Interrelations Between Astrochemistry and Galactic Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ubiquitous Argonium \(Arh+\) in the Diffuse Interstellar Medium: A
A&A 566, A29 (2014) Astronomy DOI: 10.1051/0004-6361/201423727 & c ESO 2014 Astrophysics Ubiquitous argonium (ArH+) in the diffuse interstellar medium: A molecular tracer of almost purely atomic gas P. Schilke1, D. A. Neufeld2, H. S. P. Müller1, C. Comito1, E. A. Bergin3, D. C. Lis4;5, M. Gerin6, J. H. Black7, M. Wolfire8, N. Indriolo2, J. C. Pearson9, K. M. Menten10, B. Winkel10, Á. Sánchez-Monge1, T. Möller1, B. Godard6, and E. Falgarone6 1 I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany e-mail: [email protected] 2 The Johns Hopkins University, Baltimore, MD 21218, USA 3 Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA 4 California Institute of Technology, Pasadena, CA 91125, USA 5 Sorbonne Universités, Université Pierre et Marie Curie, Paris 6, CNRS, Observatoire de Paris, UMR 8112 LERMA, Paris, France 6 LERMA, CNRS UMR 8112, Observatoire de Paris & École Normale Supérieure, 24 rue Lhomond, 75005 Paris, France 7 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden 8 Astronomy Department, University of Maryland, College Park, MD 20742, USA 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 10 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany Received 28 February 2014 / Accepted 29 March 2014 ABSTRACT Aims. We describe the assignment of a previously unidentified interstellar absorption line to ArH+ and discuss its relevance in the + context of hydride absorption in diffuse gas with a low H2 fraction. -
Ubiquitous Argonium, Arh+, in the Diffuse Interstellar Medium
Ubiquitous Argonium, ArH+, in the Interstellar Medium P. Schilke, Holger S. P. Müller, C. Comito, Á. Sánchez-Monge, D. A. Neufeld, N. Indriolo, E. A. Bergin, D. C. Lis, M. Gerin, J. H. Black, M. G. Wolfire, J. C. Pearson, K. M. Menten, B. Winkel V.6, 13th International HITRAN Conference, CfA, Cambridge, MA, USA, June 23–25, 2014 What is Argonium? ArH+, 1Σ+, isoelectronic to HCl + + Formation: Ar + H2 → ArH + H + + Destruction (e.g.): ArH + H2 → Ar + H3 Isotopic ratio: 36Ar : 38Ar : 40Ar terrestrial: 84.2 : 15.8 : 25018.8 (from decay of 40K) solar/ISM: ~84.6 : ~15.4 : 0.025 36ArH+ toward Crab Nebula SNR: J = 1 – 0 & 2 – 1 in emission (w. OH+ N = 1 – 0); SPIRE/Herschel M. J. Barlow et al., Science 342 (2013) 1343 On the Spectroscopy of ArH+ 40ArH+; rotational spectroscopy: K. B. Laughlin et al., PRL 58 (1987) 996: J" = 0 J. M. Brown et al., JMSp 128 (1988) 587: J" = 1 – 6 D. J. Liu et al., JCP 87 (1987) 2442: J" = 20 – 24; v ≤ 4 (MIR) 40ArD+; rotational spectroscopy: W. C. Bowman et al., JCP 79 (1983) 2093: J" = 0 (+ 36ArD+ & 38ArD+ H. Odashima et al., JMSp 195 (1999) 356: J" = 2 – 14 rovibrational spectroscopy: J. W. Brault & S. P. Davis, Phys. Sript. 25 (1982) 268: 40ArH+ J. W. C. Johns, JMSp 106 (1984) 124: 40ArH+, 40ArD+ R. R. Filueira & C. E. Blom, JMSp 127 (1988) 279: 36ArH+, 38ArH+ M. Cueto et al., ApJ 783 (2014) L5: 36ArH+, 38ArH+ ArH+ toward Sagittarius B2(M) – HIFI Line Survey Absorption toward Sgr B2(M) massive star-forming regions as background sources with approximate origins Sagittarius B2(M) Interstellar Chemistry of ArH+ I + + + + Ar + H2 → ArH + H exothermic (endo. -
Book of Abstracts
THE PHYSICS AND CHEMISTRY OF THE INTERSTELLAR MEDIUM Celebrating the first 40 years of Alexander Tielens' contribution to Science Book of Abstracts Palais des Papes - Avignon - France 2-6 September 2019 CONFERENCE PROGRAM Monday 2 September 2019 Time Speaker 10:00 Registration 13:00 Registration & Welcome Coffee 13:30 Welcome Speech C. Ceccarelli Opening Talks 13:40 PhD years H. Habing 13:55 Xander Tielens and his contributions to understanding the D. Hollenbach ISM The Dust Life Cycle 14:20 Review: The dust cycle in galaxies: from stardust to planets R. Waters and back 14:55 The properties of silicates in the interstellar medium S. Zeegers 15:10 3D map of the dust distribution towards the Orion-Eridanus S. Kh. Rezaei superbubble with Gaia DR2 15:25 Invited Talk: Understanding interstellar dust from polariza- F. Boulanger tion observations 15:50 Coffee break 16:20 Review: The life cycle of dust in