The Formation of Eskers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Name These Glacial Features 1.) 1
Name these Glacial Features 1.) 1.)____________________________________ 2.) 2.) ___________________________________ 3.) 3.)_____________________________________ 4.) 4.) ____________________________________ Name these types of Glaciers 5.) 5.)___________________________________________ 6.) 6.) __________________________________________ 7.) 7.) __________________________________________ 8.) 8.) __________________________________________ True or False 9.) __________ The terminus marks the farthest extent of a glacier. 10.) _________ An arête is a bow or amphitheater shape in a glacier. 11.) _________CO2 levels are higher during glacial episodes. 12.) _________ Methane Hydrate breaks down into H20. 13.) _________ Glaciers exist on every continent. 14.) _________ The Great Lakes were created by glaciation. 15.) _________ Calving is a process that creates icebergs. 16.) ________ Glacier National Park is in Alaska 17.) ________ Alaska has 100 glaciers. 18.) ________ 75% of the world’s glaciers are retreating. 19.) ________ A glacier can move forward and retreat at the same time. 20.) ________ Ogives are alternating wave crests and valleys that appear as dark and light bands of ice on glacier surfaces. 21.) ________ A drumlin field east of Rochester, New York is estimated to contain about 100 drumlins. Short Answer 22.) Give a general definition of the milankovitch cycles. _________________________________________________________________________________ _________________________________________________________________________________ _________________________________________________________________________________ -
Introduction to Geological Process in Illinois Glacial
INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base. -
An Esker Group South of Dayton, Ohio 231 JACKSON—Notes on the Aphididae 243 New Books 250 Natural History Survey 250
The Ohio Naturalist, PUBLISHED BY The Biological Club of the Ohio State University. Volume VIII. JANUARY. 1908. No. 3 TABLE OF CONTENTS. SCHEPFEL—An Esker Group South of Dayton, Ohio 231 JACKSON—Notes on the Aphididae 243 New Books 250 Natural History Survey 250 AN ESKER GROUP SOUTH OF DAYTON, OHIO.1 EARL R. SCHEFFEL Contents. Introduction. General Discussion of Eskers. Preliminary Description of Region. Bearing on Archaeology. Topographic Relations. Theories of Origin. Detailed Description of Eskers. Kame Area to the West of Eskers. Studies. Proximity of Eskers. Altitude of These Deposits. Height of Eskers. Composition of Eskers. Reticulation. Rock Weathering. Knolls. Crest-Lines. Economic Importance. Area to the East. Conclusion and Summary. Introduction. This paper has for its object the discussion of an esker group2 south of Dayton, Ohio;3 which group constitutes a part of the first or outer moraine of the Miami Lobe of the Late Wisconsin ice where it forms the east bluff of the Great Miami River south of Dayton.4 1. Given before the Ohio Academy of Science, Nov. 30, 1907, at Oxford, O., repre- senting work performed under the direction of Professor Frank Carney as partial requirement for the Master's Degree. 2. F: G. Clapp, Jour, of Geol., Vol. XII, (1904), pp. 203-210. 3. The writer's attention was first called to the group the past year under the name "Morainic Ridges," by Professor W. B. Werthner, of Steele High School, located in the city mentioned. Professor Werthner stated that Professor August P. Foerste of the same school and himself had spent some time together in the study of this region, but that the field was still clear for inves- tigation and publication. -
LESSON PLAN #2: Creating the Driftless: a Study in Glacial Movement
LESSON PLAN #2: Creating the Driftless: A Study in Glacial Movement Overview: Glaciers are moving mountains of ice. They move like slow rivers and actually flow. Gravity and the sheer weight of the ice mass are the causes of glacial motion. Ice is softer than rock so is easily deformed by the pressure of its own weight. Movement at the underside of a glacier is slower than movement along the top. Glaciers retreat and advance, depending on snow accumulation, evaporation, or ice melt. Glaciers transport materials as they move. They also sculpt and carve the land beneath them. A glacier’s weight combined with gradual movement, reshapes the land over hundreds to thousands of years. The ice erodes the land surface and carries broken rock and soil debris far from their original places, resulting in some interesting glacial landforms. Due to the nature of land formations, some areas in northwest Illinois along with southwest Wisconsin, southeast Minnesota, and northeast Iowa were missed by the four