Carboniferous, Limestone-Rich, High-Destructive

Total Page:16

File Type:pdf, Size:1020Kb

Carboniferous, Limestone-Rich, High-Destructive LEIDSE Deel GEOLOGISCHE MEDEDELINGEN, 46, Aflevering 2, pp. 157-235, 17-2-1971 Three Upper Carboniferous, limestone-rich, high-destructive, delta systems with submarine fan deposits, Cantabrian Mountains, Spain BY W.J.E. van de Graaff Abstract Cantabrian northwestern Carboniferous In the eastern part of the Mountains, Spain, Upper strata crop out. In the Pisuerga Moscovian limestone-rich is in number of structural units. Correlations area an Upper (≈ Westphalian D) sequence exposed a between the various structural units are based on lithostratigraphic characteristics and paleontological dating with fusulinids and calcareous algae. The various limestone units show rapid lateral transitions into siliciclastic deposits. The siliciclastic deposits deltaic are mainly interpreted as deposits. Three distinct delta like the Rhône all of the systems are distinguished which, recent delta, are wave-dominated, high-destruc- associated with turbidite which indicates that the delta tive type. The oldest delta system is important deposits, prograded into The second delta is associated with minor but is relatively deep water (i.e. ≥ 125 m). system only turbiditesequences relatively To the NW marine rich in coals. These two delta systems prograded from approximately SW to NE. open deposits with lime- stones were formed, to the NE fine-grained shelf deposits and limestones were deposited. After deposition of the second delta of the caused formation of the In system, tectonic tilting in the southwestern part area Vergaño disconformity. the remainder this level be In the northeastern of the of the area can recognized as a deepeningor transgressive sequence. part area important slumping movements were caused by the tectonic movements. this the river the delta diverted another and the ofsiliciclastic After tilting forming was to area only source sediments was a drift The existence of such drift is the of arenitic competent longshore system. a longshore system proved by presence quartz pebbles and cobbles in compositionally mature sandstones, as the deltaic deposits do not contain such coarse siliciclastics and are furthermore of lithic arenitic composition. During this period a zone with shallow marine deposits in the southwestern part be from submarine and fan in the southern and northeastern of the area can distinguished canyon deposits (turbidites) parts of the area. The third wave-dominated, high-destructive delta system prograded from SW to NE over these deposits. Open shelf the NW and NE. After of the third delta marine, shelf and slope deposits are again present to deposition system the Leonian rise the Leonian and basin resulted. phase gave to disconformity, a new configuration the interval studied basin to the southwest of the studied be inferred from the facies distributions. The In a margin area can is of which the from the remainder of the presence proved a synsedimentary fault, separates present Casavegas Syncline area. This fault influenced thickness and had but little effect the facies distributions. mainly distributions, upon The limestones in wide of i.e. shelf. The lateral into were deposited a range environments, lagoonal to open rapid transitions formed in shallower coarse siliciclastics are interpreted as indicating that the limestones were slightly water than the surrounding siliciclastics. with the the absence of framework and the of all kinds of Together generally muddy character, an organic presence limestones bank algae, this indicates that the are biogenetic deposits. The data collected have led to a redefinition of the Vañes Formation and to replacement of the Sierra Corisa Formation by the Vergaño and Covarres Formations. Sumario En la oriental de la Cordillera Cantábrica al Carbonífero En la del parte afloran rocas pertenecientes superior. región Pisuerga edad existe una serie rica en calizas expuesta en distintas unidades estructurales, de Moscoviense superior (≈ Westfaliense D). Las unidades estructurales basan características dataciones correlaciones entre estas se en litoestratigráficas y en paleontológicas medio de calcáreas. Las distintas unidades de calizas transiciones laterales por fusulínidas y algas muestran unas rápidas a depósitos siliciclásticos. Estos últimos han sido interpretados como sedimentos deltaicos. Se 3 sistemas deltaicos el delta reciente del del dominado el distinguen que, por analogíacon Ródano, son tipo destructivo, por El sistema deltaico asociado de lo indica el delta ha avanzado oleaje. mas viejo esta a depósitos importantes turbiditas, que que hacia relativamente En el sistema deltaico turbiditas solamente aguas profundas (≥ 125 m). segundo estas se encuentran esporá- dicamente, habiendo una abundancia