galaxies M. Meixner 16:55 Dust grain size distribution across the disc of spiral galaxies M. Relano 17:10 Investigating interstellar dust in local group galaxies with G. Clayton new UV extinction curves 17:25 Invited Talk: The PROduction of Dust In GalaxIES C. Kemper (PRODIGIES) 17:50 Unravelling dust nucleation in astrophysical media using a L. Decin self-consistent, non steady-state, non-equilibrium polymer nucleation model for AGB stellar winds 19:00 Dining Cocktail Tuesday 3 September 2019 08:15 Registration PDRs 09:00 Review: The atomic to molecular hydrogen transition: a E. Roueff major step in the understanding of PDRs 09:35 Invited Talk: The Orion Bar: from ALMA images to new J. -
Detection of Extragalactic Argonium, Arh+, Toward PKS 1830−211⋆
A&A 582, L4 (2015) Astronomy DOI: 10.1051/0004-6361/201527254 & c ESO 2015 Astrophysics Letter to the Editor Detection of extragalactic argonium, ArH+, toward PKS 1830−211 Holger S. P. Müller1, Sébastien Muller2, Peter Schilke1, Edwin A. Bergin3, John H. Black2, Maryvonne Gerin4, Dariusz C. Lis5,6, David A. Neufeld7, and Sümeyye Suri1 1 I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany e-mail: [email protected] 2 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 43992 Onsala, Sweden 3 Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042, USA 4 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, 75005 Paris, France 5 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 75014 Paris, France 6 Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, CA 91125, USA 7 Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA Received 26 August 2015 / Accepted 22 September 2015 ABSTRACT Context. Argonium has recently been detected as a ubiquitous molecule in our Galaxy. Model calculations indicate that its abundance peaks at molecular fractions in the range of 10−4 to 10−3 and that the observed column densities require high values of the cosmic ray ionization rate. Therefore, this molecular cation may serve as an excellent tracer of the very diffuse interstellar medium (ISM), as well as an indicator of the cosmic ray ionization rate. -
Ijmp.Jor.Br V
INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v. 10, n. 8, Special Edition Seng 2019 ISSN: 2236-269X DOI: 10.14807/ijmp.v10i8.1046 A NEW HYPOTHESIS ABOUT THE NUCLEAR HYDROGEN STRUCTURE Relly Victoria Virgil Petrescu IFToMM, Romania E-mail: [email protected] Raffaella Aversa University of Naples, Italy E-mail: [email protected] Antonio Apicella University of Naples, Italy E-mail: [email protected] Taher M. Abu-Lebdeh North Carolina A and T State Univesity, United States E-mail: [email protected] Florian Ion Tiberiu Petrescu IFToMM, Romania E-mail: [email protected] Submission: 5/3/2019 Accept: 5/20/2019 ABSTRACT In other papers already presented on the structure and dimensions of elemental hydrogen, the elementary particle dynamics was taken into account in order to be able to determine the size of the hydrogen. This new work, one comes back with a new dynamic hypothesis designed to fundamentally change again the dynamic particle size due to the impulse influence of the particle. Until now it has been assumed that the impulse of an elementary particle is equal to the mass of the particle multiplied by its velocity, but in reality, the impulse definition is different, which is derived from the translational kinetic energy in a rapport of its velocity. This produces an additional condensation of matter in its elemental form. Keywords: Particle structure; Impulse; Condensed matter. [http://creativecommons.org/licenses/by/3.0/us/] Licensed under a Creative Commons Attribution 3.0 United States License 1749 INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) http://www.ijmp.jor.br v. -
Primordially Hydridic Earth Viacheslav Zgonnik, Hervé Toulhoat, Vladimir Larin, Nikolay Larin
