On Algebra of Geometry and Recent Progress in Non-Euclidean Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
Lecture 3: Geometry
E-320: Teaching Math with a Historical Perspective Oliver Knill, 2010-2015 Lecture 3: Geometry Geometry is the science of shape, size and symmetry. While arithmetic dealt with numerical structures, geometry deals with metric structures. Geometry is one of the oldest mathemati- cal disciplines and early geometry has relations with arithmetics: we have seen that that the implementation of a commutative multiplication on the natural numbers is rooted from an inter- pretation of n × m as an area of a shape that is invariant under rotational symmetry. Number systems built upon the natural numbers inherit this. Identities like the Pythagorean triples 32 +42 = 52 were interpreted geometrically. The right angle is the most "symmetric" angle apart from 0. Symmetry manifests itself in quantities which are invariant. Invariants are one the most central aspects of geometry. Felix Klein's Erlanger program uses symmetry to classify geome- tries depending on how large the symmetries of the shapes are. In this lecture, we look at a few results which can all be stated in terms of invariants. In the presentation as well as the worksheet part of this lecture, we will work us through smaller miracles like special points in triangles as well as a couple of gems: Pythagoras, Thales,Hippocrates, Feuerbach, Pappus, Morley, Butterfly which illustrate the importance of symmetry. Much of geometry is based on our ability to measure length, the distance between two points. A modern way to measure distance is to determine how long light needs to get from one point to the other. This geodesic distance generalizes to curved spaces like the sphere and is also a practical way to measure distances, for example with lasers. -
Notes 20: Afine Geometry
Notes 20: Afine Geometry Example 1. Let C be the curve in R2 defined by x2 + 4xy + y2 + y2 − 1 = 0 = (x + 2y)2 + y2 − 1: If we set u = x + 2y; v = y; we obtain u2 + v2 − 1 = 0 which is a circle in the u; v plane. Let 2 2 F : R ! R ; (x; y) 7! (u = 2x + y; v = y): We look at the geometry of F: Angles: This transformation does not preserve angles. For example the line 2x + y = 0 is mapped to the line u = 0; and the line y = 0 is mapped to v = 0: The two lines in the x − y plane are not orthogonal, while the lines in the u − v plane are orthogonal. Distances: This transformation does not preserve distance. The point A = (−1=2; 1) is mapped to a = (0; 1) and the point B = (0; 0) is mapped to b = (0; 0): the distance AB is not equal to the distance ab: Circles: The curve C is an ellipse with axis along the lines 2x + y = 0 and x = 0: It is mapped to the unit circle in the u − v plane. Lines: The map is a one-to-one onto map that maps lines to lines. What is a Geometry? We can think of a geometry as having three parts: A set of points, a special set of subsets called lines, and a group of transformations of the set of points that maps lines to lines. In the case of Euclidean geometry, the set of points is the familiar plane R2: The special subsets are what we ordinarily call lines. -
(Finite Affine Geometry) References • Bennett, Affine An
MATHEMATICS 152, FALL 2003 METHODS OF DISCRETE MATHEMATICS Outline #7 (Finite Affine Geometry) References • Bennett, Affine and Projective Geometry, Chapter 3. This book, avail- able in Cabot Library, covers all the proofs and has nice diagrams. • “Faculty Senate Affine Geometry”(attached). This has all the steps for each proof, but no diagrams. There are numerous references to diagrams on the course Web site, however, and the combination of this document and the Web site should be all that you need. • The course Web site, AffineDiagrams folder. This has links that bring up step-by-step diagrams for all key results. These diagrams will be available in class, and you are welcome to use them instead of drawing new diagrams on the blackboard. • The Windows application program affine.exe, which can be downloaded from the course Web site. • Data files for the small, medium, and large affine senates. These accom- pany affine.exe, since they are data files read by that program. The file affine.zip has everything. • PHP version of the affine geometry software. This program, written by Harvard undergraduate Luke Gustafson, runs directly off the Web and generates nice diagrams whenever you use affine geometry to do arithmetic. It also has nice built-in documentation. Choose the PHP- Programs folder on the Web site. 1. State the first four of the five axioms for a finite affine plane, using the terms “instructor” and “committee” instead of “point” and “line.” For A4 (Desargues), draw diagrams (or show the ones on the Web site) to illustrate the two cases (three parallel lines and three concurrent lines) in the Euclidean plane. -
Lecture 5: Affine Graphics a Connect the Dots Approach to Two-Dimensional Computer Graphics
Lecture 5: Affine Graphics A Connect the Dots Approach to Two-Dimensional Computer Graphics The lines are fallen unto me in pleasant places; Psalms 16:6 1. Two Shortcomings of Turtle Graphics Two points determine a line. In Turtle Graphics we use this simple fact to draw a line joining the two points at which the turtle is located before and after the execution of each FORWARD command. By programming the turtle to move about and to draw lines in this fashion, we are able to generate some remarkable figures in the plane. Nevertheless, the turtle has two annoying idiosyncrasies. First, the turtle has no memory, so the order in which the turtle encounters points is crucial. Thus, even though the turtle leaves behind a trace of her path, there is no direct command in LOGO to return the turtle to an arbitrary previously encountered location. Second, the turtle is blissfully unaware of the outside universe. The turtle carries her own local coordinate system -- her state -- but the turtle does not know her position relative to any other point in the plane. Turtle geometry is a local, intrinsic geometry; the turtle knows nothing of the extrinsic, global geometry of the external world. The turtle can draw a circle, but the turtle has no idea where the center of the circle might be or even that there is such a concept as a center, a point outside her path around the circumference. These two shortcomings -- no memory and no knowledge of the outside world -- often make the turtle cumbersome to program. -
Essential Concepts of Projective Geomtry
Essential Concepts of Projective Geomtry Course Notes, MA 561 Purdue University August, 1973 Corrected and supplemented, August, 1978 Reprinted and revised, 2007 Department of Mathematics University of California, Riverside 2007 Table of Contents Preface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i Prerequisites: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :iv Suggestions for using these notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :v I. Synthetic and analytic geometry: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1 1. Axioms for Euclidean geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Cartesian coordinate interpretations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 3 3. Lines and planes in R and R : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 II. Affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1. Synthetic affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2. Affine subspaces of vector spaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13 3. Affine bases: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :19 4. Properties of coordinate -
Geometry (Lines) SOL 4.14?