relativamente grande de estratos de carbón. Estos dos sistemas de delta han avanzado del al En el fueron formados marinos mientras hacia el aproximadamente suroeste noreste. noroeste depósitos con calizas, que fueron sedimentos de fino calizas. la del deltaico noreste depositados shelf de grano y Despues de deposición segundo sistema se produjo un basculamientode la parte suroccidental de la región, formándose la disconformidad de Vergaño. En el resto de la región este nivel puede ser reconocido como unasecuencia transgresiva ode profundización. Hacia el noreste movimientos tectónicos dieron lugar a la formación de importantes slumps. del basculamiento el río formaba el delta sedesvió hacia lo los sedimentos siliciclásticos fueron Después que otra región, por que sistema de corrientes rumbo la La existencia de tal sistema de corrientes de- abastecidos por un con un paralelo a costa. se 158 W. J. E. van de Graaff: Three Upper Carboniferous delta systems, Spain la de cuarzo-areníticos areniscas de mientras muestra por presencia cantos y bloques en composición madura, que los depósitos deltaicos contienen tales sedimentos siliciclásticos de además de lítica-arenítica. Durante no grano grueso y son composición se una zona con marinos en la suroccidental de la de- este periodo pueden distinguir depósitos poco profundos parte región y de cañones submarinos hacia el el El deltaico pósitos y aluviones (turbiditas) que se encuentran sur y noreste. tercer sistema cubriendo últimos desde el hacia el dándose condiciones marinas abiertas de ladera avanzó, estos depósitos, suroeste noreste, y de la fase Leonesa la dis- shelf en el noroeste y el noreste. Después de la deposición del tercer sistema deltaico dió origen a de lo resultó de la sedimentaria. conformidadLeonesa, que una nueva configuración cuenca En el intervalo ha de las distribuciones de facies la existencia de de locali- estudiado se podido deducir un margen cuenca, zado hacia el de la de estudio. demuestra la de falla el suroeste región Igualmente se presencia una sinsedimentaria, que separa actual sinclinal de del resto de la Esta falla dio a los sedimentarios Casavegas región. principalmente lugar espesores pero tuvo efecto sobre las distribuciones de facies. poco Las calizas fueron depositadasen una escala amplia de medios ambientales, desde lagunas hasta un shelf abierto. Las rápidas laterales siliciclásticas de han sido las calizas fueron transiciones a rocas grano grueso interpretadas como una indicación que Su la ausencia de construcción formadas en aguas un poco menos profundas que aquellas. carácter generalmente fangoso, una la de todos los de indican las calizas bancos orgánica y presencia tipos algas, que son biogenéticos. Los datos han conducido redefinición de la Formación de Vañes de la Formación de Sierra recogidos a una y a un reemplazo Corisa las Formaciones de Covarres. por Vergaño y Samenvatting In het oostelijk deel van het Kantabrisch Gebergte, noordwest Spanje, zijn sedimenten van bovenkarbonische ouderdom goed ontsloten. In het Pisuerga-gebied is een kalkrijke opeenvolging van Boven Moscovien ouderdom (≈ Westfalien D) aanwezig in aantal anticlinalen. verschillende structurele eenheden litho- een synchnalen en Correlaties tussen de zijn gebaseerd op kenmerken fusuliniden De verschillende kalk- stratigrafische en op paleontologische dateringen met behulp van en kalkalgen. siliciklastische sedimenten. Deze siliciklastische sedimenten afzettingen vertonen vrij abrupte overgangen naar zijn grotendeels afgezet in deltaische milieus. Drie verschillende deltasystemen zijn te onderscheiden welke, net zoals de recente Rhône delta, van het door golfwerking gedomineerde,sterk destructieve type zijn. Het oudste deltasysteem is geassocieerd met belangrijke turbidietafzettingen wat dat de delta werd in relatief Het tweede is minder er op wijst gevormd diep water (≥ 125 m). deltasysteem met belangrijke turbidietafzettingen geassociëerd, maar is relatief rijk aan kolen. Deze twee deltasystemen groeiden van het zuidwesten naar het In het noordwesten werden kalken mariene in het noordoosten noordoosten toe aan. en ondiep afzettingen gevormd en even- tesamen met “shelf” Na de het tweede werd in het eenskalken, maar daar fijnkorreligere sedimenten. afzetting van deltasysteem de delen zuidwestelijke deel vanhet gebied Vergaño-disconformiteit gevormd als gevolg van tektonische opheffing. In andere van bestudeerde kan niveau herkend worden als of wordende In het het gebied dit een transgressieve dieper sequentie. noordoostelijke deel van het gebied hadden deze tektonische bewegingen het afglijden van dikke kalklichamen ten gevolge. de rivier die de delta had andere siliciklastische sedimenten Na deze tektonische bewegingen volgde gevormd een loop, en werden enkel door De kwartsarenietische in toen aangevoerd een stranddriftsysteem.