Primordially hydridic Earth Viacheslav Zgonnik, Hervé Toulhoat, Vladimir Larin, Nikolay Larin Abundances of elements on Earth’s crust relative to Sun’s photosphere and Si plotted versus first ionization potential (IP) • Clearly shows separation of elements by their IP • Outliers are due to use of only Earth’s crust composition • Tested with success for other planets, Moon and asteroids • Described by a Boltzmann distribution depending on the distance to the protosun • Predicts high initial content of hydrogen • Earth currently has about 4% by weight of hydrogen. • It is mainly combined as hydrides and partly dissolved into other phases http://arxiv.org/abs/1208.2909v2 Non-Ionizing UV (< 7 eV) Photochemistry of Cosmic Ice Analogs of Ammonia Radiolysis involves electron Photochemistry involves electron excitation due to particle radiation excitation without ionization in addition to all ionization – reactions initiated by cations – production of low-energy electron cascade – non-uniform distribution of reaction intermediates, non-selective chemistry leading to multiple reaction products We see production of N2 and N3 species with high- energy electrons and < 8 eV photons, but not with < 6 eV photons Islem Bouhali Soumaya Bezzaouia Mourad Telmini Theoretical study of Rydberg states of HeH+ ion using the Halfium model Christian Jungen Presented by: Islem Bouhali 2 HeH+ molecular ion in Born-Oppenheimer approximation e2 r12 Max(extern region e1 r2a GMQDT r r 1a 2b r1b Max(reaction surface R MATCHING ++ + He H Max( : reaction volume R-MATRIX Combination of the Variational R-matrix method and of the Generalized Multichannel Quantum Defect Theory Telmini and Jungen, Phys. Rev. A 68 062704 (2003). -
Laboratory Spectroscopy Techniques to Enable Observations of Interstellar Ion Chemistry
REVIEWS Laboratory spectroscopy techniques to enable observations of interstellar ion chemistry Brett A. McGuire 1,2,3 ✉ , Oskar Asvany 4, Sandra Brünken 5 and Stephan Schlemmer 4 ✉ Abstract | Molecular ions have long been considered key intermediates in the evolution of molecular complexity in the interstellar medium. However, owing to their reactivity and transient nature, ions have historically proved challenging to study in terrestrial laboratory experiments. In turn, their detection and characterization in space is often contingent upon advances in the laboratory spectroscopic techniques used to measure their spectra. In this Review, we discuss the advances over the past 50 years in laboratory methodologies for producing molecular ions and probing their rotational, vibrational and electronic spectra. + We largely focus this discussion around the widespread H3 cation and the ionic products originating from its reaction with carbon atoms. Finally, we discuss the current frontiers in this research and the technical advances required to address the spectroscopic challenges that they represent. More than 200 molecular species are now known to The primary initiator in this network is the simple + + be present in the interstellar medium (ISM), but only polyatomic cation H3 . The importance of H3 in initia- slightly more than 15% of these are ionic: either posi- ting ion–molecule chemistry has long been recognized, 1 + tively or negatively charged . Yet these charged species and H3 has been invoked as a key intermediate in have a substantial role in driving chemical evolution in reaction networks for decades2,4,5. Although laboratory space, where low densities and temperatures present knowledge of its spectrum dates back to 1980 (REF.6), considerable obstacles to reactivity. -
The Prospects for Petroleum Exploration in the Eastern Sector of Southern Baltic As Revealed by Sea Bottom Geochemical Survey Correlated with Seismic Data
Przegl¹d Geologiczny, vol. 52, no. 8/2, 2004 The prospects for petroleum exploration in the eastern sector of Southern Baltic as revealed by sea bottom geochemical survey correlated with seismic data Jerzy Dom¿alski*, Wojciech Górecki**, Andrzej Mazurek*, Andrzej Myœko**, Wojciech Strzetelski**, Krzysztof Szama³ek*** A b s t r a c t . In the Polish offshore £eba (B) tectonic block in the southeastern part of the Baltic Sea the oil and gas fields are accumu- lated in Middle Cambrian quartzose sandstone, often fractured and diagenetically sealed at depth by advanced silification developed in reservoir around the petroleum deposit. Petroleum traps are mainly of structure-tectonic type, i.e., anticlines closed with strike-slip faults. At least four gas-condensate and four oil deposits of total reserves more than 10 Gm3 gas