Geometry (Lines) lines, segments, rays, points, angles, intersecting, parallel, & perpendicular Point “A point is an exact location in space. It has no length or width.” Points have names; represented with a Capital Letter. – Example: A a Lines “A line is a collection of points going on and on infinitely in both directions. It has no endpoints.” A straight line that continues forever It can go – Vertically – Horizontally – Obliquely (diagonally) It is identified because it has arrows on the ends. It is named by “a single lower case letter”. – Example: “line a” A B C D Line Segment “A line segment is part of a line. It has two endpoints and includes all the points between those endpoints. “ A straight line that stops It can go – Vertically – Horizontally – Obliquely (diagonally) It is identified by points at the ends It is named by the Capital Letter End Points – Example: “line segment AB” or “line segment AD” C B A Ray “A ray is part of a line. It has one endpoint and continues on and on in one direction.” A straight line that stops on one end and keeps going on the other. It can go – Vertically – Horizontally – Obliquely (diagonally) It is identified by a point at one end and an arrow at the other. It can be named by saying the endpoint first and then say the name of one other point on the ray. – Example: “Ray AC” or “Ray AB” C Angles A B Two Rays That Have the Same Endpoint Form an Angle. This Endpoint Is Called the Vertex. -
Unsteadiness in Flow Over a Flat Plate at Angle-Of-Attack at Low Reynolds Numbers∗
Unsteadiness in Flow over a Flat Plate at Angle-of-Attack at Low Reynolds Numbers∗ Kunihiko Taira,† William B. Dickson,‡ Tim Colonius,§ Michael H. Dickinson¶ California Institute of Technology, Pasadena, California, 91125 Clarence W. Rowleyk Princeton University, Princeton, New Jersey, 08544 Flow over an impulsively started low-aspect-ratio flat plate at angle-of-attack is inves- tigated for a Reynolds number of 300. Numerical simulations, validated by a companion experiment, are performed to study the influence of aspect ratio, angle of attack, and plan- form geometry on the interaction of the leading-edge and tip vortices and resulting lift and drag coefficients. Aspect ratio is found to significantly influence the wake pattern and the force experienced by the plate. For large aspect ratio plates, leading-edge vortices evolved into hairpin vortices that eventually detached from the plate, interacting with the tip vor- tices in a complex manner. Separation of the leading-edge vortex is delayed to some extent by having convective transport of the spanwise vorticity as observed in flow over elliptic, semicircular, and delta-shaped planforms. The time at which lift achieves its maximum is observed to be fairly constant over different aspect ratios, angles of attack, and planform geometries during the initial transient. Preliminary results are also presented for flow over plates with steady actuation near the leading edge. I. Introduction In recent years, flows around flapping insect wings have been investigated and, in particular, it has been observed that the leading-edge vortex (LEV) formed during stroke reversal remains stably attached throughout the wing stroke, greatly enhancing lift.1, 2 Such LEVs are found to be stable over a wide range of angles of attack and for Reynolds number over a range of Re ≈ O(102) − O(104). -
Affine Geometry
CHAPTER II AFFINE GEOMETRY In the previous chapter we indicated how several basic ideas from geometry have natural interpretations in terms of vector spaces and linear algebra. This chapter continues the process of formulating basic geometric concepts in such terms. It begins with standard material, moves on to consider topics not covered in most courses on classical deductive geometry or analytic geometry, and it concludes by giving an abstract formulation of the concept of geometrical incidence and closely related issues. 1. Synthetic affine geometry In this section we shall consider some properties of Euclidean spaces which only depend upon the axioms of incidence and parallelism Definition. A three-dimensional incidence space is a triple (S; L; P) consisting of a nonempty set S (whose elements are called points) and two nonempty disjoint families of proper subsets of S denoted by L (lines) and P (planes) respectively, which satisfy the following conditions: (I { 1) Every line (element of L) contains at least two points, and every plane (element of P) contains at least three points. (I { 2) If x and y are distinct points of S, then there is a unique line L such that x; y 2 L. Notation. The line given by (I {2) is called xy. (I { 3) If x, y and z are distinct points of S and z 62 xy, then there is a unique plane P such that x; y; z 2 P . (I { 4) If a plane P contains the distinct points x and y, then it also contains the line xy. (I { 5) If P and Q are planes with a nonempty intersection, then P \ Q contains at least two points. -