Recommended publications
  • Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data
    Remote Sens. 2014, 6, 6961-6987; doi:10.3390/rs6086961 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data Thomas Mann 1,* and Hildegard Westphal 1,2 1 Leibniz Center for Tropical Marine Ecology, Fahrenheitstrasse 6, D-28359 Bremen, Germany; E-Mail: [email protected] 2 Department of Geosciences, University of Bremen, D-28359 Bremen, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-421-2380-0132; Fax: +49-421-2380-030. Received: 30 May 2014; in revised form: 7 July 2014 / Accepted: 18 July 2014 / Published: 25 July 2014 Abstract: Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying “outlier” shoreline positions.
    [Show full text]
  • Waves and Wind Shape Land
    KEY CONCEPT Waves and wind shape land. BEFORE, you learned NOW, you will learn • Stream systems shape Earth’s • How waves and currents surface shape shorelines •Groundwater creates caverns •How wind shapes land and sinkholes VOCABULARY THINK ABOUT longshore drift p. 587 How did these longshore current p. 587 sandbar p. 588 pillars of rock form? barrier island p. 588 The rock formations in this dune p. 589 photograph stand along the loess p. 590 shoreline near the small town of Port Campbell, Australia. What natural force created these isolated stone pillars? What evidence of this force can you see in the photograph? Waves and currents shape shorelines. NOTE-TAKING STRATEGY The stone pillars, or sea stacks, in the photograph above are a major Remember to organize tourist attraction in Port Campbell National Park. They were formed your notes in a chart or web as you read. by the movement of water. The constant action of waves breaking against the cliffs slowly wore them away, leaving behind pillarlike formations. Waves continue to wear down the pillars and cliffs at the rate of about two centimeters (one inch) a year. In the years to come, the waves will likely wear away the stone pillars completely. The force of waves, powered by wind, can wear away rock and move thousands of tons of sand on beaches. The force of wind itself can change the look of the land. Moving air can pick up sand particles and move them around to build up dunes. Wind can also carry huge amounts of fine sediment thousands of kilometers.