and 30 Mt oil were discovered by the “Petrobaltic” Co. in the Polish Baltic sector. The subsurface petroleum deposits in the Cambrian reservoir are the source of secondary vertical hydrocarbon migration to the surface which produces surface microseepages and hydrocarbon anomalies. Geochemical survey of the sea bottom sediments and waters run along seismic profiles was completed in 1999–2002 within a joint project of “Petrobaltic” Co. Gdañsk and the Fossil Fuels Dept., AGH University of Science and Technology, Kraków, approved by the Ministry of Environmental Protection, Natural Resources and Forestry. It was found that seafloor hydrocarbon anomalies are closely related to subsurface geologic structure and location of petroleum deposits. Particularly the faults as principal venues for vertical hydrocarbon migration are reflected in high-magnitude seafloor anomalies. Above petroleum field there occurs a “halo” effect of high-magnitude anomalies contouring the deposit with damping related to productive zone situated inbetween. -
Microwave Spectroscopy Information Letter Vol
MICROWAVE SPECTROSCOPY INFORMATION LETTER VOL. LXI April 15, 2018 Compiled By: Garry S. Grubbs II Asst. Professor of Chemistry Department of Chemistry Missouri Univ. of Science & Technology 400 W. 11th St. Rolla, MO, 65409 [email protected] MICROWAVE SPECTROSCOPY NEWSLETTER LXI List of Contributors / Table of Contents Contributor Institution Lab, Page No. Alonso, J. L. Universidad de Valladolid 1, 5 Arunan, E. India Institute of Science, Bangalore 2, 7 Bird, R. University of Pittsburgh, Johnstown 3, 8 Bizzocchi, L. Max Planck Inst. for Extraterrestrial Physics 33, 103 Blanco, S. Universidad de Valladolid 31, 94 Bohn, R. K. University of Connecticut 4, 9 Brown, G. Coker College 5, 11 Caselli, P. Max Planck Inst. for Extraterrestrial Physics 33, 103 Christen, D. Institut für Physikalische Chemie, Tübingen 6, 13 Cocinero, E. Universidad del País Vasco 7, 14 Cooke, S. A. Purchase College SUNY 8, 17 Dore, L. Università di Bologna 40, 124 Douglass, K. O. National Institute of Standards and Technology 32, 98 Drouin, B. Jet Propulsion Laboratory, Pasadena 9, 21 Durig, J. R. University of Missouri, Kansas City 14, 44 Esposti, C. D. Università di Bologna 10, 23 Evangelisti, L. Università di Bologna 10, 23 Favero, L. B. Università di Bologna 10, 23 Feng, G. Chongqing University 12, 33 Fujitake, M. Kanazawa University 11, 30 Gou, Qian Chongqing University 12, 33 Grabow, J.-U. Institut für Physikalische Chemie, Hannover 13, 36 Groner, P. University of Missouri, Kansas City 14, 44 Grubbs, G. Missouri University of Science & Technology 15, 45 Harada, K. Kyushu University 16, 49 Hirota, E. Grad. Univ. for Advanced Studies, Kanagawa 17, 53 Ilyushin, V. -
The Systemic Approach to Teaching and Learning
AJCE, 2020, 10(1) ISSN 2227-5835 THE “FIRST MOLECULE”: He-H+ AS A THEME TO STUDY CHEMICAL BONDING BY MOLECULAR MODELING Robson Fernandes de Farias Universidade Federal do Rio Grande do Norte, Cx. Postal 1664, 59078-970, Natal-RN, Brazil. Email: [email protected] ABSTRACT In April 2019, it was reported [3] the detection (for the first time, in the interstellar space; previous detections were in the lab) of a species that is considered the very first molecule formed in the universe: He-H+(formed about only 100,000 years after the big bang). It was the beginning of chemical synthesis, and, of course, chemistry. In the present work it is reported as such chemical species can be employed as a very good theme to study chemical bonding by using molecular modeling. [African Journal of Chemical Education—AJCE 10(1), January 2020] 1 AJCE, 2020, 10(1) ISSN 2227-5835 INTRODUCTION As previously reported [1,2] molecular modeling can be a very powerful tool to be employed as a didactical/pedagogical resource, since it allows, for example, to study chemical bonding and chemical structure in an easy and ludic approach. By molecular modeling, bond angles, lengths and energies can be “measured”, and the student can “feel” such properties and not just having to believe the data that appears in the textbooks. Of course, different theoretical approach can provide different results and to discuss such differences and to decide what approach is reliable for a given system, also enlarge so much the quality of the chemical learning. In April 2019, it was reported [3] the detection (for the first time, in the interstellar space; previous detections were in the lab) of a species that is considered the very first molecule formed in the universe: He-H+(formed about only 100,000 years after the big bang). -
