Redescubrimiento De "Romulea Bulbocodium" En La Provincia De Sevilla
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Przegląd Bylin Ozdobnych Rosnących Dziko W Izraelu
Roczniki Akademii Rolniczej w Poznaniu – CCCLXXXIII (2007) MIECZYSŁAW CZEKALSKI PRZEGLĄD BYLIN OZDOBNYCH ROSNĄCYCH DZIKO W IZRAELU Z Katedry Roślin Ozdobnych Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu ABSTRACT. A brief description is given of 50 species of ornamental perennials growing in natural habitats in Israel. These are species producing bulbs, rhizomes, and tubers. Key words: ornamental herbaceous perennial plants, flora of Israel Wstęp Izrael leży w Azji Południowo-Zachodniej, nad Morzem Śródziemnym, pomiędzy 29° a 33° N i 34° a 36° E. Powierzchnia państwa (bez terenów okupowanych) wynosi 20,77 tys. km2. Tereny okupowane zajmują łącznie obszar 7428 km2. Izrael, z wyjąt- kiem wąskiego pasa nizin nad Morzem Śródziemnym, ma charakter wyżynno-górzysty i stanowi część Wyżyny Syryjsko-Palestyńskiej. Dlatego terytorium kraju charakteryzu- je duże zróżnicowanie ukształtowania terenu na stosunkowo niewielkim obszarze. Cały obszar jest pokryty poziomo zalegającymi osadami kredy i jury oraz trzeciorzędu i plejstocenu. W wielu miejscach uformowały się pokrywy andezytowo-bazaltowe, a głęboko zalegają skały krystaliczne. Gleby w Izraelu są słabo wykształcone, skaliste (lentosole) i piaszczyste (arenosole). Na południu przeważają gleby brunatne (kambiso- le), a na północy z dużą zawartością nie scementowanych węglanów (kalcisole). W części najbardziej południowej występują sołońce i sołonczaki. Rozciągłość południkowa i urozmaicone ukształtowanie terenu Izraela wpływają na zróżnicowanie typów klimatu. Na północnym zachodzie występuje klimat podzwrotni- kowy typu śródziemnomorskiego, a na południu i wschodzie zwrotnikowy i suchy. Na południu opady czasami nie przekraczają 25 mm rocznie (Arawa), a na północy średnie opady roczne sięgają nawet 1100 mm (Góry Galilejskie). Deszcz pada od października do kwietnia. Lata są gorące i suche, na wybrzeżu złagodzone występowaniem bryzy morskiej. -
Biogeography of the Monocotyledon Astelioid Clade (Asparagales): a History of Long-Distance Dispersal and Diversification with Emerging Habitats
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Biogeography of the monocotyledon astelioid clade (Asparagales): A history of long-distance dispersal and diversification with emerging habitats Birch, Joanne L ; Kocyan, Alexander Abstract: The astelioid families (Asteliaceae, Blandfordiaceae, Boryaceae, Hypoxidaceae, and Lanari- aceae) have centers of diversity in Australasia and temperate Africa, with secondary centers of diversity in Afromontane Africa, Asia, and Pacific Islands. The global distribution of these families makes this an excellent lineage to test if current distribution patterns are the result of vicariance or long-distance dispersal and to evaluate the roles of tertiary climatic and geological drivers in lineage diversification. Sequence data were generated from five chloroplast regions (petL-psbE, rbcL, rps16-trnK, trnL-trnLF, trnS-trnSG) for 104 ingroup species sampled across global diversity. The astelioid phylogeny was inferred using maximum parsimony, maximum likelihood, and Bayesian inference methods. Divergence dates were estimated with a relaxed clock applied in BEAST. Ancestral ranges were reconstructed in ’BioGeoBEARS’ applying the corrected Akaike information criterion to test for the best-fit biogeographic model. Diver- sification rates were estimated in Bayesian Analysis of Macroevolutionary Mixtures [BAMM]. Astelioid relationships were inferred as Boryaceae(Blandfordiaceae(Asteliaceae(Hypoxidaceae plus Lanariaceae))). The crown astelioid node was dated to the Late Cretaceous (75.2 million years; 95% highest posterior densities interval 61.0-90.0 million years) with an inferred Eastern Gondwanan origin. However, aste- lioid speciation events have not been shaped by Gondwanan vicariance. Rather long-distance dispersal since the Eocene is inferred to account for current distributions. -
Bulletin of the UC Santa Cruz Arboretum & Botanic Garden