glaciers that at different times covered the rest of these states. This area not covered by glaciers and the resulting glacial drift is called “The Driftless Area.” This Driftless Area is rich with historic and geological information free from glacial impact. Duration: 30 minutes Subject Areas: Earth Science, Physical Science, Geography Standards Addressed: 4-PS3-1 4-PS3-4 5-ESS3-1 MS-ESS3-1 MS-ESS2-5 MS-ESS2-3 MS-ESS1-C MS-PS2-4 Objectives: Gain an understanding of how glaciers move Understand the types of landforms created from glacial movement and glacial scraping Define what is meant by The Driftless Area Teacher Background: Glaciers are made up of fallen snow that, over many years, compresses into large, thickened ice masses. -
Trip F the PINNACLE HILLS and the MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A
F-1 Trip F THE PINNACLE HILLS AND THE MENDON KAME AREA: CONTRASTING MORAINAL DEPOSITS by Robert A. Sanders Department of Geosciences Monroe Community College INTRODUCTION The Pinnacle Hills, fortunately, were voluminously described with many excellent photographs by Fairchild, (1923). In 1973 the Range still stands as a conspicuous east-west ridge extending from the town of Brighton, at about Hillside Avenue, four miles to the Genesee River at the University of Rochester campus, referred to as Oak Hill. But, for over thirty years the Range was butchered for sand and gravel, which was both a crime and blessing from the geological point of view (plates I-VI). First, it destroyed the original land form shapes which were subsequently covered with man-made structures drawing the shade on its original beauty. Secondly, it allowed study of its structure by a man with a brilliantly analytical mind, Herman L. Fair child. It is an excellent example of morainal deposition at an ice front in a state of dynamic equilibrium, except for minor fluctuations. The Mendon Kame area on the other hand, represents the result of a block of stagnant ice, probably detached and draped over drumlins and drumloidal hills, melting away with tunnels, crevasses, and per foration deposits spilling or squirting their included debris over a more or less square area leaving topographically high kames and esker F-2 segments with many kettles and a large central area of impounded drainage. There appears to be several wave-cut levels at around the + 700 1 Lake Dana level, (Fairchild, 1923). The author in no way pretends to be a Pleistocene expert, but an attempt is made to give a few possible interpretations of the many diverse forms found in the Mendon Kames area. -
Gradient Approach to INSAR Modelling of Glacial Dynamics and Morphology
Gradient approach to INSAR modelling of glacial dynamics and morphology A. I. Sharov Institute of Digital Image Processing, Joanneum Research, Wastiangasse 6, A - 8010 Graz, Austria E-mail: [email protected] Keywords: differential interferometry, phase gradient, change detection, glacier velocity, geodetic survey ABSTRACT: This paper describes the development and testing of an original gradient approach (GINSAR) to the reconstruction of glacial morphology and ice motion estimation from the interferometric phase gradient that does not involve the procedure of interferometric phase unwrapping, thus excluding areal error propagation and improving the modelling accuracy. The global and stringent GINSAR algorithm is applicable to unsupervised glacier change detection, ice motion estimation and glacier mass balance measurement at regional scale. Experimental studies and field surveys proved its efficacy and robustness. Some algorithmic singularities and limitations are discussed. 1 INTRODUCTION detect and to measure quite small glacier motions and ice deformations in the centimetre range from There is a close interrelation between glacier motion spaceborne SAR interferograms with a nominal and glacial topography. Irregularities in the glacier ground resolution of several tens of meters. Accurate width, thickness, slope or direction alter the reconstruction of the configuration and external character of ice flow. On the other hand, glacial structure of the glacier surface from INSAR data is topography is dynamically supported by the moving also possible. Differential interferometry (DINSAR) ice (Fatland & Lingle 1998). Both, glacier dynamic based on differencing between two different SAR quantities and topographic variables are essential interferograms of the same glacier allows the parameters for studying the glacier mass balance and impacts of glacial topography and surface monitoring actual and potential glacier changes. -
Glacial Processes and Landforms
