2.2.9 Riboprobe quantification ................................................................................. 54 2.3 Primers for WISH and qPCR design .................................................................... 55 2.4 Whole mount in situ hybridization (WISH) ........................................................ 56 2.5 Quantitative PCR(qPCR) ....................................................................................... 57 2.6 NO quantization: Griess assay and DAN assay ................................................. 58 2.6.1 Bradford protein assay .................................................................................... 58 2.6.3 DAN assay ........................................................................................................ 58 2.6.4 Griess assay ...................................................................................................... 59 2.7 NO detection: DAF-FA DA assay ......................................................................... 60 2.8 Variation of NO endogenous levels during development ............................... 61 2.9 NOS phylogenetic analysis .................................................................................... 62 2.9.1 Cephalochordate evolutionary study ............................................................ 62 2.9.2 Bony fishes and chondrichthyes evolutionary study .................................. 62 2.9.3 Sequences analysis ........................................................................................... 65 Chapter 3 - Results .............................................................................................................. 66 3.1 NOS phylogeny ....................................................................................................... 67 3.1.1 Cephalochordates NOS phylogeny ............................................................... 67 3.1.2 Bony fishes and chondrichthyes NOS phylogeny ....................................... 69 3.2 Characterization of the expression levels of NOS genes in development .. 71 3.2.1 B. lanceolatum NOS-A gene expression levels .............................................. 71 3.2.2 B. lanceolatum NOS-B gene expression level ................................................. 72 3.2.3 B. lanceolatum NOS-C gene expression levels ............................................... 73 3.3 Characterization of the expression profile of NOS genes in development .... 74 II 3.3.1 B. lanceolatum NOS-A gene expression ......................................................... 74 3.3.2 B. lanceolatum NOS-B gene expression .......................................................... 74 3.3.3 B. lanceolatum NOS-C gene expression .......................................................... 75 3.3.4 B. lanceolatum SoxB1 gene expression ............................................................ 76 3.4 Endogenous NO level duringdevelopment ........................................................ 78 3.4.1 Griess assay ....................................................................................................... 78 3.4.2 DAN assay ......................................................................................................... 79 3.5 NO localization ........................................................................................................ 80 3.6 Role of NO during the development ................................................................... 81 Chapter 4 - Discussion ........................................................................................................ 83 Conclusion ........................................................................................................................... 91 Acknowledgment ................................................................................................................. 93 Collaborative project ............................................................................................................ 96 Bibliography .................................................................................................................. 99 III Abbreviation list aa Aminoacids ADH3 Alcohol dehydrogenase class III AP Alkaline Phosphatase ASSEMB Association of European Marine Biological Laboratories BH4 Tetrahydrobiopterin cofactor BR Blocking Reagent BSA Bovine Serum Albumine CaM Calmodulin Ca2+ Calcium ion Cys Cysteine cDNA complementar DNA CNS Central Nervous System diaminofluorophore 4-amino-5-methylamino-2′-7′- DAF-FM-DA difluorofluorescein diacetate DAN Diamino compound 2,3-diaminonaphthalene DC Dorsal Compartment motoneurons DDAH dimethylarginine-dimethylaminohydrolase DEPC Diethylpyrocarbonate DIG Digoxigenin DNA Deoxyribonucleic Acid dNTP deoxyribose nucleoside triphosphate ERR Estrogen-related receptor gamma Et-OH Ethanol eNOS endothelial NOS FAD Flavin Adenine Dinucleotide FMN Flavin Mononucleotide FSW Filtered Sea Water GAD Glutamic Acid