Lis Full CV 2019
Curriculum Vitae Dariusz C. (Darek) Lis Educa7on 1985 – 1989 University of MassachuseEs at Amherst, Department of Physics and Astronomy, Ph. D. 1981 – 1985 University of Warsaw, Department of Physics. Professional Experience 2019 – Scien7st, Jet Propulsion Laboratory, California Ins7tute of Technology. 2014 – 2019 Professor (Professeur des universités 1ère classe), Sorbonne University. Director, Laboratory for Studies of Radia7on and MaEer in Astrophysics and Atmospheres (UMR8112 — CNRS, Paris Observatory/PSL University, Sorbonne University, École normale supérieure, University of Cergy-Pontoise). 2009 – 2014 Deputy Director, Caltech Submillimeter Observatory. 1998 – 2015 Senior Research Associate in Physics (now Research Professor), California Ins7tute of Technology. 1992 – 1998 Senior Research Fellow in Physics (now Research Assistant Professor), California Ins7tute of Technology. 1989 – 1992 Research Fellow in Physics, California Ins7tute of Technology. 1985 – 1989 Research Assistant, University of MassachuseEs, Five College Radio Astronomy Observatory. Visi7ng Appointments 2015 – Visi7ng Associate in Physics, California Ins7tute of Technology. 2013 Visi7ng Professor (Professeur des universités 1ère classe invité), École normale supérieure. 2011 Visi7ng Associate Professor (Maître de conférences invité), University of bordeaux 1. 2007 Visi7ng Senior Astronomer (Astronome invité), Paris Observatory. 2003 Visi7ng Scien7st, Max Planck Ins7tut for Radio Astronomy. 1992 – 1994 Lecturer, University of California, Los Angeles. 1989 – 1991 Consultant (Postdoctoral Research Associate), Rensselaer Polytechnic Ins7tute. Awards 2014 NASA Group Achievement Award, U.S. Herschel HIFI Instrument Team. 2010 NASA Group Achievement Award, Herschel HIFI Hardware Development Team. 1985 Minister of Science and Higher Learning Fellowship, Poland. Research Astrophysics and astrochemistry of the interstellar medium, star forma7on. Evolu7on of molecular complexity in astrophysical environments. Vola7le composi7on of comets and the origin of Earth’s oceans. -
Elusive Molecule, First in Universe, Detected in Space 17 April 2019, by Marlowe Hood
Elusive molecule, first in Universe, detected in space 17 April 2019, by Marlowe Hood and co-author of a study published Wednesday detailing how—after a multi-decade search—scientists finally detected the elusive molecule in space. "The formation of HeH+ was the first step on a path of increasing complexity in the Universe," as momentous a shift as the one from single-cell to multicellular life on Earth, he told AFP. Theoretical models had long since convinced astrophysicists that HeH+ came first, followed—in a precise order—by a parade of other increasingly complex and heavy molecules. HeH+ had also been studied in the laboratory, as early as 1925. But detected HeH+ in its natural habitat had remained beyond their grasp. Illustration of planetary nebula NGC 7027 and helium "The lack of definitive evidence of its very existence hydride molecules. In this planetary nebula, SOFIA in interstellar space has been a dilemma for detected helium hydride, a combination of helium (red) astronomy for a long time," said lead author Rolf and hydrogen (blue), which was the first type of Gusten, a scientist at the Max Planck Institute for molecule to ever form in the early universe. This is the Radioastronomy in Bonn. first time helium hydride has been found in the modern universe. Credit: NASA/SOFIA/L. Proudfit/D.Rutter In the beginning, more than 13 billion years ago, the Universe was an undifferentiated soup of three simple, single-atom elements. Stars would not form for another 100 million years. But within 100,000 years of the Big Bang, the very first molecule emerged, an improbable marriage of helium and hydrogen known as a helium hydride ion, or HeH+.