Volume 209 (5) March 2006 789

Total Page:16

File Type:pdf, Size:1020Kb

Volume 209 (5) March 2006 789 VOLUME 209 (5) MARCH 2006 789 The Journal of Experimental Biology 209, 789-800 Published by The Company of Biologists 2006 doi:10.1242/jeb.02053 Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor Sönke Johnsen1,*, Almut Kelber2, Eric Warrant2, Alison M. Sweeney1, Edith A. Widder3, Raymond L. Lee, Jr4 and Javier Hernández-Andrés5 1Biology Department, Duke University, Durham, NC 27708, USA, 2Department of Cell and Organism Biology, Lund University, Sweden, 3Marine Science Division, Harbor Branch Oceanographic Institution, Fort Pierce, FL 34946, USA, 4Mathematics and Science Division, US Naval Academy, Annapolis, MD 21402, USA and 5Optics Department, University of Granada, Spain *Author for correspondence (e-mail: [email protected]) Accepted 20 December 2005 Summary Recent studies have shown that certain nocturnal insect without von Kries color constancy) of the flowers and and vertebrate species have true color vision under hindwings against a leaf background were determined nocturnal illumination. Thus, their vision is potentially under the various lighting environments. The twilight and affected by changes in the spectral quality of twilight and nocturnal illuminants were substantially different from nocturnal illumination, due to the presence or absence of each other, resulting in significantly different contrasts. the moon, artificial light pollution and other factors. We The addition of von Kries color constancy significantly investigated this in the following manner. First we reduced the effect of changing illuminants on chromatic measured the spectral irradiance (from 300 to 700·nm) contrast, suggesting that, even in this light-limited during the day, sunset, twilight, full moon, new moon, and environment, the ability of color vision to provide reliable in the presence of high levels of light pollution. The signals under changing illuminants may offset the spectra were then converted to both human-based concurrent threefold decrease in sensitivity and spatial chromaticities and to relative quantum catches for the resolution. Given this, color vision may be more common nocturnal hawkmoth Deilephila elpenor, which has color in crepuscular and nocturnal species than previously vision. The reflectance spectra of various flowers and considered. leaves and the red hindwings of D. elpenor were also converted to chromaticities and relative quantum catches. Key words: hawkmoth, Deilephila elpenor, nocturnal vision, color Finally, the achromatic and chromatic contrasts (with and vision, environmental optics. Introduction vision presents additional difficulties for nocturnal species. While multiple visual pigments in certain deep-sea species While the decrease in sensitivity associated with the increase (Cronin and Frank, 1996; Douglas et al., 1998) and multiple in the number of visual channels has little effect on species rod types in amphibians (Makino-Tasaka and Suzuki, 1984) operating during light-saturated diurnal conditions, this have been known for some time, unambiguous evidence sensitivity loss can potentially affect the ability of nocturnal for true color vision under scotopic conditions has only species to function in their light-limited environment. It is recently been acquired (Kelber et al., 2002; Roth and Kelber, primarily for this reason that color vision has generally been 2004). These behavioral studies, which show that the expected to be rare or absent among nocturnal species (Jacobs, nocturnal hawkmoth Deilephila elpenor and the nocturnal 1993). helmet gecko Tarentola chazaliae can discern color under Second, what color are objects when viewed under the night starlight and dim moonlight, respectively, raise at least two sky? Although not perceived by humans, the spectrum of the issues. night sky is not neutral, and depends on multiple factors, First, what is the selective advantage of color vision in these including how far the sun is below the horizon, the presence species that outweighs its costs? Color vision’s detrimental or absence and phase of the moon and, recently, on the level effect on spatial resolution and the additional structural and of