    [Show full text]
  • Listado De Unidades Territoriales Con Bachillerato De Humanidades
    ADMISIÓN DE ALUMNOS A CENTROS DOCENTES Listado de Unidades Territoriales con Bachillerato de Humanidades Criterios del Listado Usuario: mjllanos Fecha: 07-MAR-2017 09:24:48 Año: 2017 Provincia : PALENCIA Localidad destino: Todas Mapa Zona: Localidades en la UTA (localidades origen) --> Localidades destino con Bachillerato de Humanidades Enseñanza: Unidades Territoriales de Bachillerato de Humanidades Orden: Provincia, Localidad Destino Fecha: 07/03/2017 Página: 2 de 8 Consejería de Educación DG. Política Educativa Escolar Listado de Unidades Territoriales de Bachillerato de Humanidades Localidades destino con Bachillerato de Humanidades - Localidades origen alegados en la solicitud de Admisión Localidad destino LERMA (BURGOS) Localidades Origen COBOS DE CERRATO ESPINOSA DE CERRATO Localidad destino ROA (BURGOS) Localidades Origen CASTRILLO DE DON JUAN Localidad destino SAHAGUN (LEON) Localidades Origen ARROYO LAGARTOS LEDIGOS MORATINOS POBLACION DE ARROYO POZO DE URAMA POZUELOS DEL REY SAN NICOLAS DEL REAL CAMINO SAN ROMAN DE LA CUBA TERRADILLOS DE LOS TEMPLARIOS VILLACIDALER VILLADA VILLALCON VILLAMBRAN DE CEA VILLELGA VILLEMAR Fecha: 07/03/2017 Página: 3 de 8 Consejería de Educación DG. Política Educativa Escolar Listado de Unidades Territoriales de Bachillerato de Humanidades Localidades destino con Bachillerato de Humanidades - Localidades origen alegados en la solicitud de Admisión Localidad destino AGUILAR DE CAMPOO (PALENCIA) Localidades Origen AGUILAR DE CAMPOO ALAR DEL REY AMAYUELAS DE OJEDA ARBEJAL AREÑOS BARCENILLA DE PISUERGA
    [Show full text]
  • Informe Patrimonio Inmobiliario De La Diputación De Palencia 2015
    INFORME SOBRE EL PATRIMONIO INMOBILIARIO DE LA DIPUTACIÓN DE PALENCIA, EJERCICIO 2015. PLAN ANUAL DE FISCALIZACIONES EJERCICIO 2016 CONStJO DE C't lENlltS l)l-.' C,?Sl'lLl.t Y LE(')N ANDRÉS PÉREZ-MONEO AGAPITO, Secretario del Pleno, por Resolución del Presidente del Consejo de Cuentas de Castilla y León de 8 de enero de 2014, CERTIFICO: Que el Pleno del Consejo de Cuentas de Castilla y León, en sesión celebrada el día 19 de diciembre de 2017, cuya acta está pendiente de aprobación, adoptó el Acuerdo 85/2017, por el que se aprueba el INFORME SOBRE EL PATRIMONIO INMOBILIARIO DE LA DIPUTACIÓN DE PALENCIA, EJERCICIO 2015, correspondiente al Plan Anual de Fiscalizaciones para el ejercicio 2016. Asimismo, de conformidad con lo previsto en el artículo 28 del Reglamento de Organización y Funcionamiento del Consejo de Cuentas, el Pleno acordó la remisión del informe, las alegaciones y el tratamiento de las alegaciones a la Diputación Provincial de Palencia, a la Junta de Castilla y León, a las Cortes de Castilla y León y al Tribunal de Cuentas. Del mismo modo, se acuerda su remisión a la Fiscalía del Tribunal de Cuentas. Y para que así conste, expido la presente en Palencia, con el visto bueno del Presidente del Consejo de Cuentas, a veinte de diciembre de dos mil diecisiete. Vº Bº EL PRESIDENTE .ffi i do.: Jesús J. Encabo Terry Informe sobre el Patrimonio Inmobiliario de la Diputación de Palencia, ejercicio 2015. _____________________________________________________________________________ ÍNDICE I. INTRODUCCIÓN ................................................................................................... 5 I.1. INICIATIVA DE LA FISCALIZACIÓN.................................................... 5 I.2. MARCO JURÍDICO ..................................................................................... 5 II.
    [Show full text]
  • La Montaña Palentina.Pdf
    LA MONTAÑA PALENTINA (Estudio realizado en el marco del Convenio firmado entre la Consejería de Economía y Hacienda y la Universidad de Valladolid con fecha 26 de febrero de 1999) Coordinación General: José ORTEGA VALCARCEL Coordinación de la Comarca: Milagros ALARIO TRIGUEROS Autores del Informe: Milagros ALARIO TRIGUEROS Pedro CABALLERO FERNÁNDEZ-RUFETE José Mª DELGADO URRRECHO José Luis GARCÍA CUESTA Juan Carlos GUERRA VELASCO Fernando MOLINERO HERNANDO José ORTEGA VALCARCEL Mª Teresa ORTEGA VILLAZÁN Henar PASCUAL RUIZ-VALDEPEÑAS Becaria Isabel AGUÑA AGUERRI página INTRODUCCIÓN ...................................................... 1 EL MEDIO FÍSICO DE LA MONTAÑA PALENTINA: COMPLEJIDAD, CONTRASTES Y ALTO POTENCIAL ECOLÓGICO ........................ 7 I. EL RELIEVE DE LA MONTAÑA PALENTINA ................................. 8 1. Un espacio de alta montaña ............................................. 8 2. Un ámbito de transición en la Cordillera Cantábrica ........................ 10 3. Organización de las distintas unidades del relieve ......................... 12 3a. El sector occidental ................................................... 12 3b. El sector oriental..................................................... 16 3c. El sector meridional ................................................... 18 4. El papel fundamental de la red hidrográfica ............................... 18 5. La huella erosiva glaciar y periglaciar .................................... 20 6. Los procesos y modelado kárstico .....................................
