<<

12

Notation and List of

Alphabetic

ℵ0, ℵ1, ℵ2,... cardinality of infinite sets ,r,s,... lines are usually denoted by lowercase italics Latin letters A,B,C,... points are usually denoted by uppercase Latin letters π,ρ,σ,... planes and are usually denoted by lowercase Greek letters N positive integers; natural numbers R real numbers C complex numbers 5 real part of a 6 imaginary part of a complex number R2 Euclidean 2-dimensional (or ) P2 projective 2-dimensional plane (or space) RN Euclidean N-dimensional space PN projective N-dimensional space

Symbols

General

∈ belongs to  such that ∃ there exists ∀ for all ⊂ subset of ∪ union ∩ set

A. Inselberg, Coordinates, DOI 10.1007/978-0-387-68628-8, © Springer Science+Business Media, LLC 2009 532 and

∅ empty st (null set) 2A power set of A, the set of all subsets of A ip inflection of a n principal vector to a space curve nˆ unit normal vector to a t vector to a space curve b binormal vector τ torsion (measures “non-planarity” of a space curve) × product → mapping A → B correspondence (also used for ) ⇒ implies ⇔ if and only if <, > less than, greater than |a| of a |b| of vector b  , length L1 L1 norm L L norm, Euclidean 2 2 summation Jp set of integers modulo p with the operations + and × ≈ approximately equal = not equal  parallel ⊥ , orthogonal (,,) — ordered triple representing a point in P2; point coordinates [,,] homogeneous coordinates — ordered triple representing a P2; line coordinates P p(A,B,C,D,...) perspectivity between the lines p and p with respect to a p (A ,B ,C ,D ,...) point P Notation and List of Symbols 533

p p projectivity between the lines p and p df dx derivative of f with respect to x, also written as f (x) ∂ boundary of a region ∂F partial derivative of F with respect to x , also denoted F ∂xi i xi and when context is clear, Fi ∇F gradient of F

Specific to Parallel Coordinates (In the order occuring in the text) -coords abbreviation for parallel coordinate , parallel coordinates A¯ image of A in -coords, representation of A ¯ ¯ X1,... ,XN axes for parallel for N-dimensional space (either Euclidean or Projective) ¯ i,j point representing the linear relation between xi and xj ; (N − 1) points with two indices appear in the representation of a line in RN (or PN ) πp p-flat in RN , a plane of 1 ≤ p ≤ (N − 1) in RN π1 a one-flat is a line, also denoted by sp abbreviation for superplane, a 2-flat whose points are represented by straight lines in -coords πs denotes a superplane πNs denotes a superplane in RN E family of superplanes, named after J. Eickemeyer, who first discovered them E also denotes the class of surfaces who are the of their tangent (hyper) planes EG class of surfaces contained in E whose representing contours can be obtained by Lemma 9.3.1 ¯ di directed distance of Xi from the y-axis 0 ¯ dN (see next), standard axis spacing, when the X1 is coincident with the y-axis and inter-axis distance is one unit for all axes i ¯ ¯ d axes spacing where the X1 axis is placed one unit after the XN and N ¯ all axes up to and including Xi are placed successively one unit apart and the rest of axes remain in the standard axes spacing. 534 Notation and List of Symbols

s π1 first superplane, with the standard axes spacing s ¯ ¯ π1 second superplane, the X1 placed one unit to the right of XN the remaining axes are in standard axes spacing. s i πi is the ith superplane with axes spacing dN 3 π¯123, π¯1 123 two triple indexed points representing the plane (2-flat) π ⊂ R ,

also denoted by π¯123 =¯π0 , π¯1 23 = π1 or 123, 1 23 when π is ¯ 1 clear from the context; π1 23 is based on the axes spacing d3 π¯123,... ,N =¯π0 point with (N + 1) indices representing a (of dimen- sion N − 1)), and similarly π¯i for the representing points based i on axes spacing dN gconics generalized conics, sections of a double in R3 whose 2 bases are the same bounded in R2 bc, ubc, gh like conics there are 3 kinds of gconics: bounded convex set (bc), unbounded convex set (ubc) and generalized (gh) ) outer union * inner intersection 12

Bibliography

[1] A.E. Abbot. A Romance of Many . Dover, New York (originally published in 1884 as ‘ by A ’, Seeley & Co., London), 1992. [2] N. Adrienko and G. Adrienko. Constructing Parallel Coordinates Plots for Problem Solving. in Proc. 1st Inter. Symp. on Smart Graphics, A. Butz, A. Krueger, P. Oliver and M. Zhou (eds.), ACM Press 9Ð14, New York, 2001. [3] C. Ahlberg and B. Shneiderman. Visual Information Seeking: Tight Cou- pling of Dynamic Query Filters with Starfield Displays. Proc. CH94 Conf., 313Ð317, ACM Press, New York, 1994. [4] D. Asimov. The grand tour: A tool for viewing multidimensional data. SIAM J. Sci. & Stat. Comp., 6:128Ð143, 1985. [5] T. Avidan and S. Avidan. Parallax Ð a data mining tool based on parallel coordinates. Comput. Statit., 13Ð1:65, 1998. [6] S. Axelson. Understanding Intrusion Detection Through Visualization. Ph.D. Thesis, CS Dept. Chalmers Univ., Gotesborg, Sweden, 2005. [7] F. Ayres Jr. . Shaum’s Outlines on Math., McGraw- Hill, New York, 1967. [8] T.F. Banchoff. Beyond the Third Dimension. Scientific American Library, New York, 1990. [9] E.W. Bassett. Ibm’s ibm fix. Industrial Computing, 14(41):23Ð25, 1995. [10] A.F. Beardon. The Geometry of Discrete Groups. Springer-Verlag, New York, 1983. [11] B. Bederson and B. Shneiderman. (eds.) The Craft of Information Visu- alization: Readings and Reflections. Morgan-Kaufman, San Francisco, 2003. [12] J. Bergen, J. Borwein and P. Borwein. : A Source Book. Springer-Verlag, New York, 1997. [13] M. Berger. GeometryI&II. Corrected second printing, Springer-Verlag, New York, 1994. [14] J. Bertin. Semiologie« Graphique. First pub. 1967, Ecole des Hautes Etudes en Science, Paris, 1999. 536 Bibliography