light pollution (e.g. Munz and McFarland, 1977; Endler, neurological complexity required for color processing makes 1991; Leinert et al., 1998; McFarland et al., 1999; Cinzano et it a more difficult proposition for all species. However, color al., 2001; Hernández-Andrés et al., 2001; Lee and Hernández- THE JOURNAL OF EXPERIMENTAL BIOLOGY 790 S. Johnsen and others Andrés, 2003). It has long been known that the variation of canopy using a model of color vision for the nocturnal daytime spectra, due to cloud cover, solar elevation, forest hawkmoth, Deilephila elpenor L. canopy and depth (for aquatic species), has a substantial effect on the appearance and visibility of objects and organisms, Measurement of twilight spectra which can be at least partly ameliorated by color vision Fourteen sunset and twilight measurements of spectral (Wyszecki and Stiles, 1982; Endler, 1991; McFarland et al., irradiance under minimal cloud cover were taken on the 1999; Johnsen and Sosik, 2003; Lovell et al., 2005). Less work, beaches of two barrier islands located off the coast of North however, has been done on the appearance of objects during Carolina, USA (Atlantic Beach; 34°42ЈN 76°44ЈW and Cape twilight (reviewed by McFarland et al., 1999; Rickel and Hatteras National Seashore; 35°44ЈN 75°32ЈW, both at sea Genin, 2005), and, to our knowledge, the appearance of objects level) on 11 June, 12 June and 17 July, 2004. The locations under different nocturnal illuminants has received very little were chosen to maximize the view of the sky and minimize the attention. effects of anthropogenic light. Spectra were taken using a This study measures or models spectral irradiance USB2000 spectrometer (Ocean Optics Inc., Dunedin, FL, (300–700·nm) during daylight, sunset, twilight, moonlit nights, USA) that had been modified for increased sensitivity by moonless nights and nights in regions with high light pollution. increasing the width of the entrance slit to 200·␮m and These spectra, in addition to previously published data, are focusing light onto the detector array with a collector lens (L2 then used to calculate the relative quantum catches of the three collector lens, Ocean Optics). The spectrometer was fitted with photoreceptors of D. elpenor under different lighting a 1·mm diameter fiber optic cable that viewed a horizontal slab conditions. In addition to the general illuminants, relative of a Lambertian reflector (Spectralon, Labsphere Inc., North quantum catches of five stimuli (green leaves, three flowers Sutton, NH, USA). Because Lambertian materials reflect light and the red hindwing of D. elpenor) are also calculated. Three evenly in all directions, their radiance is proportional to the different types of contrasts of the latter four stimuli viewed irradiance striking them (Palmer, 1995). This method of against green leaves are then determined: (1) achromatic obtaining the cosine response needed for measuring diffuse contrast, (2) chromatic contrast and (3) chromatic contrast irradiance was chosen because it is more efficient than the assuming von Kries color constancy. Finally, quantum catches typical diffusely transmitting disk (Doxaran et al., 2004). of hypothetical photoreceptors with varying wavelengths of Spectra were taken at solar elevations ranging from +11° to peak absorption are compared to the catches of the long –11° (elevations determined using tables from the United wavelength receptor in D. elpenor under the different States Naval Observatory). At lower solar elevations, the illuminants. integration time of the spectrometer was increased to a maximum of 10·s, with 30 such integrations averaged per measurement. Spectra were taken from 300 to 700·nm and Materials and methods averaged over 5·nm intervals. General approach The goal of this study was to determine the range of spectra Measurement of full moonlight and synthesis of starlight found during sunset, twilight and night. Therefore, rather than spectra measure a large number of spectra under all possible celestial Spectral irradiance under the full moon was measured using and atmospheric conditions, we measured spectra under a spectrometer with a highly sensitive photomultiplier detector various extreme conditions. Both