    [Show full text]
  • 174 Coastal Processes and Hazards I. WATER, WAVES and COASTAL
    Coastal Processes and Hazards I. WATER, WAVES AND COASTAL DYNAMICS A. Beach and coastal areas represent sites of dynamic sedimentation, erosion and re- working of river-borne sediments as they reach coastal regions 1. Dynamic interaction between wind, waves, sedimentation and erosion 2. Coastal areas noted for extremely variable meteorologic conditions 3. Hurricanes and storms profoundly influence coastal morphology a. Wave energy and wind energy during coastal storms exhibit great capability to do work in the form of erosion and transportation of sediment (1) Eg. storm wash-over processes (2) storm surges (3) changes in coastal morphology via erosion and sedimentation 4. Gross coastal configuration primarily a function of plate tectonic history, however relentless wave processes modify coast through erosion and sedimentation B. The Ocean and Wave Activity 1. Beach/coastal sand/sediment profoundly influenced by wave action a. waves provide motion/energy for transportation and erosion of sediment 2. Waves generated by wind shear blowing across ocean surface for long distances a. shear creates orbital rotation of water to form water waves (1) orbital motion = circular to and fro motion, diminishing in intensity at depth from surface (2) Although the wave is passed through the water as a medium; actual water molecules are NOT displaced as the wave is propagated b. Wave form controlled by: (1) wind velocity (2) duration of wind (3) fetch- distance over which wind blows (length across water) (> fetch, > wave amplitude) 3. Wave Morphology a. Wave crest: high upper peak of wave train b. Wave trough: low separating two crests c. Wave Height: vertical distance between crest and trough (1) Avg.
    [Show full text]
  • Narrowneck Artificial Reef: Construction
    Narrowneck Artificial Reef: Construction Our coastline is a dynamic system. Sand travels north via a process called longshore drift. At the same time, there is a cycle of erosion and accretion taking place, driven by wave action. Narrowneck was identified as requiring coastal management works in the mid-1990s in order to retain a more permanent supply of sand on the visible portion of the beach to satisfy tourist and local demand, and to stabilise the coastline. To achieve this objective, the Northern Gold Coast Beach Protection Strategy was established in 1999. Its objectives were to: ♦ Widen the beach and dunes along the Surfers Paradise Esplanade to increase the volume of sand within the storm buffer and provide more open space. The Reef was a key feature of the Northern Gold Coast Beach ♦ Protection Strategy, delivered by a partnership between Gold Coast To improve surf quality and recreational City Council and Griffith University Centre for Coastal Management. amenity at Narrowneck by the construction of Its design was informed by extensive numerical and physical a submerged reef to stabilise the nourished modelling. (Source: GCCC 2011) beaches. Key concepts Longshore drift is the movement of sand and other material by longshore currents in a direction parallel to the beach along the shore. Erosion is the periodic movement of sediments from the visible portion of a beach (during rough weather) to the submerged nearshore region. Sand will subside in one of these nearshore bars or compartments for a time before returning to the visible portion of the Aerial view of Narrowneck Artificial Reef (Source: Skyepics 2011) beach (during calmer periods) through the process of accretion.