[15] D.M. Bloom. and Geometry. Cambridge University Press, Cambridge, 1979. [16] B. Bollobas. . Springer-Verlag, New York, 1979. [17] V.G. Boltyanskii. Envelopes, R.B. Brown, translator (original in Russian). Pergamon Press, New York, 1964. [18] M.F. Brannan, D.A. Esplen and J.J. Gray. Geometry. Cambridge University Press, New York, 1999. [19] O.S. Brodetsky. A First Course in Nomography (first published in 1920). G. Bell and Sons, London, 1949. [20] S. Bulthoff and H.H. Edelman. Psychophysical support for a two- dimensional view interpolation theory of object recognition. Proc. Nat. Acad. Sci., 89-Psychology: 60Ð4, 1992. [21] J. Canny and J. Reif. New Lower Bound Techniques for Robot Planning Problems, in Proc. of 28th Symp. on Found. of Comp. Sci. IEEE Comp. Soc., Washington, D.C., 1987. [22] S. Card, J. MacKinlay and B. Shneidermanm. (eds.) Readings in Information Visualization. Morgan Kaufman, San Francisco, 1999. [23] A. Chatterjee. Visualizing Multidimensional and for Tolerances. Ph.D. thesis, Dept. Comp. Sci., Univ. of S. Calif., 1995. [24] A. Chatterjee, P.P. Das and S. Bhattacharya. Visualization in linear pro- gramming using parallel coordinates. Pattern Recognition, 26Ð11:1725Ð36, 1993. [25] C. Chen. Information Visualization: Beyond the Horizon, 2nd ed. Springer, New York, 2004. [26] C.H. Chen. Generalized association plots for information visualization: The application of the convergence of iteratively formed correlation matrices. Statistica Sica, 12:1Ð23, 2002. [27] C.H. Chen and J.A. Chen. Interactive diagnosis plots for multidimensional scaling with applications in psychosis disorder data analysis. Statistica Sica, 10:665Ð691, 2000. [28] E.H. Chi. A Framework for Visualizing Information. Kluwer, Amsterdam, 2002. [29] H. Choi and H. Lee. PCAV: Internet Attack Visualization in Parallel Coordinates, LNCS 3783, 454Ð466. Springer-Verlag, New York, 2005. [30] T. Chomut. Exploratory Data Analysis in Parallel Coordinates. M.Sc. thesis, Dept. Comp. Sci., UCLA, 1987. [31] S. M. Cohan and D.C.H. Yang. Mobility analysis in parallel coordinates. J. Mech. & Mach., 21:63Ð71, 1986. Bibliography 537

[32] G. Conti. Security Data Visualization. No Starch Press, San Francisco, 2007. [33] D. Conversano, D. Di Benedetto and R. Siciliano. The Clockworktree: Visual Multivariating Splitting. Cladag 2003, Book of Short Papers 113Ð7, Clueb Publisher, Bologna, 2003. [34] D. Cook and A. Buja. Manual controls for high-dimensional data projections. J. of Comp. & Graph. Stat., 6Ð4, 464Ð480, 1997. [35] R. Courant. Differential and vol. 2. Blackie & Son, London 171Ð183, 1946. [36] R. Courant and H.E. Robins. What is Mathematics? Oxford University Press, New York, 1953. [37] D. Cox, J. Little and D. O’Shea. Ideals, Varieties, and Algorithms. 2nd edition, Springer-Verlag, New York, 1997. [38] H.S.M. Coxeter. Introduction to Geometry. John Wiley, New York, 1969. [39] H.S.M. Coxeter. Projective Geometry. Second Ed., John Wiley, New York, 1974. [40] D.H. Deterding. Speaker Normalization for Automatic Speech Recognition. Ph.D. thesis, Cambridge University, 1989. [41] B. Dimsdale. Conic Transformations Ð IBM LASC Tech. Rep. G320-2713. IBM LA Scientific Center, 1981. [42] B. Dimsdale. Conic Transformations and Projectivities Ð IBM LASC Tech. Rep. G320-2753. IBM LA Scientific Center, 1984. [43] J.A. Dykes, A.M. MacEachren and M.J. Kraak. (eds). Exploring Geo- visualization. Elsevier, Amsterdam, 2005. [44] J.A. Dykes and D.M. Mountain. Seeking structure in records of spatio- temporal behaviour: visualization issues, efforts and applications. Comput. Statit. & Data Anal., 43 (Data Visualization II special ed.):581Ð603, 2003. [45] R. Edsall. The parallel coordinate plot in action: Design and use for geographic visualization. Comput. Statit. & Data Anal., 43Ð4:605Ð619, 2003. [46] P. Ehrenfest. In What Way Does it Become Manifest in the Fundamental Laws of that Space has Three Dimensions? Ð Appeared in 1917 Ð in Collected Scientific Papers of P. Ehrenfest, Klein, M.J. ed., 400Ð409. North-Holland Publishing Company, Interscience Publishers, New York, 1959. [47] J. Eickemeyer. Visualizing p-flats in N-space using Parallel Coordinates. Ph.D. thesis, Dept. Comp. Sci., UCLA, 1992. 538 Bibliography