Points, Lines, and Planes a Point Is a Position in Space. a Point Has No Length Or Width Or Thickness
Points, Lines, and Planes A Point is a position in space. A point has no length or width or thickness. A point in geometry is represented by a dot. To name a point, we usually use a (capital) letter. A A (straight) line has length but no width or thickness. A line is understood to extend indefinitely to both sides. It does not have a beginning or end. A B C D A line consists of infinitely many points. The four points A, B, C, D are all on the same line. Postulate: Two points determine a line. We name a line by using any two points on the line, so the above line can be named as any of the following: ! ! ! ! ! AB BC AC AD CD Any three or more points that are on the same line are called colinear points. In the above, points A; B; C; D are all colinear. A Ray is part of a line that has a beginning point, and extends indefinitely to one direction. A B C D A ray is named by using its beginning point with another point it contains. −! −! −−! −−! In the above, ray AB is the same ray as AC or AD. But ray BD is not the same −−! ray as AD. A (line) segment is a finite part of a line between two points, called its end points. A segment has a finite length. A B C D B C In the above, segment AD is not the same as segment BC Segment Addition Postulate: In a line segment, if points A; B; C are colinear and point B is between point A and point C, then AB + BC = AC You may look at the plus sign, +, as adding the length of the segments as numbers. -
References Finite Affine Geometry
MATHEMATICS S-152, SUMMER 2005 THE MATHEMATICS OF SYMMETRY Outline #7 (Finite Affine Geometry) References • Bennett, Affine and Projective Geometry, Chapter 3. This book, avail- able in Cabot Library, covers all the proofs and has nice diagrams. • “Faculty Senate Affine Geometry” (attached). This has all the steps for each proof, but no diagrams. There are numerous references to diagrams on the course web site; however, and the combination of this document and the web site should be all that you need. • The course web site, AffineDiagrams folder. This has links that bring up step-by-step diagrams for all key results. These diagrams will be available in class, and you are welcome to use them instead of drawing new diagrams on the blackboard. • The Windows application program, affine.exe, which can be down- loaded from the course web site. • Data files for the small, medium, and large affine senates. These ac- company affine.exe, since they are data files read by that program. The file affine.zip has everything. • PHP version of the affine geometry software. This program, written by Harvard undergraduate Luke Gustafson, runs directly off the web and generates nice diagrams whenever you use affine geometry to do arithmetic. It also has nice built-in documentation. Choose the PHP- Programs folder on the web site. Finite Affine Geometry 1. State the first four of the five axioms for a finite affine plane, using the terms “instructor” and “committee” instead of “point” and “line.” For A4 (Desargues), draw diagrams (or show the ones on the web site) to 1 illustrate the two cases (three parallel lines and three concurrent lines) in the Euclidean plane. -
The Mass of an Asymptotically Flat Manifold
The Mass of an Asymptotically Flat Manifold ROBERT BARTNIK Australian National University Abstract We show that the mass of an asymptotically flat n-manifold is a geometric invariant. The proof is based on harmonic coordinates and, to develop a suitable existence theory, results about elliptic operators with rough coefficients on weighted Sobolev spaces are summarised. Some relations between the mass. xalar curvature and harmonic maps are described and the positive mass theorem for ,c-dimensional spin manifolds is proved. Introduction Suppose that (M,g) is an asymptotically flat 3-manifold. In general relativity the mass of M is given by where glJ, denotes the partial derivative and dS‘ is the normal surface element to S,, the sphere at infinity. This expression is generally attributed to [3]; for a recent review of this and other expressions for the mass and other physically interesting quantities see (41. However, in all these works the definition depends on the choice of coordinates at infinity and it is certainly not clear whether or not this dependence is spurious. Since it is physically quite reasonable to assume that a frame at infinity (“observer”) is given, this point has not received much attention in the literature (but see [15]). It is our purpose in this paper to show that, under appropriate decay conditions on the metric, (0.1) generalises to n-dimensions for n 2 3 and gives an invariant of the metric structure (M,g). The decay conditions roughly stated (for n = 3) are lg - 61 = o(r-’12), lag1 = o(f312), etc, and thus include the usual falloff conditions.