Decarboxylase IV Gbx Gastrulation brain homeobox Gly Glycine GTP Guanosine triphosphate HB Hybridization Buffer Hox Homeotic gene iNOS inducible NOS LB Luria Bertani L-NA L-Nω-Nitroarginine L-NAME L-Nω-Nitroarginine Methyl Ester LPS Large Paired Neurons L-32 Ribosomal protein L32 miniprep Plasmid DNA mini preparation NED N-naphthyl-ethylenediamine NO Nitric Oxide NOS Nitric Oxide Synthase nNOS neuronal NOS ON Over Night Otx Orthodenticle (Drosophila) homolog PFA Paraformaldehyde PMC Primary Motor Center PNS Peripheral nervous system PP Phosphate MOPS 3-(N-morpholino)propanesulfonic acid NADPH nicotinamide adenine dinucleotide phosphate NaR Nitrate Reductase PCR Polymerase Chain Reaction qPCR Quantitative PCR V RNA Ribonucleic acid SA Sulfanilamide sGC Soluble Guanylate Cyclase SEM Scanning Electron Microscopy SoxB1 HMG transcription factor SoxB1 SZN Stazione Zoologica Anton Dohrn VC Ventral Compartment motoneurons VGAT Vesicular GABA/Glycine transporter VGLUT Vesicular Glutamate Transporter WB Wash buffer WS Wash Solution WISH Whole mount in situ hybridization Anatomy ap anterior process of first somite ba branchial anlage c neurenteric canal cv celebral
Recommended publications
  • Species Delimitation in Sea Anemones (Anthozoa: Actiniaria): from Traditional Taxonomy to Integrative Approaches
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 November 2019 doi:10.20944/preprints201911.0118.v1 Paper presented at the 2nd Latin American Symposium of Cnidarians (XVIII COLACMAR) Species delimitation in sea anemones (Anthozoa: Actiniaria): From traditional taxonomy to integrative approaches Carlos A. Spano1, Cristian B. Canales-Aguirre2,3, Selim S. Musleh3,4, Vreni Häussermann5,6, Daniel Gomez-Uchida3,4 1 Ecotecnos S. A., Limache 3405, Of 31, Edificio Reitz, Viña del Mar, Chile 2 Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km. 6, Puerto Montt, Chile 3 Genomics in Ecology, Evolution, and Conservation Laboratory, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, P.O. Box 160-C, Concepción, Chile. 4 Nucleo Milenio de Salmonidos Invasores (INVASAL), Concepción, Chile 5 Huinay Scientific Field Station, P.O. Box 462, Puerto Montt, Chile 6 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avda. Brasil 2950, Valparaíso, Chile Abstract The present review provides an in-depth look into the complex topic of delimiting species in sea anemones. For most part of history this has been based on a small number of variable anatomic traits, many of which are used indistinctly across multiple taxonomic ranks. Early attempts to classify this group succeeded to comprise much of the diversity known to date, yet numerous taxa were mostly characterized by the lack of features rather than synapomorphies. Of the total number of species names within Actiniaria, about 77% are currently considered valid and more than half of them have several synonyms. Besides the nominal problem caused by large intraspecific variations and ambiguously described characters, genetic studies show that morphological convergences are also widespread among molecular phylogenies.
    [Show full text]
  • Contribution of Homeobox Genes to the Development of the Oikoplastic
    &RQWULEXWLRQRIKRPHRER[JHQHVWRWKH GHYHORSPHQWRIWKHRLNRSODVWLF epithelium, a major novelty of tunicate Larvaceans <DQD0LNKDOHYD Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen 'LVVHUWDWLRQGDWH Scientificenvironment. The work presented in this Ph.D. thesis was carried out in the research group of Dr.Daniel Chourrout at the Sars International Centre for Marine Molecular Biology as part of the Ph.D. program at the Department of Molecular Biology at the Faculty of Mathematics and Natural Science of the University of Bergen. This work is entirely reported in four research articles, including three already published and one submitted for publication. Other members of the group who contributed are listed in the authors of these reports. I am the first author and obtained most results in two of them, with external collaborations (Pr. Joel Glover and Dr. Orsolya Kreneisz, University of Oslo; Pr. Eric Thompson from Sars International Centre for Marine Molecular Biology, Bergen). The main collaborating institute in the other papers has been Genoscope, Genome Center in Evry (France) with essential contributions from Dr. Patrick Wincker and Dr. France Denoeud. The funding from Sars International Centre, the Research Council of Norway, Evo-Net grants and Genoscope supported this research project. Acknowledgements I am extremely grateful to everyone who supported and helped me during all the years of work on the thesis. It was a long way with inspiring successes and devastating failures, small wins and big challenges. And first of all, I would like to thank my supervisor Daniel Chourrout for his enthusiasm and belief in this project. He has been the excellent supervisor, with never ending inspiration and encouragement, especially when the things have been difficult.