[48] P.L. Eisenhart. A Treatise on the of and Surfaces. Dover Publications, New York, 2004. [49] S. El Mejdani, R. Egli and F. Dubeau. Old & new straight-line detectors, descriptions & comparisons. Pattern Recognition, 41:1845Ð66, 2008. [50] A. Ellis and G. Dix. Enabling automatic clutter reduction in parallel coordinates. Trans. on Vis. & Comp. Grap., 12Ð5:717Ð724, 2006. [51] N. Elmquist, J. Stasko and P. Tsingas. Datameadow: A visual canvas for analysis of large-scale multivariate data. Proc. IEEE Vast Conf., to appear, 2007. [52] L. Ernstrom. A plucker¬ formula for the singular projective varieties. Commut. Algebra., 5Ð9:2897Ð2901, 1997. [53] K. Esbensen, et al. Multivariate Analysis, 1994, Camo AS, Trondheim, Norway. [54] S. Even. Graph Algorithms. Science Press, Rockville MD, 1979. [55] M.G. Ewing. On the definition of inflection point. Amer. Math. Monthly, 45: 681Ð683, 1938. [56] F. Fallside and A.J. Robinson. A Dynamic Connectionist Model of Recognition. Proc. of 1st European Neural Network Conf. (nEURO), 1988. [57] U.M. Fayad, G. Piatesky-Shapiro, P. Smyth and R. Uthurusamy. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Cambridge Mass., 1996. [58] U.M. Fayad, G. Grinstein and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Francisco, 2001. [59] R. Finsterwalder. A Parallel Coordinate Editor as a Visual Decision Aid in Multi-Objective Concurrent Control Engineering Environment 119Ð122. IFAC CAD Contr. Sys., Swansea, UK, 1991. [60] P. Fiorini and A. Inselberg. Configuration Space Representation in Parallel Coordinates. IEEE Conf. Rob. & Aut., 1215Ð1220, 1989. [61] G. Fischer. Plane Algebraic Curves. Amer. Math. Soc. Press, Providence, 2001. [62] M. Friendly. Extending mosaic displays: Marginal, conditional, and partial views of categorical data. J. of Comp. & Graph. Stat., 8Ð3:373Ð95, 1999. [63] M. Friendly and al. Milestones in Thematic Cartography. www.math.yorku.ca/scs/SCS/Gallery/milestones/, 2005. [64] LORAL FSD. Test Report for the Quick-Look Flight Demonstration of the IntraFormation Positioning System, Document Nos. 93-A37-002, Contract f33615-90-C-3609. LORAL Federal Co, Oswego, 1994. Bibliography 539

[65] M. O. Fua, Y.H. Ward and E.A. Rundensteiner. Hierarchical Parallel Coordinates for Exploration of Large Datasets Ð Proc.of Conf. on Vis., 43Ð50. IEEE Comp. Soc. Press, Los Alamitos, CA, 1999. [66] G.W. Furnas and A. Buja. Prosection views: Dimensional inference through sections and projections. J. Comp. & Graph. Stat., 3:323Ð85, 1994. [67] C. Gennings, K.S. Dawson, W.H. Carter and R.H. Myers. Interpreting plots of a multidimensional dose-response surface in parallel coordinates. Biometrics, 46:719Ð35, 1990. [68] W.J. Gibbs. Graphical methods in the thermodynamics of fluids. Conn. Acad., II-1:309Ð342, 1873. [69] W.J. Gibbs. A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. Conn. Acad., II-2:382Ð404, 1873. [70] L. Girardin and D. Brodbeck. Visual Approach for Monitoring Logs. 12th Systems Adm. Conf., Boston, 1998. [71] A. Goel. Vizcraft: A Multidimensional Visualization Tool for Aircraft Configuration Design. IEEE Vis Conf., 425Ð8, 1999. [72] H. Goldstein. Classical Mechanics, 2nd ed. -Wesley, Reading Mass., 1980. [73] E. Goursat. A Course in Mathematical Analysis vol. 1. Ginn & Co, New York, 19xx. [74] M.J. Greenberg. Euclidean and Non-Euclidean , Development and History. W.H. Freeman and Co., 1974. [75] W.H. Guggenheimer. Differential Geometry. McGraw-Hill, New York, 1963. [76] H.S. Guyford and J.J. Haggerty. Flight Ð Life Science Library. Time Inc., New York, 1965. [77] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969. [78] J. Harris. . Springer-Verlag, New York, 1992. [79] H. Hauser. Parallel Sets: Visual Analysis of Categorical Data. Proc. IEEE Infovis, 2005. [80] M.A. Hearst. Clustering versus faceted categories for information explo- ration. Comm. ACM, 49Ð4:59Ð61, 2006. [81] N. Helfman. Navigating in Visual Models of Decision Support Systems. M.Sc. thesis, Dept. Comp. Sci., Bar Ilan University, Israel, 2000. [82] J. Helly. Applications of Parallel Coordinates to Complex System Design and Operation. Proc. Nat. Comp. Grap. Assoc. vol. III, 541Ð546, 1987. 540 Bibliography

[83] P. Hertzog. Visualizations to Improve Reactivity towards Security Inci- dents inside Corporate Networks, SIGSAC Conf. Proc., 95Ð102. ACM, New York, 2006. [84] B. Hetzler, P. Whitney, L. Martucci and J. Thomas. Multi-faceted Insight Through Interoperable Visual Information Analysis Paradigms in Proc. IEEE on Info Vis pp. 137Ð144. IEEE Comp. Soc., Los Alamitos, CA, 1998. [85] D. Hilbert and S. Cohn-Vossen. Geometry and the Imagination. Chelsea, New York, 1983. [86] W. Hodge and D. Pedoe. Methods of Algebraic Geometry, Vol. II. Cambridge Univ. Press, Cambridge, 1952. [87] P. Hoffman and G. Grinstein. Multidimensional Information Vis. for Data Mining with Applications for Machine Learning Classifiers. In Info. Vis. for KDD, Morgan-Kaufman, 2000. [88] P. Hoffman, G. Grinstein, K. Marx and I. Grosse. DNA Visual and Analytic Data Mining. Proc. IEEE Infovis, pp. 437Ð441, 1997. [89] Q. Huanin, C. Wing-Yi, X. Anbang, C. Kai-Lun, L. Kai-Hon and G. Ping. Visual analysis of the air pollution problem in hong kong. Trans. on Vis. & Comp. Grap., 13Ð6:1408Ð15, 2007. [90] H.P. Hudson. Ruler & Compass in ‘Squaring the ’ by Hopson et al. Chelsea, New York, 1953. [91] M.Y. Huh and K.Y. Song. DAVIS: A java based data visualization system. Comp. Stat., 17Ð3:411Ð423, 2002. [92] C.K. Hung and D. Ierardi. Constructing Convex Hulls of Piecewise Smooth Objects. Univ. of S. Calif. CS Dept. Tech R. 94Ð583, 1994. [93] C.K. Hung and A. Inselberg. Parallel Coordinate Representation of Smooth . USC Tech. Report #CS-92-531, Los Angeles, 1992. [94] C.K. Hung and A. Inselberg. Description of Surfaces in Parallel Coordi- nates by Linked Planar Regions, Mathematics of Surfaces XII, 177Ð208, LNCS 4647. Springer-Verlag, New York, 2007. [95] C.B. Hurley and R.W. Olford. Pairwise Display of High Dimensional Informatin via Eulerial Tours and Hamiltonian Decompositions. to appear, 2008. [96] IEEE. The faa’s advanced automation program — special issue. IEEE Computer J., 20Ð2, 1987. [97] A. Inselberg. N-Dimensional Graphics, LASC Tech. Rep. G320-2711, 140 pages. IBM, 1981. Bibliography 541