Glacial Processes and Landforms I. INTRODUCTION A. Definitions 1. Glacier- a thick mass of flowing/moving ice a. glaciers originate on land from the compaction and recrystallization of snow, thus are generated in areas favored by a climate in which seasonal snow accumulation is greater than seasonal melting (1) polar regions (2) high altitude/mountainous regions 2. Snowfield- a region that displays a net annual accumulation of snow a. snowline- imaginary line defining the limits of snow accumulation in a snowfield. (1) above which continuous, positive snow cover 3. Water balance- in general the hydrologic cycle involves water evaporated from sea, carried to land, precipitation, water carried back to sea via rivers and underground a. water becomes locked up or frozen in glaciers, thus temporarily removed from the hydrologic cycle (1) thus in times of great accumulation of glacial ice, sea level would tend to be lower than in times of no glacial ice. II. FORMATION OF GLACIAL ICE A. Process: Formation of glacial ice: snow crystallizes from atmospheric moisture, accumulates on surface of earth. As snow is accumulated, snow crystals become compacted > in density, with air forced out of pack. 1. Snow accumulates seasonally: delicate frozen crystal structure a. Low density: ~0.1 gm/cu. cm b. Transformation: snow compaction, pressure solution of flakes, percolation of meltwater c. Freezing and recrystallization > density 2. Firn- compacted snow with D = 0.5D water a. With further compaction, D >, firn ---------ice. b. Crystal fabrics oriented and aligned under weight of compaction 3. Ice: compacted firn with density approaching 1 gm/cu. cm a. -
Analysis of Groundwater Flow Beneath Ice Sheets
SE0100146 Technical Report TR-01-06 Analysis of groundwater flow beneath ice sheets Boulton G S, Zatsepin S, Maillot B University of Edinburgh Department of Geology and Geophysics March 2001 Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 32/ 23 PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK Analysis of groundwater flow beneath ice sheets Boulton G S, Zatsepin S, Maillot B University of Edinburgh Department of Geology and Geophysics March 2001 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. Summary The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report /Boulton and others, 1999/. It was based on a two- dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is develop- ed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. -
Eemian Interglacial Deposits at Haćki Near Bielsk Podlaski: Implications for the Limit of the Last Glaciation in Northeastern Poland
Geological Quarterly, 2002, 46 (1): 75-80 Eemian Interglacial deposits at Haćki near Bielsk Podlaski: implications for the limit of the last glaciation in northeastern Poland Stanisław BRUD and Mirosława KUPRYJANOWICZ Brud S. and Kupryjanowicz M. (2002) — Eemian Interglacial deposits at Haćki near Bielsk Podlaski: implications forthe limit of the last glaciation in northeastern Poland. Geol. Quart., 46 (1): 75-80. Warszawa. Pollen analysis was conducted on organic deposits on a kame ridge at Haćki in northeastern Poland. The deposits are referred to the Eemian Interglacial. Slope sediments only covered these Biogenic deposits. The glacigenic landforms therefore relate to the Wartanian Glaciation, and so this area has not been occupied By an ice sheet of the Vistulian Glaciation. Stanisław Brud, Institute of Geological Sciences, Jagiellonian University, Oleandry 2A, PL-30-063 Kraków, Poland, e-mail: [email protected]; Mirosława Kupryjanowicz, Department o f Botany, Institute o f Biology, University o f Białystok, Świerkowa 20b, PL-15-950 Białystok, Poland, e-mail: [email protected] (received: November 3, 2000; accepted: February 26, 2001). Key words: NE Poland, Wartanian Glaciation, Eemian Interglacial, Vistulian, kames, pollen analysis. INTRODUCTION (Mojski, 1969) (Fig. 2). This deglaciation consisted of gradual reduction in ice sheet thickness, its dismembering into individ ual dead ice blocks, and their further melting. The most com mon landforms occurring north of Bielsk Podlaski are kames Numerous sites with biogenic deposits have Been found (Mojski and Nowicki, 1961). They rise from a few to aBout a during geological mapping of the Bielsk Podlaski sheet De dozen metres above melt-out depressions, marking an accumu tailed Geological Map of Poland, 1:50 000 scale. -
Geotechnical and Geologic Constraints on Tsunamigenic Submarine Landslides