    [Show full text]
  • Tides Longshore Drift
    9613 - SC&H KS2 FactSheet - TIDES&WAVES-vB01 03/04/2012 14:12 Page 2 Suffolk Coast and Heaths www.suffolkcoastandheaths.org Coastal Knowledge Longshore drift Waves also transport sand and shingle along the shore, a process known as longshore drift. Waves often hit the shore at & an angle, depending on the direction of the wind. Longshore Tides waves drift has created features like Orford Ness and Landguard Point. Sometimes man tries to slow down longshore drift by building defences called groynes. “Hi I’m Marvin Moon. Did you know I act like a big magnet? Using the “Longshore drift moves sand sideways force of gravity, I pull the oceans towards me as the along the beach in a zig-zag pattern – this can earth spins. You see this as movement of water up sometimes cause sand to pile up on one side of and down a beach or in and out of an estuary. the beach! Look out for this next time These are called tides.” you go to the beach”. Things to do: See how currents Things to do: move sand Tides How tides are made Using the same You need 7 people and 7 When you’ve been at the beach, have you noticed tray and water add a balloons. 1 green balloon is the 1 that the water level changes? drop of ink or paint and earth, 1 white balloon is the blow and watch how the Sometimes it changes so much you may need to move moon, 1 yellow balloon is the ink moves. your deck chairs further up the beach as the tide sun and 4 blue balloons are the See how groynes work comes in! This is all because of the invisible attraction sea.
    [Show full text]
  • Where Has Our Beach Gone? the Impacts of the UK’S 2014 Storms Paul Russell, Gerd Masselink, Tim Scott, Daniel Conley and Mark Davidson
    Where has our beach gone? The impacts of the UK’s 2014 storms Paul Russell, Gerd Masselink, Tim Scott, Daniel Conley and Mark Davidson Destructive storm waves tend to erode coasts and beaches, removing beach sand and gravel. A frequent question after a storm is, ‘Where has our beach gone?’ This article looks at where the beach sediment goes, what takes it there, whether it will come back and how long that recovery will take, and puts this in the context of the UK 2013/14 storms. If you are studying coasts, read on he coastal zone is a popular area for deep depressions (extreme storms) to people to live. It houses 10% of the focus their effects on the southwest of Tworld’s population but represents England. Wave data from this region only 2% of the global land surface. It is also (Figure 1) show that the measured important to society from an infrastructural, waves frequently exceeded 5.9 metres, environmental and economic point of view. At a value they only usually exceed for 1% the same time, the coastal zone is a hazardous of the time. environment. There are short-term threats The 8-week sequence of Atlantic (storms) and long-term threats (sea-level rise), storms from mid-December 2013 for coastal communities and resources. to mid-February 2014 was the most Living and working in the coastal zone energetic winter of waves since at least The railway line at Dawlish was makes society vulnerable to coastal hazards, 1950. It therefore represents at least a severely damaged by waves as demonstrated by recent events, including: 1:60 year event.
    [Show full text]
  • Oceanscoasts INDEX.Pdf
    OceansCoasts_INDEX.pdf OceansCoasts_INDEX.pdf This is an index of all terms/ideas in this question bank. Question banks are organized into topics containing related terms/ideas. Each term/idea has at least one related question, in some cases illustrated with a photo or diagram. Question names are shown in italics, followed by an abbreviated photo source. All terms are listed in the order that they occur within the actual question bank. The file name listed after "Test bank" is a lower quality, smaller image suitable for use on the web. The file name listed after "High quality" is a larger and better quality image suitable for use in classroom presentations. Additional information regarding the photo/diagram sources can be found in the OceansCoasts_Captions.pdf file. QB: Oceans and Coasts Topic 01: Ocean Characteristics – Definitions Compatible with: Marshak (Ch. 18) Terms: bathymetry – No Picture coast – No Picture continental shelf Test bank: [Oceans01_01.jpg] High quality: [Atlantic_NOAA.jpg] continental slope Test bank: [Oceans01_01.jpg] High quality: [Atlantic_NOAA.jpg] abyssal plain Test bank: [Oceans01_01.jpg] High quality: [Atlantic_NOAA.jpg] passive continental margin – example Test bank: [Oceans01_01.jpg] High quality: [Atlantic_NOAA.jpg] active continental margin – example Test bank: [Oceans01_02.jpg] High quality: [00N090W_NOAA.jpg] submarine canyons Test bank: [Oceans01_03.jpg] High quality: [Canyon_SanMonBay_CA_USGS.jpg] turbidity current – No Picture Page 1 of 10 OceansCoasts_INDEX.pdf turbidite – No Picture submarine fan Test bank: [Oceans01_03.jpg] High quality: [Canyon_SanMonBay_CA_USGS.jpg] QB: Oceans and Coasts Topic 02: Ocean Composition – Definitions Compatible with: Marshak (Ch. 18) Terms: salinity – No Picture halocline – No Picture thermocline – No Picture pycnocline – No Picture heat capacity – No Picture QB: Oceans and Coasts Topic 03: Ocean Currents – Definitions Compatible with: Marshak (Ch.