[98] A. Inselberg. Intelligent Instrumentation and Process Control, Proc. 2nd IEEE Conf. on AI Appl., 302Ð307. IEEE Comp. Soc., Los Alamitos, CA, 1985. [99] A. Inselberg. The plane with parallel coordinates. Visual Computer, 1:69Ð97, 1985. [100] A. Inselberg. Parallel Coordinates: A Guide for the Perplexed, in Hot Topics Proc. of IEEE Conf. on Visualization, 35Ð38. IEEE Comp. Soc., Los Alamitos, CA, 1996. [101] A. Inselberg. Multidimensional Detective, in Proc. of IEEE Information Visualization ’97, 100Ð107. IEEE Comp. Soc., Los Alamitos, CA, 1997. [102] A. Inselberg. Visual data mining with parallel coordinates. Comput. Statit., 13Ð1:47Ð64, 1998. [103] A. Inselberg and T. Avidan. The Automated Multidimensional Detective, in Proc. of IEEE Information Visualization ’99, 112Ð119. IEEE Comp. Soc., Los Alamitos, CA, 1999. [104] A. Inselberg, M. Boz and B. Dimsdale. Planar Conflict Resolution Algo- rithm for Air-Traffic Control and the One-Shot Problem, in IBM PASC Tech. Rep. G320-3559. IBM Palo Alto Scientific Center, 1991. [105] A. Inselberg and B. Dimsdale. Parallel Coordinates: A Tool For Visualizing Multidimensional Geometry, in Proc. of IEEE Conf. on Vis. ’90, 361Ð378. IEEE Comp. Soc., Los Alamitos, CA, 1990. [106] A. Inselberg and B. Dimsdale. Multidimensional lines i: Representation. SIAM J. of Applied Math., 54Ð2:559Ð577, 1994. [107] A. Inselberg and B. Dimsdale. Multidimensional lines ii: Proximity and applications. SIAM J. of Applied Math., 54Ð2:578Ð596, 1994. [108] A. Inselberg and C.K. Hung. A New Representation of Hypersurfaces Based on Their Tangent . In Course Notes for Tutorial #16 on Multi- dimensional Visualization 105Ð112, SIGGRAPH94, ACM Publications, 1994. [109] A. Inselberg and P.L. Lai. Visualizing Families of Close Planes, 66. Proc. 5th Asian Conf. on Stat., Hong Kong, 2005. [110] A. Inselberg, M. Reif and T. Chomut. Convexity algorithms in parallel coordinates. J. ACM, 34:765Ð801, 1987. [111] T. Itoh, et al. Hierarchical visualization of network intrusion detection data. IEEE Comp. Grap. & Appl., 26Ð2:40Ð47, 2006. [112] M.Y. Ivory and M.A. Hearst. Statistical profiles of highly-rated web sites. IEEE Inter. Comp., 6Ð2:55Ð63, 2002. 542 Bibliography

[113] J. Johansson, P. Ljung, M. Jern and M. Cooper. Revealing Structure within Clustered Parallel Coordinates Displays, Proc. IEEE Infovis, 125Ð132. IEEE Comp. Soc., Los Alamitos, CA, 2005. [114] J. Johansson, P. Ljung, M. Jern and M. Cooper. Revealing structure in visualizations of dense 2d and 3d parallel coordinates. Inf. Vis. Pal-Grave- Mcmillan Journ., 5:125Ð136, 2006. [115] C. Jones. Visualization and Optimization. Kluwer Academic Publishers, Boston, 1996. [116] M.W. Kantor, A.R. Liebler, E.S. Payne and E.E. Shult. (eds.) Finite Geome- tries, Buildings, and Related Topics. Clarendon Press Oxford, Oxford, 1990. [117] F. Karteszi. Introduction to Finite Geometries. North-Holland, Amsterdam- Oxford, 1976. [118] D.A. Keim. Designing pixel-oriented visualization techniques: Theory and applications. Comp. Graphics & Applic., 6Ð1:59Ð78, 2000. [119] D.A. Keim and H.P. Kriegel. Visualization techniques for mining large databases: A comparison. Trans. Knowl. and Data Engr., 8Ð6:923Ð938, 1996. [120] M. Kipouros, T. Mleczko and M. Savill. Use of Parallel Coordinates for Post-Analyses of Multiobjective Aerodynamic Design Optimization in Turbomachinery (to appear). Proc. 4th AIAA Meet., 2008. [121] M. Kline. Mathematical Thought from Ancient to Modern Times. Oxford Univ. Press, New York, 1972. [122] R. Kriz. Visual Thinking by Scientists. www.sv.vt.edu/classes/ESM4714/Gen-Prin/vizthink.html, 2007. [123] N. Kumasaka and R. Shibata. High Dimensional Data Visualization the Textile Plot. Proc. Compstat 2006 Psysica-Verlag, 581Ð9, 2006. [124] P.L. Lai and C. Fyfe. A family of canonical correlation analysis networks. Neural Proc. Let., 14Ð2:93Ð105, 2001. [125] F. Lauro, N.C. Palumbo and A. Iodice D’Enza. New Graphical Symbolic Objects Representation in Parallel Coordinates, in Between Data Science and Applications (M. Schader et al. eds). Springer, Heidelberg, 2003. [126] C.L. Lay. Linear Algebra and its Applications. Updated Edition, Addison- Wesley, New York, 2000. [127] R.O. Lejeune. Government Provided Complex Scenarios for the Advanced Automated System Design Competition Phase, MTR-85W240. MITRE Co, McLean, Virginia, 1985. Bibliography 543