    [Show full text]
  • Branchiostoma Lanceolatum” Thesis
    Open Research Online The Open University’s repository of research publications and other research outputs Study of the Evolutionary Role of Nitric Oxide (NO) in the Cephalochordate Amphioxus, “Branchiostoma lanceolatum” Thesis How to cite: Caccavale, Filomena (2018). Study of the Evolutionary Role of Nitric Oxide (NO) in the Cephalochordate Amphioxus, “Branchiostoma lanceolatum”. PhD thesis The Open University. For guidance on citations see FAQs. c 2017 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000d5d2 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Study of the Evolutionary Role of Nitric Oxide (NO) in the Cephalochordate Amphioxus, “Branchiostoma lanceolatum” A thesis submitted to the Open University of London for the degree of DOCTOR OF PHILOSOPHY by Filomena Caccavale Diploma Degree in Biology Università degli studi di Napoli Federico II Affiliated Research Center (ARC) STAZIONE ZOOLOGICA “ANTON DOHRN” DI NAPOLI Naples, Italy November 2017 This thesis work has been carried out in the laboratory of Dr. Salvatore D’Aniello, at the Stazione Zoologica “Anton Dohrn” di Napoli, Italy. Director of studies: Dr. Salvatore D’Aniello (BEOM, Stazione Zoologica “Anton Dohrn” di Napoli, Italy) Internal Supervisor: Dr. Anna Palumbo (BEOM, Stazione Zoologica “Anton Dohrn” di Napoli, Italy) External Supervisor: Prof. Ricard Albalat Rodriguez (Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain) “Find a job you enjoy doing, and you will never have to work a day in your life.” Mark Twain ABSTRACT Nitric Oxide (NO) is a gaseous molecule that acts in a wide range of biological processes.
    [Show full text]
  • Pennatulacea Annotated Bibliography and Indexes of the Sea Pens (Coelenterata: Octocorallia) of the World 1469-1999 130701 Gary C
    PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES Volume 51, No. 2, pp. 19-103, 1 fig., 14 plates. July 20, 1999 Index Pennatulacea Annotated Bibliography and Indexes of the Sea Pens (Coelenterata: Octocorallia) of the World 1469-1999 130701 Gary C. Williams Department o f Invertebrate Zoology, California Academy o f Sciences Golden Gate Park, San Francisco, California 94118 A reasonably comprehensive bibliography of the living and fossil pennatulacean Octo­ corallia is presented, with the goal of including all published accounts regarding the biology of the sea pens. This compilation of approximately 1000 citations represents 530 years of published research. Complete unabbreviated citations for periodicals are used throughout. Many of the citations are annotated with descriptive notes. Taxonomic, geographic, and field-of-study indexes to the literature are included, as well as a synopsis of historical periods in the study of the Pennatulacea. T a b l e o f C o n t e n t s Introduction.......................................................................................................................................................... 21 Acknowledgments ............................................................................................................................................ 22 Historical Account............................................................................................................................................ 23 Pre-Linnean Period (1469—1757)-. ........................................................................................................
    [Show full text]
  • Moodle Interface
    General Characteristics and Classification of Phylum Cnidaria Discipline course -1 Semester -1 Paper – Zoology Lesson- General Characteristics and Classification of Phylum Cnidaria Lesson Developer: Sarita Kumar College /Department: Zoology, Acharya Narendra Dev College University of Delhi Institute of Lifelong Learning, University of Delhi General Characteristics and Classification of Phylum Cnidaria Table of Contents • Introduction • Habit and Habitat • Body Organization • Absence of Coelom • Morphological Forms • Polyp • Medusa • Histology of Body wall • Epidermis • Gastrodermis • Mesoglea • Movement and Locomotion • Digestive System and Nutrition • Gas Exchange • Excretion and Osmoregulation • Nervous System • Sense Organs • Reproduction • Asexual Reproduction • Sexual Reproduction • Classification of Phylum Cnidaria • Summary Institute of Lifelong Learning, University of Delhi 1 General Characteristics and Classification of Phylum Cnidaria • Exercise/Practice • Glossary • References/Bibliography/Further Reading Introduction Cnidaria is one of the most common phyla of animals, with over 11,000 different described species. The word ‘Cnidaria’ comes from the Greek word "Cnidos" Which means stinging nettle. Therefore the animals comprising Phylum Cnidaria are commonly called nettle animals or stinging animals. These are widely distributed animals found throughout the world which include hydras, sea fur, jellyfish, sea anemones and corals. Value Addition: Interesting to Know!! Heading Text: Discovery of Phylum Cnidaria Body Text: The
    [Show full text]
  • 9783709118719.Pdf
    Andreas Wanninger Editor Evolutionary Developmental Biology of Invertebrates Vol. 2 Lophotrochozoa (Spiralia) Evolutionary Developmental Biology of Invertebrates 2 Andreas Wanninger Editor Evolutionary Developmental Biology of Invertebrates 2 Lophotrochozoa (Spiralia) Editor Andreas Wanninger Department of Integrative Zoology University of Vienna Faculty of Life Sciences Wien Austria ISBN 978-3-7091-1870-2 ISBN 978-3-7091-1871-9 (eBook) DOI 10.1007/978-3-7091-1871-9 Library of Congress Control Number: 2015947925 Springer Wien Heidelberg New York Dordrecht London © Springer-Verlag Wien 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover illustration: Scanning electron micrograph of an early trochophore larva of the tusk shell, Antalis entalis, a scaphopod mollusk.