GEOTECHNICAL AND GEOLOGIC CONSTRAINTS ON TSUNAMIGENIC SUBMARINE LANDSLIDES H.J. LEE U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 USA Abstract Modeling submarine-landslide-induced tsunamis requires many simplifications of the landslide process, although the real world is much more complicated. Clearly tsunami modelers cannot consider all facets, but there is value in being aware of the complications. This paper describes the many environments in which submarine landslides can occur and the triggers that typically initiate them. Earthquakes acting on continental or canyon slopes comprise probably the most common scenario but many other combinations of environments and triggers are possible. Surprisingly, many sediment-covered slopes in highly seismically active areas have not failed. A possible explanation for this phenomenon is a process called “seismic strengthening.” The existence of such a process reduces somewhat the risk of landslide tsunamis along active margins while maintaining the risk along passive margins. Once a trigger has initiated a landslide in one of the vulnerable environments, failed masses begin to move downslope. Depending upon initial density state, the masses may convert into fluid-like sediment flows or even more dilute turbidity currents. A model for quantifying the tendency to flow is provided. Finally, a case study of the landslides and landslide tsunamis that occurred in Port Valdez, Alaska, during the 1964 Great Alaska Earthquake is provided. The excellent data base, including before and after bathymetry, shows that both large rigid block motion and mobilized sediment flows can occur near each other during the same event. The intact blocks are more efficient in producing tsunamis but the sediment flow can move farther and can erode and entrain considerable bottom sediment as they progress across the seafloor. -
Glaciers and Glaciation
M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 482 M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 483 Glaciers and Glaciation CHAPTER 18 A small boat nears the seaward margin of an Antarctic glacier. (Photo by Sergio Pitamitz/ CORBIS) 483 M18_TARB6927_09_SE_C18.QXD 1/16/07 4:41 PM Page 484 limate has a strong influence on the nature and intensity of Earth’s external processes. This fact is dramatically illustrated in this chapter because the C existence and extent of glaciers is largely controlled by Earth’s changing climate. Like the running water and groundwater that were the focus of the preceding two chap- ters, glaciers represent a significant erosional process. These moving masses of ice are re- sponsible for creating many unique landforms and are part of an important link in the rock cycle in which the products of weathering are transported and deposited as sediment. Today glaciers cover nearly 10 percent of Earth’s land surface; however, in the recent ge- ologic past, ice sheets were three times more extensive, covering vast areas with ice thou- sands of meters thick. Many regions still bear the mark of these glaciers (Figure 18.1). The basic character of such diverse places as the Alps, Cape Cod, and Yosemite Valley was fashioned by now vanished masses of glacial ice. Moreover, Long Island, the Great Lakes, and the fiords of Norway and Alaska all owe their existence to glaciers. Glaciers, of course, are not just a phenomenon of the geologic past. As you will see, they are still sculpting and depositing debris in many regions today. -
Glacial Processes and Landforms-Transport and Deposition
Glacial Processes and Landforms—Transport and Deposition☆ John Menziesa and Martin Rossb, aDepartment of Earth Sciences, Brock University, St. Catharines, ON, Canada; bDepartment of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada © 2020 Elsevier Inc. All rights reserved. 1 Introduction 2 2 Towards deposition—Sediment transport 4 3 Sediment deposition 5 3.1 Landforms/bedforms directly attributable to active/passive ice activity 6 3.1.1 Drumlins 6 3.1.2 Flutes moraines and mega scale glacial lineations (MSGLs) 8 3.1.3 Ribbed (Rogen) moraines 10 3.1.4 Marginal moraines 11 3.2 Landforms/bedforms indirectly attributable to active/passive ice activity 12 3.2.1 Esker systems and meltwater corridors 12 3.2.2 Kames and kame terraces 15 3.2.3 Outwash fans and deltas 15 3.2.4 Till deltas/tongues and grounding lines 15 Future perspectives 16 References 16 Glossary De Geer moraine Named after Swedish geologist G.J. De Geer (1858–1943), these moraines are low amplitude ridges that developed subaqueously by a combination of sediment deposition and squeezing and pushing of sediment along the grounding-line of a water-terminating ice margin. They typically occur as a series of closely-spaced ridges presumably recording annual retreat-push cycles under limited sediment supply. Equifinality A term used to convey the fact that many landforms or bedforms, although of different origins and with differing sediment contents, may end up looking remarkably similar in the final form. Equilibrium line It is the altitude on an ice mass that marks the point below which all previous year’s snow has melted.