[128] M.M. Lipschutz. Differential Geometry. Shaum’s Outlines on Math., McGraw-Hill, New York, 1969. [129] J. Martin and G. Kennedy. Using Curves to Enhance Parallel Coordi- nates Visualization. Proc. IEEE Infovis, London, IEEE Comp. Soc., Los Alamitos, CA, 10Ð16, 2003. [130] Mathcurve.com. Great Website for Surfaces. www.mathcurve.com/surfaces/surfaces.shtml, 2006. [131] T. Matskewich, A. Inselberg and M. Bercovier. Approximated Planes in Parallel Coordinates. Proc. of Geom. Model. Conf., St. Malo, Vanderbilt Univ. Press, 257Ð266, 2000. [132] B.H. McCormick, T.A. Defanti and M.D. Brown. Visualization in Scientific Computing. Computer Graphics 21Ð6, ACM SIGGRAPH, New York, 1987. [133] N. Megido. On the Complexity of some Geometric Problems in Unbounded Dimension, in IBM Res. Rep. RJ5744(58033). IBM Research, 1987. [134] D. Michie, D.J. Spiegelhalter and C.C. Taylor. Machine Learning, Neural and Statistical Classification. Ellis Horwood series in AI, 1994. [135] T. Mihalisin, J. Timlin and J. Schwegler. Visualizing multivariate functions, data and distributions. IEEE Comp. Graph. and Appl., 1991. [136] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997. [137] J.W. Moon. Various Proofs of Cayley’s Formula for Counting Trees, Seminar in Graph Theory, F. Harary (ed.). Holt, Rinehart & Winston, 1967. [138] J.R. Munkries. , 2nd. ed. Prentice-Hall, New Jersey, 2000. [139] J. Nakano and K. Honda. Three-dimensional parallel coordinates plot used for variable selection. Proc. COMPSTAT 2006, (eds. A. Rizzi and M. Vichi), Springer, 187Ð195, 2006. [140] J.R. Newman. World of Mathematics. Simon and Schuster, New York, 1956. [141] M. d’Ocagne. Coordonnees parallels et axiale. Gautier-Villars, Paris, 1885. [142] M. d’Ocagne. Traite de Nomographie. Gautier-Villars, Paris, 1899. [143] W.F. Osgood. Advanced Calculus. Macmillan, New York, 186Ð194, 1925. [144] E. Otto. Nomography. Translated from 1956 Polish ed. by J. Smolska. Macmillan, New York, 1963. [145] D. Pedoe. . Pergamon, New York, 1957. [146] P.A. Penna and R.R. Patterson. Projective Geometry and its Application to Computer Graphics. Prentice-Hall, New Jersey, 1986. 544 Bibliography

[147] Y. Pham, B. Cai and R. Brown. Visualization Techniques for Tongue Analysis in Traditional Chinese Medicine. Proc. Med. Imag. SPIE 14Ð19, 2004. [148] F.P. Preparata and M.I. Shamos. Computational Geometry. Springer- Verlag, New York, 1985. [149] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993. [150] J. Riordan. An Introduction to Combinatorial Analysis. John Wiley, New York, 1958. [151] H. Rosenbaum and R. Schumann. Chances and Limits of Progression in Visualization, in SimVis. Proc. Sim. & Vis., Magdeburg, Germany, 2007. [152] B.A. Rosenfeld. A History of Non-. Springer-Verlag, New York, 1988. [153] F. Rossi. Visual Data Mining and Machine Learning, in 14th Europ. ESANN Proc., 251Ð264. ESANN, Bruges Belgium, 2006. [154] P. Samuel. Projective Geometry. Springer-Verlag, New York, 1988. [155] M. Schall. Diamond and ice: Visual exploratory data analysis tools. Perspective, J. of OAC at UCLA, 18(2):15Ð24, 1994. [156] C. Schmid and H. Hinterberger. Comparative Multivariate Vis. Across Conceptually Different Graphic Displays, in Proc. of 7th SSDBM. IEEE Comp. Soc., Los Alamitos, CA, 1994. [157] O. Schreier and Sperner. Projective Geometry of n Dimensions. Chelsea Publishing Company, New York, 1985. [158] N. Shang and L. Breiman. Distribution based trees are more accurate. Proc. of 1st Inter. Conf. on Neural Info. Proc. (ICONIP96), 133, 1996. [159] B. Shneiderman. Leonardo’s Laptop. MIT Press, Boston, 2002. [160] B. Shneiderman and C. Plaisant. Designing the User Interface (4th Edition). Addison Wesley, Reading MA, 2005. [161] C.H. Sisam and W.F. Atchison. , third ed. Holt, Rinehart and Winston, New York, 1955. [162] D.J. Sobiski. Collision Detection and Collision Avoidance, Document Nos. 196A798. LORAL Federal Systems Co, Oswego, NY, 1995. [163] D.M.Y. Sommerville. An Introduction to the Geometry of N Dimensions. (First publ. 1929), Dover Publications, New York, 1958. [164] R. Spence. Information Visualization: Design for Interaction, 2nd ed. Prentice Hall, 2007. [165] I. Stewart. Flatterland. Perseus, New York, 2001. Bibliography 545