human-based chromaticities (OL-754-PMT, Optronics Laboratories Inc., Orlando, FL, and the relative quantum catches described below have the USA). Spectra were taken on 10 December, 2003 at Harbor property that the value of the mixture of two illuminants falls Branch Oceanographic Institution (Fort Pierce, FL, USA; between the values of the two illuminants alone (Wyszecki 27°26ЈN 80°19ЈW, sea level) during the full moon (elevation and Stiles, 1982). Thus, by measuring the spectra under 69°, moon 98% full). An integrating sphere was used to ensure conditions where one of the various contributors to the a cosine angular response. Data were taken at 5·nm intervals illumination dominates, we can define the boundaries of the from 350 to 700·nm. region where most spectra are found. The following four Preliminary attempts showed that even the OL-754 conditions were thus of particular interest: (1) clear nautical spectrometer was not sensitive enough to measure spectral twilight (solar elevation between –6° and –12°), (2) full moon irradiance on a moonless night. Therefore it was calculated in at high elevation under clear skies, (3) moonless and
Recommended publications
  • The Sphingidae (Lepidoptera) of the Philippines
    ©Entomologischer Verein Apollo e.V. Frankfurt am Main; download unter www.zobodat.at Nachr. entomol. Ver. Apollo, Suppl. 17: 17-132 (1998) 17 The Sphingidae (Lepidoptera) of the Philippines Willem H o g e n e s and Colin G. T r e a d a w a y Willem Hogenes, Zoologisch Museum Amsterdam, Afd. Entomologie, Plantage Middenlaan 64, NL-1018 DH Amsterdam, The Netherlands Colin G. T readaway, Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany Abstract: This publication covers all Sphingidae known from the Philippines at this time in the form of an annotated checklist. (A concise checklist of the species can be found in Table 4, page 120.) Distribution maps are included as well as 18 colour plates covering all but one species. Where no specimens of a particular spe­ cies from the Philippines were available to us, illustrations are given of specimens from outside the Philippines. In total we have listed 117 species (with 5 additional subspecies where more than one subspecies of a species exists in the Philippines). Four tables are provided: 1) a breakdown of the number of species and endemic species/subspecies for each subfamily, tribe and genus of Philippine Sphingidae; 2) an evaluation of the number of species as well as endemic species/subspecies per island for the nine largest islands of the Philippines plus one small island group for comparison; 3) an evaluation of the Sphingidae endemicity for each of Vane-Wright’s (1990) faunal regions. From these tables it can be readily deduced that the highest species counts can be encountered on the islands of Palawan (73 species), Luzon (72), Mindanao, Leyte and Negros (62 each).
    [Show full text]
  • Evolution of Insect Color Vision: from Spectral Sensitivity to Visual Ecology
    EN66CH23_vanderKooi ARjats.cls September 16, 2020 15:11 Annual Review of Entomology Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology Casper J. van der Kooi,1 Doekele G. Stavenga,1 Kentaro Arikawa,2 Gregor Belušic,ˇ 3 and Almut Kelber4 1Faculty of Science and Engineering, University of Groningen, 9700 Groningen, The Netherlands; email: [email protected] 2Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan 3Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; email: [email protected] 4Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden; email: [email protected] Annu. Rev. Entomol. 2021. 66:23.1–23.28 Keywords The Annual Review of Entomology is online at photoreceptor, compound eye, pigment, visual pigment, behavior, opsin, ento.annualreviews.org anatomy https://doi.org/10.1146/annurev-ento-061720- 071644 Abstract Annu. Rev. Entomol. 2021.66. Downloaded from www.annualreviews.org Copyright © 2021 by Annual Reviews. Color vision is widespread among insects but varies among species, depend- All rights reserved ing on the spectral sensitivities and interplay of the participating photore- Access provided by University of New South Wales on 09/26/20. For personal use only. ceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal.