    [Show full text]
  • 2. Coastal Processes
    CHAPTER 2 2. Coastal processes Coastal landscapes result from by weakening the rock surface and driving nearshore sediment the interaction between coastal to facilitate further sediment transport processes. Wind and tides processes and sediment movement. movement. Biological, biophysical are also significant contributors, Hydrodynamic (waves, tides and biochemical processes are and are indeed dominant in coastal and currents) and aerodynamic important in coral reef, salt marsh dune and estuarine environments, (wind) processes are important. and mangrove environments. respectively, but the action of Weathering contributes significantly waves is dominant in most settings. to sediment transport along rocky Waves Information Box 2.1 explains the coasts, either directly through Ocean waves are the principal technical terms associated with solution of minerals, or indirectly agents for shaping the coast regular (or sinusoidal) waves. INFORMATION BOX 2.1 TECHNICAL TERMS ASSOCIATED WITH WAVES Important characteristics of regular, Natural waves are, however, wave height (Hs), which is or sinusoidal, waves (Figure 2.1). highly irregular (not sinusoidal), defined as the average of the • wave height (H) – the difference and a range of wave heights highest one-third of the waves. in elevation between the wave and periods are usually present The significant wave height crest and the wave trough (Figure 2.2), making it difficult to off the coast of south-west • wave length (L) – the distance describe the wave conditions in England, for example, is, on between successive crests quantitative terms. One way of average, 1.5m, despite the area (or troughs) measuring variable height experiencing 10m-high waves • wave period (T) – the time from is to calculate the significant during extreme storms.
    [Show full text]
  • Oceanography of the British Columbia Coast
    CANADIAN SPECIAL PUBLICATION OF FISHERIES AND AQUATIC SCIENCES 56 DFO - L bra y / MPO B bliothèque Oceanography RI II I 111 II I I II 12038889 of the British Columbia Coast Cover photograph West Coast Moresby Island by Dr. Pat McLaren, Pacific Geoscience Centre, Sidney, B.C. CANADIAN SPECIAL PUBLICATION OF FISHERIES AND AQUATIC SCIENCES 56 Oceanography of the British Columbia Coast RICHARD E. THOMSON Department of Fisheries and Oceans Ocean Physics Division Institute of Ocean Sciences Sidney, British Columbia DEPARTMENT OF FISHERIES AND OCEANS Ottawa 1981 ©Minister of Supply and Services Canada 1981 Available from authorized bookstore agents and other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre Supply and Service Canada, Hull, Que. K1A 0S9 Make cheques or money orders payable in Canadian funds to the Receiver General for Canada A deposit copy of this publication is also available for reference in public librairies across Canada Canada: $19.95 Catalog No. FS41-31/56E ISBN 0-660-10978-6 Other countries:$23.95 ISSN 0706-6481 Prices subject to change without notice Printed in Canada Thorn Press Ltd. Correct citation for this publication: THOMSON, R. E. 1981. Oceanography of the British Columbia coast. Can. Spec. Publ. Fish. Aquat. Sci. 56: 291 p. for Justine and Karen Contents FOREWORD BACKGROUND INFORMATION Introduction Acknowledgments xi Abstract/Résumé xii PART I HISTORY AND NATURE OF THE COAST Chapter 5. Upwelling: Bringing Cold Water to the Surface Chapter 1. Historical Setting Causes of Upwelling 79 Origin of the Oceans 1 Localized Effects 82 Drifting Continents 2 Climate 83 Evolution of the Coast 6 Fishing Grounds 83 Early Exploration 9 El Nifio 83 Chapter 2.
    [Show full text]