[166] D.J. Struik. Lectures on Classical Differential Geometry 2nd. Ed. Dover (Addison-Wesley 1961), New York, 1988. [167] D.F. Swayne, D. Cook and A. Buja. XGobi: Interactive Dynamic Graphics in the X Window System. JCGS, 7–1, 113Ð130, 1998. [168] D.F. Swayne, (T. Lang) Duncan, A. Buja and D. Cook. Ggobi: evolving from Xgobi into an extensible framework for interactive data visualization. J. of Comp. & Graph. Stat., 43:423Ð444, 2003. [169] J.L. Synge and A. Schild. Tensor Calculus, 2nd ed. University of Toronto Press, Toronto, 1956. [170] V. Tontodonato. Symbolic Objects Representation, Ph.D. thesis. Dept. of Math and Stat., Univ. Federico II, Napoli, 2002. [171] M. Tory, S. Potts and T. Moller. A parallel coordinates style interface for exploratory visualization. Trans. on Vis. & Comp. Grap., 11Ð1: 71Ð80, 2005. [172] E.R. Tufte. The Visual Display of Quantitative Information. Graphic Press, Connecticut, 1983. [173] E.R. Tufte. Envisioning Information. Graphic Press, Connecticut, 1990. [174] E.R. Tufte. Visual Explanation. Graphic Press, Connecticut, 1996. [175] L.A. Tweedie, R. Spence, H. Dawkes and Su H. Externalizing Abstract Mathematical Models, Proc. CHI, Vancouver, Can., 406Ð412. ACM Press, 1996. [176] A.R. Unwin. Requirements for interactive graphics software for exploratory data analysis. Comp. Stat., 14:7Ð22, 1999. [177] A.R. Unwin, M. Theus and H. Hofmann. (Eds.) Graphics of Large Datasets. Springer, New York, 2006. [178] F.B. Viegas, M. Wattenberg and D. Kushal. Studying Cooperation and Con- flict between Authors with history flow Visualizations in Proc. of SIGHCI on Human Factors in Computing Systems, 575Ð582. ACM Press, New York, 2004. [179] R.J. Walker. Algebraic Curves. Springer, New York, 1978. [180] W.A. Walker. What is a point of inflection? Amer. Math. Monthly, 63: 182Ð183, 1956. [181] M.O. Ward. XmdvTool: Integrating multiple methods for visualizing multi- variate data, Proc. IEEE Conf. on Vis., CA, 326Ð333. IEEE Comp. Soc., Los Alamitos, CA, 1994. [182] C. Ware. Information Visualization: Perception and Design, 2nd ed. Morgan Kaufman, San Francisco, 2004. 546 Bibliography

[183] C.E. Weatherburn. Differential Geometry of Three Dimensions. Cambridge Univ. Press, Cambridge, 1955. [184] E. Wegman. Hyperdimensional data analysis using parallel coordinates. J. Amer. Stat. Assoc., 85:664Ð675, 1990. [185] P.C. Wong and R.D. Bergeron. 30 Years of Multidimensional Multivari- ate Visualization in Scientific Visualization: Overviews, Methodologies & Techniques, G.M. Nelson, H. Mueller and H. Hagen (eds.), 3Ð33. IEEE Comp. Soc., Los Alamitos, CA, 1997. [186] V.O. Ya. Some integral calculus based on euler characteristic, lect. notes. Amer. Math. Monthly, 1346:127Ð138, 1988. [187] L. Yang. Pruning & visualizing generalized association rules in parallel coordinates. IEEE Know. & Data Engr., 15(1):60Ð70, 2005. [188] H. Ye and Z. Lin. Speed-up simulated annealing by parallel coordinates. EuroJ.ofOR, 173:59Ð71, 2006. [189] X. Yin, et al. VisFlowConnect. Comp. Sec., ACM Workshop on Visua- lization, Washington, D.C. 26Ð34, 2004. 12

Index

Abbot A.E., 2 computer graphics Adjiashvili D., xxiii, 376 transformations and matrices, 31Ð35 air traffic control conoids, 352 between superplanes, 133 parabolic conoid, 352 collision avoidance, 103Ð106 Plucker’s¬ conoid, 352 conflict intervals, 106 Whitney’s umbrella, 352 conflict resolution, 108Ð113 construction algorithms information display, 101 in R3, 136Ð159 particle fields, 103Ð113 half , 136 angle between two planes, 133 intersecting planes, 138 approximate hypersurfaces, 359Ð line on a plane, 136 365 parallel plane on point, 151 , xv plane line intersection, 145 astroidal surface, 370 ↔ translation, 151 Atariah, D., 322 special planes, 141 automatic classification, 406 the four indexed points, 138 Avidan S. and T., xxiii in R4, 174Ð179 axes intersecting hyperplanes, 175 axis translation → rotation, 133 the five indexed points, 174 permutations, 122 convex surfaces, 367 spacing, 125 course prerequisites, xxii projects, xix Banchoff T.F., 2 syllabus, xviiiÐxxii Bertin J., xxv curves, 195Ð241 Binniaminy M., 322 algebraic curves, 208 Boz M., xxiii Plucker¬ class formula, 230 bump, 370 Plucker¬ curves, 229Ð230 examples, 208Ð211 conics Chatterjee A., xxiii, 250, 326 classification of transforms, 220Ð Chen C., xxv 226 Chen C.C., xxv ideal points, 226Ð227 Cohen L., xxiii, 376 the Indicator, 226 Cohen S., 429 transforms via Mobius¬ transforma- Cohen-Ganor S., 85 tion, 217 displaying several lines, 429Ð442 conics ↔ conics, 216Ð229 construction algorithm convex sets and their relatives, 231Ð example in R6, 173 241 collinearity construction algorithm RN , convex upward and downward, 197 170 curve plotting, 216 collinearity property p-flats in RN , 169 cusps and inflection points, 199Ð204 548 Index