    [Show full text]
  • British Lepidoptera (/)
    British Lepidoptera (/) Home (/) Anatomy (/anatomy.html) FAMILIES 1 (/families-1.html) GELECHIOIDEA (/gelechioidea.html) FAMILIES 3 (/families-3.html) FAMILIES 4 (/families-4.html) NOCTUOIDEA (/noctuoidea.html) BLOG (/blog.html) Glossary (/glossary.html) Family: SPHINGIDAE (3SF 13G 18S) Suborder:Glossata Infraorder:Heteroneura Superfamily:Bombycoidea Refs: Waring & Townsend, Wikipedia, MBGBI9 Proboscis short to very long, unscaled. Antenna ~ 1/2 length of forewing; fasciculate or pectinate in male, simple in female; apex pointed. Labial palps long, 3-segmented. Eye large. Ocelli absent. Forewing long, slender. Hindwing ±triangular. Frenulum and retinaculum usually present but may be reduced. Tegulae large, prominent. Leg spurs variable but always present on midtibia. 1st tarsal segment of mid and hindleg about as long as tibia. Subfamily: Smerinthinae (3G 3S) Tribe: Smerinthini Probably characterised by a short proboscis and reduced or absent frenulum Mimas Smerinthus Laothoe 001 Mimas tiliae (Lime Hawkmoth) 002 Smerinthus ocellata (Eyed Hawkmoth) 003 Laothoe populi (Poplar Hawkmoth) (/002- (/001-mimas-tiliae-lime-hawkmoth.html) smerinthus-ocellata-eyed-hawkmoth.html) (/003-laothoe-populi-poplar-hawkmoth.html) Subfamily: Sphinginae (3G 4S) Rest with wings in tectiform position Tribe: Acherontiini Agrius Acherontia 004 Agrius convolvuli 005 Acherontia atropos (Convolvulus Hawkmoth) (Death's-head Hawkmoth) (/005- (/004-agrius-convolvuli-convolvulus- hawkmoth.html) acherontia-atropos-deaths-head-hawkmoth.html) Tribe: Sphingini Sphinx (2S)
    [Show full text]
  • A Survey on Sphingidae (Lepidoptera) Species of South Eastern Turkey
    Cumhuriyet Science Journal e-ISSN: 2587-246X Cumhuriyet Sci. J., 41(1) (2020) 319-326 ISSN: 2587-2680 http://dx.doi.org/10.17776/csj.574903 A survey on sphingidae (lepidoptera) species of south eastern Turkey with new distributional records Erdem SEVEN 1 * 1 Department of Gastronomy and Culinary Arts, School of Tourism and Hotel Management, Batman University, 72060, Batman, Turkey. Abstract Article info History: This paper provides comments on the Sphingidae species of south eastern Turkey by the field Received:10.06.2019 surveys are conducted between in 2015-2017. A total of 15 species are determined as a result Accepted:20.12.2019 of the investigations from Batman, Diyarbakır and Mardin provinces. With this study, the Keywords: number of sphinx moths increased to 13 in Batman, 14 in Diyarbakır and 8 in Mardin. Among Fauna, them, 7 species for Batman, 4 species for Diyarbakır and 1 species for Mardin are new record. Hawk moths, For each species, original reference, type locality, material examined, distribution in the world New records, and in Turkey, and larval hostplants are given. Adults figures of Smerinthus kindermanni Sphingidae, Lederer, 1852; Marumba quercus ([Denis & Schiffermüller], 1775); Rethera komarovi Turkey. (Christoph, 1885); Macroglossum stellatarum (Linnaeus, 1758); Hyles euphorbiae (Linnaeus, 1758) and H. livornica (Esper, [1780]) are illustrated. 1. Introduction 18, 22-24]: Acherontia atropos (Linnaeus, 1758); Agrius convolvuli (Linnaeus, 1758); Akbesia davidi (Oberthür, 1884); Clarina kotschyi (Kollar, [1849]); C. The Sphingidae family classified in the Sphingoidea syriaca (Lederer, 1855); Daphnis nerii (Linnaeus, Superfamily and species of the family are generally 1758); Deilephila elpenor (Linnaeus, 1758); D.