Bulletin of the UC Santa Cruz Arboretum & Botanic Garden South African Australian New Zealand California Native Aroma/Succulent Butterfly Garden Garden Garden Garden Gardens Garden Contents A day in the gardens this time of year is full of surprises, sometimes Message from the Staff …………………. 1 sunny and hot like a summer day, other times cool and cloudy. No Arboretum News …………………………… 2 matter the weather, the mornings are full of birdsong, fresh air, and calm energy, all Staff & Board Updates ………………….. 2 great for exploring what's blooming—and, if you Watsonia Hybrids ……………………….. 5 find a bench in the gardens and sit still for a few moments, the resident animals will start to Plant Q & A ….......................................... 7 emerge. It’s also a great time to put on your gardening gloves and volunteer to help keep our Gallery of Photos ………………………… 8 gardens gorgeous and thriving. If interested in UCSC Plant Research …………………… 9 joining us, visit the Volunteer webpage to view opportunities available and send in the online Buy Local / Calendar of Events ………… 10 application. —Katie Cordes, Staff & Board Members / Contacts ……. 11 Volunteer Program Coordinator 12 SPRING 2019 BULLETIN 2 Work has already begun on extending the plant sales area behind Norrie’s Gift & Garden Shop, which will enable us to display a much larger quantity of plants year round. The new plant display will add about 800 square feet of area, and plants will all be kept on new nursery tables, rather than on the ground. There will be a railing on the driveway side, partially replacing the large and rotting timber planters now being used to display the plant pots. -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
JOURNAL of JOURNAL of BOTANY Morphological and Anatomical Investigations of Romulea Bulbocodium Var. Bulbocodium and Romulea Bu
Thaiszia - J. Bot., Košice, 21: 65-72, 2011 THAISZIA http://www.bz.upjs.sk/thaiszia JOURNAL OF BOTANY Morphological and anatomical investigations of Romulea bulbocodium var. bulbocodium and Romulea bulbocodium var. leichtliniana (Iridaceae) CANAN ÖZDEMIR *, BAHITTIN BOZDA Ğ, YURDANUR AKYOL , UĞUR ŞEN , HAKAN SEPET , KADRIYE YETI ŞEN Department of Biology, Faculty of Science and Art, Celal Bayar University, Manisa- Turkey *Corresponding author: Phone: + 90 533 661 63 73; e-mail: [email protected] Özdemir C., Bozda ğ B., Akyol Y., Şen U., Sepet H. & Yeti şen K. (2011): Morphological and anatomical investigations of Romulea bulbocodium var. bulbocodium and Romulea bulbocodium var. leichtliniana (Iridaceae). – Thaiszia – J. Bot. 21: 65-72. – ISSN 1210-0420. Abstract: In this study, the morphological and anatomical features of Romulea bulbocodium var bulbocodium L. and Romulea bulbocodium (L.) Seb. & Mauri var. leichtliniana (Heldr. ex Hal.) Bég were studied. In the morphological part of the study, features of various organs of the plants such as corm, scape, leaf and flower were determined and illustrated. In anatomical studies, cross- section of the plants root, scape and leaf parts were examined and demonstrated. The anatomical properties of the two varieties were determined to be similar to each other and also to other species of the genus Romulea . The aim of this study is to demonstrate the characteristics of the two taxa evaluating the results obtained from morphological and anatomical investigations. Keywords: Iridaceae, anatomy, morphology , Romulea bulbocodium . Introduction Romulea Maratti is a member of the subfamily Crocoideae (syn. Ixioideae) in the family Iridaceae. Ixioideae, with over 800 species and about 30 genera, is the largest subfamily of Iridaceae (KUTBAY et al . -
Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis Peter Goldblatt Missouri Botanical Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 32 2006 Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis Peter Goldblatt Missouri Botanical Garden T. Jonathan Davies Royal Botanic Gardens, Kew John C. Manning National Botanical Institute Kirstenbosch Michelle van der Bank Rand Afrikaans University Vincent Savolainen Royal Botanic Gardens, Kew Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Goldblatt, Peter; Davies, T. Jonathan; Manning, John C.; van der Bank, Michelle; and Savolainen, Vincent (2006) "Phylogeny of Iridaceae Subfamily Crocoideae Based on a Combined Multigene Plastid DNA Analysis," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 32. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/32 MONOCOTS Comparative Biology and Evolution Excluding Poales Aliso 22, pp. 399-41 I © 2006, Rancho Santa Ana Botanic Garden PHYLOGENY OF IRIDACEAE SUBFAMILY CROCOIDEAE BASED ON A COMBINED MULTIGENE PLASTID DNA ANALYSIS 1 5 2 PETER GOLDBLATT, · T. JONATHAN DAVIES, JOHN C. MANNING,:l MICHELLE VANDER BANK,4 AND VINCENT SAVOLAINEN2 'B. A. Krukoff Curator of African Botany, Missouri Botanical Garden, St. Louis, Missouri 63166, USA; 2Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; 3National Botanical Institute, Kirstenbosch, Private Bag X7, Cape Town, South Africa; 4 Botany Department, Rand Afrikaans University, Johannesburg, South Africa 5 Corresponding author ([email protected]) ABSTRACT The phylogeny of Crocoideae, the largest of four subfamilies currently recognized in Tridaceae, has eluded resolution until sequences of two more plastid DNA regions were added here to a previously published matrix containing sequences from four DNA plastid regions. -
Cristina Salmeri Plant Morphology
Article Fl. Medit. 29: 163-180 https://doi.org/10.7320/FlMedit29.163 Version of Record published online on 23 September 2019 Cristina Salmeri Plant morphology: outdated or advanced discipline in modern plant sciences?* Abstract Salmeri, C.: Plant morphology: outdated or advanced discipline in modern plant sciences? — Fl. Medit. 29: 163-180. 2019. — ISSN: 1120-4052 printed, 2240-4538 online. In the last decades, with the increase of molecular studies, the study of plant forms has gone through a steady decline in interest, and researches on this topic are often neglected and under- estimated. Notwithstanding, comparative morphology as integrative discipline still assumes a pivotal role in modern sciences, remaining fundamentally relevant to nearly all fields of plant biology, such as systematics, evolutionary biology, ecology, physiology, genetics, molecular biology, not to mention also agriculture, bioengineering, and forensic botany. Contrary to com- mon belief, plant morphology is not a conservative finished science, but, like other sciences, it is open to constant innovations involving both concepts and methods. This contribution aims to promote a reflective discourse on the role of plant morphology in modern sciences and provides some examples of significant supports from plant morphology to different botanical issues. Key words: Systematics, plant micromorphology, seed coat sculpturing, leaf anatomy, ecomor- phology, climate adaptation. Introduction Despite the increasing societal awareness and sensitivity about the knowledge of bio- logical diversity and ecosystem functioning as pivotal matters for nature conservation on which human health and well-being fundamentally depend, studies in morphology-based classical taxonomy have increasingly become marginalized and considered less significant than other scientific methods in plant biology. -
Freesia (Iridaceae)
S T R E L I T Z I A 27 Botany and horticulture of the genus Freesia (Iridaceae) by John C. Manning South African National Biodiversity Institute, Private Bag X7, 7735 Claremont, Cape Town. University of KwaZulu-Natal, Pieter- maritzburg. School of Biological and Conservation Sciences. Research Centre for Plant Growth and Development, Private Bag X101, Scottsville 3209, South Africa. & Peter Goldblatt B.A. Krukoff Curator of African Botany, Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166, USA. with G.D. Duncan South African National Biodiversity Institute, Private Bag X7, 7735 Claremont, Cape Town; F. Forest Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom; R. Kaiser Givaudan Schweiz AG, Überlandstrasse 138, CH-8600 Dübendorf, Switzerland; I. Tatarenko Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom. Paintings by Auriol Batten. Line drawings by John C. Manning SOUTH AFRICAN national biodiversity institute SANBI Pretoria 2010 