    [Show full text]
  • G Othenburg R Esearch Institute
    o a n GRI-rapport 2005:7 The Thin End of the Wedge Foreign Women Professors as Double Strangers in Academia Barbara Czarniawska & Guje Sevón Organizing in Action Nets Gothenburg Research Institute Research Gothenburg © Gothenburg Research Institute Allt mångfaldigande utan skriftligt tillstånd förbjudet. Gothenburg Research Institute Handelshögskolan vid Göteborgs universitet Box 600 405 30 Göteborg Tel: 031 - 773 54 13 Fax: 031 - 773 56 19 E-post: fö[email protected] ISSN 1400-4801 Layout: Lise-Lotte Olausson Barbara Czarniawska & Guje Sevón The Thin End of the Wedge: Foreign Women Professors as Double Strangers in Academia GRI- rapport 2005:7 Abstract The impetus for this study was an observation that many of the women who obtained the first chairs at European universities were foreigners. Our initial attempt to provide a statistical picture proved impossible, because there were numerous problems deciding the contents of such concepts as ”first”, ”university professor”, and ”foreigner”. We have therefore focused on four life stories. It turns out that being a ”double stranger” – a woman in a masculine profession and a foreigner – is not, as one might think, a cumulative disadvantage. Rather, it seems that these two types of strangeness might cancel one another, permitting these women a greater degree of success than was allowed their ”native” sisters. This situation was far from providing psychological comfort, however. Thus the metaphor of the wedge: opening the doors but suffering from double pressure. Key words: wedge, stranger, Simmel, Schütz, women in academia, intersectionality September 2005 Acknowledgements We would like to thank Joan Acker, Lotte Bailyn, Nina Lee Colwill, Johanna Esseveld, Monika Kostera, Joanne Martin, and Elisabeth Sundin for their comments, criticisms and suggestions.
    [Show full text]
  • Thesis Final ORE Version
    The Role of Normal Development in Experimental Embryology Submitted by James William Edward Lowe, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Philosophy, May 2015. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 2 Abstract This thesis presents an examination of the notion of ‘normal development’ and its role in biological research. It centres on a detailed historical analysis of the experimental embryological work of the American biologist Edmund Beecher Wilson in the early-1890s. Normal development is a fundamental concept in biology, which underpins and facilitates experimental work investigating the processes of organismal development. Concepts of the normal and normality in biology (and medicine) have been fruitfully examined by philosophers. Yet, despite being constantly used and invoked by developmental biologists, the concept of normal development has not been subject to substantial philosophical attention. In this thesis I analyse how the concept of normal development is produced and used in experimental systems, and use this analysis to probe its theoretical and methodological significance. I focus on normal development as a technical condition in experimental practice. In doing so I highlight the work that is required to create and sustain both it and the work that it enables.
    [Show full text]
  • Newsletter Number 55
    The Palaeontology Newsletter Contents 55 Association Business 2 News 6 Association Meetings 9 Association Diary 12 Obituaries Leslie Rowsell Moore 14 Pierre Hupé 17 From our correspondents The hold of hypothetical ancestors 18 Palaeo-math 101 28 Acellular teleost bone 37 Stealing time 41 Advertisement: Evolution of Pterosaurs 47 The Mystery Fossil 48 Meeting Reports 50 Future meetings of other bodies 68 Book Reviews 78 Palaeontology vol 47 part1–3 93–95 Lyell Meeting abstracts 97 Reminder: The deadline for copy for Issue no 56 is 25th June 2004 On the Web: <http://www.palass.org/> Newsletter 55 2 Newsletter 55 3 In 2000 she returned to the UK on a NERC personal research fellowship first in the Department Association Business of Geology and Geophysics at the University of Edinburgh, and then in Liverpool. She has been investigating patterns of diversification in the earliest echinoids from Palaeozoic strata, which Awards and Prizes 2003 are rare and poorly resolved in phylogenetic terms. In 2002 she was appointed to her present position as lecturer of Palaeontology in the A number of awards were made at the 47th Annual Meeting of the Association, which was held Department of Earth and Ocean Sciences at the University of Liverpool. on 14–17th December 2003, at the Department of Geology, University of Leicester, UK. President’s Award The President’s Award went to Maria McNamara (University College Dublin) for her presentation Nominations now being sought Exceptional preservation of amphibians from the Miocene of NE Spain. The President also made special mention of the talk by Bjarte Hannisdal (University of Chicago) Hodson Fund entitled Inferring evolutionary patterns from the fossil record using Bayesian inversion: an Conferred on a palaeontologist who is under the age of 35 and who has made a notable application to synthetic stratophenetic data.