duality and coincindence, 333 bitangent ↔ double−point, 230 tangent planes, 311 envelope, 43 dimensionality, 2 exponential, 212 dimple, 370 gconics Ð generalized conics, 231Ð241 Dimsdale B., xxiii, 361, 375 convex hull with curved edges, 235 conics, 217 convex-hull construction, 235 hyperplanes, 165 gconics ↔ gconics, 232Ð241 duality, 10 inner intersection, 238 R2 Ð slope and x-coordinate relation, operational dualities, 238 51 outer union, 238 bitangent ↔ double point, 230 ↔ outer union inner intersection, ↔ inflection point, 199Ð204 240 gconics Ð generalized conics Inselberg transformation, 206 operational dualities, 238 line, 43 outer union ↔ inner intersection, oscillatory, 212 240Ð241 plotting, 207 in 2-D point ↔ line, 15 point, 43 in 3-D point ↔ plane, 15 point-curves ↔ point-curves, 204Ð point ↔ line in P2, 49Ð62 241 point↔ line point-curves and line-curves, 195Ð horizontal of ¯,51 196, 204 line → point linear transformation, space curves, 216 53 trigonometric, 212 point → line linear transformation, 54 d’Ocagne, xvi point-curves and line-curves, 55 data mining, xvi, xvii, xxi, 378Ð427 , 49 classification, xvii, xxi recognizing , 58 ↔ grand vision, 5 rotation translations, 57 guidelines and strategies, 4 transformations, 56Ð60 introduction, 379Ð382 Piatesky-Shapiro G., xxv Zaavi J., xxv decision support, xxi, 359, 416Ð418 Ehrenfest P., 2 Desargue Eickemeyer , 10 representation of p-flats, 167 developable surfaces representation of hyperplanes, 166 characteristic point, 312 superplanes Ð E, 125 duality with space curves, 312 Eickemeyer J., xxiii, 125 general cone, 341 ellipsoid, 367 , 342 envelopes, 55, 118, 185Ð194 reconstruction, 319 formulation and computation, 186 reconstruction from its rulings, 321 necessary and sufficient conditions, representation, 314 188 ruling, 312 of families of curves, 190Ð193 rulings of , 326 one-parameter family of curves, 185 start points, 319 singural points, 189 Index 549

Euclid half plane elements, 8 oriented, 197 parallels , 15 half spaces, 136 exploratory data analysis Ð EDA, xvii, xxi, Hearst M., xxv 382Ð383 Helfman N. data display, 380 decision support, xxiii hundreds of variables, 400 helicoid (developable), 342 interactivity, 380 Hinterberger H. pattern recognition, 379 comparative visualization, xxiv simple case study, 383Ð390 data density analysis, xxiv software, 4 homogeneous coordinates, 22Ð43 software requirements, 4 analytical proofs, 39Ð43 testing assumptions, 401 for finite geometries, 24 exploratory data analysis Ð EDA, xxiii on a line, 25 exterior point, 349 Hung C.K., xxiii, 314, 326, 335, 336, 375 convex-hull with curved edges, 235 surface representation decomposition, financial dataset, 392, 401 451Ð460 Fiorini P., xxiii Hurwitz A., xxiii , 297 hyperellipse, 362 hyperellipsoids, 360 geometry, 7Ð48 affine, 48 constructions ILM compass alone, 8 duality in P2 first algorithms, 8 point ↔ line, 51, 56, 58 Poncelet and Steiner conditions, 8 geometry Egyptians, 7 Desargues’s theorem, 42 Pappus’s theorem, 42 elements, 8 point ↔ line duality, 19 Greeks, 7 multidimensional lines origins, 7 general case, 83 parallelism, 2 indexed points Ð adjacent and base projective, 8Ð45 variable, 67 transformations three-point collinearity, 71 invariants, 45Ð48 planes geovisualization, xxiv rotation ↔ translation for indexed Gibbs W.J., 333 points, 122, 153 Giles N., 236 , 300 GIS, xxiv intelligent process control, 363Ð365 gold, high price domain, 363 correlation with currencies, 397 instrument panel, 364 grand tour learning, 365 Asimov D., xxiv rule, 363 Greenshpan O., 460Ð475 interaxis Grinstein G., xxv recursive notation, 299 group, 46 Itai T., 322 550 Index

Keim D., xxiv ↔ translations duality, 87 Kosloff Z., 322 separation in the xy plane Kriz R., 2 above and below relations, 149

Lifshits Y., 373 nearly developable surfaces, 343 network visualization and analysis, 460 Mobius¬ strip, 354 nomography, xvi Makarov I., 373 nonlinear models, 416Ð418 Matskewich T., xxiii, 250, 273, 279 nonorientability proximate hyperplanes construction, in R2, 149 279 projective plane P2,13 proximate hyperplanes representation, visualization, 358 273 nonorientable surface, 354 multidimensional lines 3-point collinearity, 127 air traffic control, 100Ð113 paraboloid, 367 construction algorithms, 79Ð82 parallel coordinates example, 80 P2, 49Ð62 displaying several lines, 429Ð442 bitangent ↔ double-point duality, distance and proximity, 88Ð100 230 L2 minimum distance Ð monotonic- air traffic control, 100Ð113 ity with dimension, 97Ð100 algebraic curves, 229Ð230 L2 versus L1 minimum distance, 99 applications, xxiv, 5 constrained L1 distance, 92Ð96 automatic classification, 406 intersecting lines, 88 automatic classifiers, 4 minimum distance between lines, bare essentials, 427 91Ð100 complex-valued functions, 476Ð488 nonintersection, 89Ð100 conics, 216Ð229 indexed points curves, 55, 195Ð241 3-point collinearity, 70Ð72 curve plotting, 207Ð216 arbitrary parametrization, 75 cusp ↔ inflection-point duality, 199Ð dummy index, 77 204 identification, 82 data mining, 378Ð427 representation, 63Ð88 decision support, 416Ð418 adjacent variables, 63Ð65 definition, 3 base variable, 65 enhancing with curves, xxiv convenient display of a line with exploratory data analysis Ð EDA, 382Ð positive slopes, 83 383 convenient display of several lines, atomic queries, 385 85 guidelines, 383Ð390 general case, 75Ð78 multidimensional detective, 382Ð line on a plane, 119 383 transforming positive to negative requirements, 381 slopes, 83Ð85 first proposed, 2 two-point form, 68Ð70 gconics Ð generalized conics two-point form continued, 78 operational dualities, 238 Index 551