Acknowledgements Several people helped materially by providing living material for il- lustration and we are very grateful to them for this: they include Fanie Avenant from Victoria West, Fiona Barbour from Kimberley, Anne Pa- terson from Clanwilliam, Ted Oliver from Stellenbosch, members of the Kirstenbosch branch of the Botanical Society of South Africa, and espe- cially Cameron and Rhoda MacMaster from Napier, who personally col- lected and delivered flowering and fruiting plants to us and to Auriol. We also thank Elizabeth Parker for her enthusiasm and for facilitating several collecting expeditions, and Rose Smuts for her company and help in the field. Joop Doorduin, Freesia cultivar expert of The Netherlands, very kindly compiled the list of 25 of the most popular cultivars. -
Green Synthesis and Characterization of Silver Nanoparticles from Crocus Mathewii; a Disremembered Turkish Flowering Plant
Research Paper Green Synthesis and Characterization of Silver Nanoparticles from Crocus mathewii; A Disremembered Turkish Flowering Plant MAHMUT YILDIZTEKIN2*, S. NADEEM1,2, F. YILDIZTEKIN, Ö. VAROL, M. A. ÖZLER1,2 AND A. L. TUNA Department of Biology, 1Department of Chemistry, Faculty of Science, Muğla Sıtkı Koçman University, Kötekli-48121, Mugla, 2Department of Herbal and Animal Production, Vocational School of Koycegiz, Mugla Sıtkı Kocman University, 48800, Turkey Mahmut, et al.: Characterization of Silver Nanoparticles from Crocus mathewii This study reports the first ever chemical study on Crocus mathewii, a Turkish endemic and forgotten flowering plant. Silver nanoparticles were green synthesized from one mmol×l-1 silver nitrate extract of C. mathewii. The water-suspended silver nanoparticles showed a peak at 423 nm in UV/Vis spectrophotometer that suggested smaller particle size due to its less surface plasmon resonance. Transmission electron microscopy analysis also proved excellent polydispersity of quasi-spherical particle size distribution with average particles of 7.5 nm (2.5-25 nm). The presence of silver in the nanoparticles was analyzed by X-ray diffraction, while Fourier transform infrared spectroscopy analysis showed the presence of various –OH and –NH containing organics. The results proved that the crude extract of C. mathewii can be used for green synthesis of silver nanoparticles in future for medicinal uses. Key words: Silver nanoparticles, Crocus mathewii, endemic plant, TEM, XRD Crocus belongs to subfamily Crocoideae of Iridaceae, Careful literature survey reflected that researchers a family of around 80 genera and almost 1500 have totally ignored this plant. There is no report species[1,2]. Crocus is a genus of 90 flowering species on the phytochemistry or any other scientific that are grown from the corm[3]; most of the species are study on C. -
Two New Species of Zygotritonia Mildbr. (Iridaceae: Crocoideae) from Eastern Tropical Africa with Notes on the Morphology of the Genus
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 96 (2015) 37–41 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Two new species of Zygotritonia Mildbr. (Iridaceae: Crocoideae) from eastern tropical Africa with notes on the morphology of the genus P. Goldblatt a,b,⁎,J.C.Manningb,c, S. Sebsebe Demissew d a B.A. Krukoff Curator of African Botany, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166, USA b Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa c Compton Herbarium, South African National Biodiversity Institute, Private Bag X7, Claremont 7735, South Africa d National Herbarium, Department of Plant Biology and Biodiversity Management, College of Natural Sciences, Addis Ababa University, P.O. Box 3434, Addis Ababa, Addis Ababa, Ethiopia article info abstract Article history: The tropical African genus Zygotritonia Mildbr., now with six species, extends from the Fouta Djalon highlands of Received 16 July 2014 Guinea in West Africa to southern South Sudan, southern Congo, northern Malawi, Tanzania, Zambia, and west- Received in revised form 5 November 2014 ern Ethiopia. Two new species are described: Zygotritonia benishangula Goldblatt & Sebsebe from western Accepted 10 November 2014 Ethiopia has a basal foliage leaf clasping the stem up to the base of the spike or first branch, with a short, closely Available online 1 December 2014 pleated-foliose blade that differs from the simply pleated blades of most other species; Zygotritonia teretifolia Edited by JS Boatwright Goldblatt & J.C. -