    [Show full text]
  • Long Live Morphology! Integrating Morphoevodevo Into Molecular Evodevo and Phylogenomics
    Evolutionary Developmental Biology Morphology is dead – long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics Andreas Wanninger Journal Name: Frontiers in Ecology and Evolution ISSN: 2296-701X Article type: Review Article Received on: 28 Feb 2015 Accepted on: 06 May 2015 Provisional PDF published on: 06 May 2015 Frontiers website link: www.frontiersin.org Citation: Wanninger A(2015) Morphology is dead – long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. Front. Ecol. Evol. 3:54. doi:10.3389/fevo.2015.00054 Copyright statement: © 2015 Wanninger. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. This Provisional PDF corresponds to the article as it appeared upon acceptance, after rigorous peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon. Morphology is dead – long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics Andreas Wanninger University of Vienna Department of Integrative Zoology Althanstrasse 14 1090 Vienna Austria Email: [email protected] 1 Abstract Morphology, the description and analysis of organismal
    [Show full text]
  • William R. Jeffery
    1 CURRICULUM VITAE William R. Jeffery Birthplace: Chicago, Illinois Telephone (Office) (301) 405-5202 Telefax (301) 314-9358 Electronic Mail Address: [email protected] Faculty and Laboratory website: http://www.life.umd.edu/biology/faculty/jeffery/index.html http://www.life.umd.edu/labs/Jeffery/ RESEARCH INTERESTS Developmental and Evolutionary Biology: Genetic basis of evolutionary change in development, visual system and pigment regression in cave animals, tissue repair and regeneration, development of new experimental model systems. EDUCATION B.S. (Biology) University of Illinois (1968) Ph.D. (Cell and Developmental Biology) Department of Biological Sciences, University of Iowa (1971) Post.Doc. (Oncology) McArdle Laboratory for Cancer Research, University of Wisconsin, Madison (1971-1972) Post.Doc. (Molecular Biology) Department of Biochemistry and Pharmacology, Tufts University School of Medicine, Boston (1972-1974) PROFESSIONAL EXPERIENCE 1999-present Professor, Biology, and Affiliate Professor, Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 2018 Visiting Scientist, Sorbonne Université, Paris, France (Sabbatical) 2012-2015 Senior Scientist, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 2011-2012 Visiting Scientist, Laboratory for Molecular Genetics, Ruđer Bošković Institute, Zagreb, Croatia (Sabbatical) 2004-2005 Visiting Scientist, CNRS Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France (Sabbatical). 1999-2004 Chair, Department
    [Show full text]
  • Arguments on the Origin of the Vertebrate Liver and the Amphioxus Hepatic Diverticulum: a Hypothesis on Evolutionary Novelties* V.M
    Письма в Вавиловский журнал • Гипотеза • 2017 ARGUMENTS ON THE ORIGIN OF THE VERTEBRATE LIVER AND THE AMPHIOXUS HEPATIC DIVERTICULUM: A HYPOTHESIS ON EVOLUTIONARY NOVELTIES* V.M. Subbotin Department of Pathology, Morphologic changes in evolution imply that all organs must descend with modifications from School of Medicine, University homologous organs of a common ancestor (Homology Principle). However, unlike other visceral organs, of Pittsburgh, BSTWR S417, e.g., heart, the anatomical features of the liver/portal system have been highly conserved in vertebrate Pittsburgh, PA 15260, USA lineage. Already in the basal vertebrates (Cyclostomata), the visceral post-capillary blood is collected into [email protected] the portal vein and directed to the liver, where it breaks into the capillaries again, forming venous rete Division of Hematology, mirabila, the hallmark feature of the vertebrate liver. The anatomical stability of this complex arrangement Oncology & Bone Marrow in all vertebrates pleads for the search of the homologous precursor. Amphioxus possesses the midgut Transplant, Department diverticulum, whose vascularization, developmental and topological characteristics are similar to those of Pediatrics, School of Medicine of the vertebrate liver/portal system. Experts have long suggested Amphioxus diverticulum as the and Public Health, University homologous precursor of the vertebrate liver. The recent discovery of vertebrate liver-specific proteins in of Wisconsin, WIMR 4136, the Amphioxus diverticulum supports this hypothesis. However, the Homology Principle obligates us to Madison WI 53705, USA ask the important question: What is the phylogenetic precursor of the complex Amphioxus diverticulum? [email protected] There is no relevant evidence from putatively preceding forms (existing or fossil). However, recently discovered facts on Amphioxus’ diverticulum development (A.O.
    [Show full text]