hypercube, 61 line on a plane, 119 in 3-D, xxiv planes in R3, 115 Inselberg transformation, 206 planes on a line, 122 multidimensional lines, 63Ð113 point on a plane, 118 representation, 70 recursive construction, 164 network visualization and analysis, recursive construction algorithm RN , 460Ð475 170 notation in R2 representation bar, point, line, 55 p-flat in RN , 167 orthogonality, 58 augmented, 132 parallax, 4 by two indexed points in R3, 128 parallelism, 51 collinearity property for p-flats, 169 permutations for adjacencies, 388 hyperplane in RN , 166 planes, p-flats, and hyperplanes, 115Ð hyperplanes and p-flats in R4, R5, 183 168 point ↔ line duality indexed points, 124 queries, 387 indexed points in RN , 164 properties, 3 planar coordinates, 118 proximate planes and hyperplanes, recursive construction, 164 243Ð295 recursive construction algorithm, recursive construction algorithm, 4 127 representation mapping I, 73Ð75 unification for p-flats 0 ≤ p

finite geometries, 19Ð21 matching points and navigation, fundamental transformations, 26Ð29 287Ð295 homogeneous coordinates, 9, 22Ð43 properties of fN , 254Ð257 analytical proofs, 39Ð43 region , 257Ð275 for finite geometries, 24 region crossing x axis, 287 on a line, 25 some examples, 283Ð295 ideal elements, 11 proximity of lines and line neighbor- incidence relation, 10 hoods, 244Ð251 line coordinates, 23 topology for proximity, 243Ð245 linearizability of projective transfor- mations, 29Ð31 quasars data set, 390Ð392 Pappus’s theorem and its dual, 18 queries Pappus’s theorem generalizations, 44 atomic, 385 Brianchon’s theorem dual of Pas- compound, 401 cal’s theorem, 45 zebra, 397 Pascal theorem for conics, 44 perpectivity and projectivity, 28 perspectivity, 26 recursive construction algorithm, 127 primitives, 10 general in RN , 164 projections and sections, 10 Reif M., xxiii projective plane model, 10Ð13 representation Hilbert, 12 astroidal representation, 370 projective plane nonorientability, 13 bump, 370 projective transformations convex surfaces, 369 in P2,32 dimple, 370 in P3,33 Mobius¬ strip, 358 linearized, 31Ð35 , 367 perspective, 32, 34 , 370 rotation, 32, 33 representation mapping scaling, 32 version II, 180 translation, 32, 33 Rivero J., xxiii proximate planes and hyperplanes, 243Ð rotation, 158 ↔ 295 rotation translation points, 151Ð158 rotation ↔ translation vertical lines, 120 Chatterjee, A., 250 rotations Matskewich, T., 250 coordinate system in R3,36 neighborhood, 244 in R2,32 outline of development, 253 in R3,33 proximity of hyperplanes, 251Ð295 ruled surfaces adding the c , 280Ð285 0 conoids, 352 components and structure of , Mobius¬ strip, 354 257Ð263 representation, 349 conditions for being bc, uc,orgh, saddle, 347 267Ð274 costruction of , 263Ð275 formulation of the problem, 251Ð saddle, 347 254 Satellite data set, 383Ð390 full image of NH, 275Ð279 separation in R2 Ð points and lines, 149 Index 553 separation in R3 Ð points and planes (new hypercube, 297 approach), 146 matching algorithm, 301, 303, 311, separation in R3 Ð points and planes (old 348, 351, 352, 372 approach), 149 more general surfaces, 365Ð377 separation in the xy plane nearly developable surfaces, 343 above and below relations, 196 normal vector, 302 convex upward or downward, 197 preliminaries, 297Ð300 oriented half plane, 196 representation, 301 Shahaf N., 443Ð451 algebraic surface, 306 Shneiderman B., xxv astroidal surface, 370 Singer Y., 460Ð475 boundaries, 305 Snow J., xv boundaries - example, 307 Spence R., xxv boundaries - the class EG, 305 sphere, 367 boundaries of , 306 Spivak M., 376 boundaries of ruled surfaces, 348, surfaces 351 representation decomposition and devel- boundaries, ideal points, 305 opable quadrics, 451Ð460 convex surface boundaries, 366 RN surfaces in , 297Ð377 convex surfaces, 367, 369 approximate quadrics, 359Ð365 coordinates of representing points, decision support, 359 303 hyperellipsoids, 360 Mobius¬ strip, 358 intelligent process control, 362Ð365 ruled surfaces, 347 boundary contours, 304Ð310 saddle, 347 developable surfaces, 310Ð346 sphere, 367 ambiguities and uniqueness, 316Ð torus, 370 319 representation of developable and characteristic point, 312 ruled, 358 duality with space curves, 312 representing points relations, 300 general, 342Ð346 ruled surfaces, 346Ð359 general cone, 341 conoids, 352 helicoid, 342 Mobius¬ strip, 354 Hung C.K., 311 representation, 349 reconstruction, 319Ð325, 341 saddle, 347 reconstruction from its rulings, 321 representation, 314 ruling, 312 rulings of cylinders, 326 to see C2, 476Ð488 specific developables, 325Ð341 torus, 370 specific developables, , 336Ð transformations 341 invariants, 45 specific developables, cylinders, linear, 46 326Ð336 linear fractional, 30 symmetry and coincidence, 333 linearizability of projective transfor- tangent planes, 311 mations, 31 formulation, 301Ð304 Mobius,¬ 30 general homomorphic to group of nonsingu- matching algorithm, 372Ð377 lar matrices, 217 554 Index

visualization Ward M., xxv Archimedes, xv Ware C., xxv early success of, xv emergence of, xv information, 1 Yaari Y., 476Ð488 multidimensional, xvi, 1 science, 2, 333 scientific, 1 VLSI data set, 401Ð406 zero defects, 401Ð405