Biodiversity of Bulbous and Tuberous Geophytes from the El Kala National Park (North-Eastern Algeria): Checklist, Vulnerability and Conservation
Anales de Biología 41: 25-38, 2019 ARTICLE DOI: http://dx.doi.org/10.6018/analesbio.41.05 Biodiversity of bulbous and tuberous geophytes from the El Kala National Park (North-Eastern Algeria): checklist, vulnerability and conservation Besma Dechir1, Atef Chouikh2, Tarek Hamel3, Nawel Nadia Azizi4, Nawel Ganaoui1, AbdSlem Grira5, Ahmed Abdiouene6, Mohamed Cherif Maazi1,7 & Azzedine Chefrour1,8 1 Department of Biology, Fac. Sciences of Nature and Life, Mohamed-Cherif Messaadia University-Souk Ahras, 41000, Algeria. 2 Biology Department, Faculty of Natural Science and Life, El Oued University, Algeria. 3 Department of Biology, Faculty of Science, Badji Mokhtar University, Annaba-Algeria. 4 Department of Biology, Faculty of Science, Chadli Bendjedid University, El Tarf, Algeria. 5 El Kala National Park, El Tarf-Algeria. 6 National Institute of Forest Research of Souarekh, El Tarf, Algeria. 7 Laboratory of Aquatic and Terrestrial Ecosystems, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria. 8 Lab. Development and Control of Hospital Pharmaceutical Preparations, Department of Pharmacy, Faculty of Medicine, Badji Mokhtar University, Annaba, 23000, Algeria. Resumen Correspondence Biodiversidad de geófitos bulbosos y tuberosos del parque A. Chouikh nacional El Kala (noreste de Argelia): lista de especies, E-mail: [email protected] vulnerabilidad y conservación Received: 18 November 2018 Treinta estaciones en el Parque Nacional El Kala (Noreste de Accepted: 13 March 2019 Argelia) fueron objeto de un inventario florístico que se centró en el Published on-line: 8 May 2019 estudio de la ecología de geófitos bulbosos y tuberosos. La flora se caracteriza por una alta proporción de taxones raros y/o endé- micos, entre ellos, 6 especies son endemismos algero-tunecinos pertenecientes a la familia Orchidaceae. -
Review of the Genus Xenoscapa (Iridaceae: Crocoideae), Including X. Grandiflora, a New Species from Southern Namibia
Bothalia 41,2: 283–288 (2011) Review of the genus Xenoscapa (Iridaceae: Crocoideae), including X. grandiflora, a new species from southern Namibia J.C. MANNING* and P. GOLDBLATT** Keywords: Iridaceae, new species, southern Africa, taxonomy, Xenoscapa (Goldblatt) Goldblatt & J.C.Manning ABSTRACT The small genus Xenoscapa (Goldblatt) Goldblatt & J.C.Manning, endemic to the southern African winter rainfall region, is reviewed. The new species X. grandiflora is described from the deeply dissected southern part of the Huib Hoch Plateau in southern Namibia. It differs from the two known species in the genus in its significantly larger, pale lilac flowers. Full descriptions and accounts of all three known species are provided, with distribution maps and illustrations. INTRODUCTION The two known species of Xenoscapa are distin- guished by small differences in perianth size and colour, Xenoscapa (Goldblatt) Goldblatt & J.C.Manning, one of height of the flowering stems in fruit, and the presence the smallest genera in Iridaceae, currently comprises two or absence of floral fragrance (Table 1). X. fistulosa is species from the winter rainfall region of southern Namibia relatively widespread, occurring throughout the range and southwestern South Africa. Both are small, deciduous of the genus, from the Huib Hoch Plateau in southern geophytes with two or three, soft-textured, prostrate foli- Nambia southwards along the Namaqualand escarpment age leaves and unusual, single-flowered, mostly shortly and the interior mountains of the southwestern Cape, branched spikes (Goldblatt & Manning 1995, 2008). The with two outlying populations along the West Coast vegetative similarity between them extends to the flowers, (Goldblatt & Manning 2000a). X.