    [Show full text]
  • Botanist Interior 43.1
    2011 THE MICHIGAN BOTANIST 1 EDWARD G. VOSS (1929 –2012) Anton A. Reznicek and Richard K. Rabeler University of Michigan Herbarium 3600 Varsity Drive Ann Arbor, MI 48108-2228 Edward Groesbec k Voss (Fig. 1), Professor and Curator Emeritus at the Uni - versity of Michigan Department of Ecology and Evolutionary Biology and Uni - versity of Michigan Herbarium, died on February 13, 2012 at his home in Ann Arbor, after a brief illness. He was born on February 22, 1929 in Delaware, Ohio. Ed’s abilities were clear early in his life. He attended Woodward High School in Toledo, Ohio. He received the Achievement Award as the outstanding senior in his 1946 high school class, and was later elected to the Woodward High Hall of Fame. He then graduated with a bachelor’s degree with honors from Denison University (1950); his undergraduate honors thesis, On the classifica - tion of the Hesperiidae , became a significant paper on Lepidoptera (Voss 1952). He completed his education with a master’s in Biology (1951) and a doctoral de - gree in Botany (1954), both from the University of Michigan working with Rogers McVaugh. He was awarded an honorary Doctor of Science from Denison University in 2003. In 1956, he began his long association with the University of Michigan and Michigan’s flora when he was appointed as a research associate at the Herbar - ium, beginning what was expected to be a five-year project to document the flora of Michigan. He joined the Botany faculty in 1960 as assistant professor and was promoted to associate professor (1963), and later, professor (1969).
    [Show full text]
  • Hawk-Moths, Family Sphingidae and Forewings Browner
    Hawk-moths, Family Sphingidae and forewings browner. Wings normally held roof-wise along the body when at rest. Distinctive medium to large moths. Power• Larva green, striped with brown. ful fliers, generally with rather narrow, Habitat More sedentary than above pointed forewings. Most larvae are large, species, living mainly in rough flowery striped, and have a 'horn' at the tail end. places where Privet occurs. Status and distributfon Local in S Convolvulus Hawk-moth Britain, widespread on the Continent. Agrilfs c()llu()lulfli Season 6-7. A strikingly large moth; wingspan up to 12cm. Forewings greyish, marbled; hind• Poplar Hawk-moth wings browner. The abdomen is striped La()th()c l)()fJlfli with red, white and black. The proboscis A medium-sized hawk-moth; wingspan up may be up to 13cm long! to 90mm. Wings greyish to pinkish-brown, Habitat A migrant into N Europe from broadly banded, with a single white mark in the Mediterranean area, which may occur the centre of the forewings. Hindwings wherever there are flowers, especially Petu• orange-red at base, usually concealed, and nia and Nicotiana. Breeds on Convolvulus, but show in front of forewings at rest. Larvae only rarely does so in N Europe. green with yellow stripes. Status and distribution Very variable in Habitat A variety of habitats, associated numbers, regularly reaching S England, but with Sallow, Poplar and Aspen. not necessarily going further. Status and distribution Widely distrib• Season 6-9. uted and moderately common throughout the region. Death's Head Hawk-Moth Season 5-9. Achcrontia atrofJos Similar species An extraordinary insect, unlike anything Pine Hawk-moth Hyloicus pinostri is also else.
    [Show full text]
  • Invertebrates of Slapton Ley National Nature Reserve (Fsc) and Prawle Point (National Trust)
    CLARK & BECCALONI (2018). FIELD STUDIES (http://fsj.field-studies-council.org/) INVERTEBRATES OF SLAPTON LEY NATIONAL NATURE RESERVE (FSC) AND PRAWLE POINT (NATIONAL TRUST) RACHEL J. CLARK AND JANET BECCALONI Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD. In 2014 the Natural History Museum, London organised a field trip to Slapton. These field notes report on the trip, giving details of methodology, the species collected and those of notable status. INTRODUCTION OBjectives A field trip to Slapton was organised, funded and undertaken by the Natural History Museum, London (NHM) in July 2014. The main objective was to acquire tissues of UK invertebrates for the Molecular Collections Facility (MCF) at the NHM. The other objectives were to: 1. Acquire specimens of hitherto under-represented species in the NHM collection; 2. Provide UK invertebrate records for the Field Studies Council (FSC), local wildlife trusts, Natural England, the National Trust and the National Biodiversity Network (NBN) Gateway; 3. Develop a partnership between these organisations and the NHM; 4. Publish records of new/under-recorded species for the area in Field Studies (the publication of the FSC). Background to the NHM collections The NHM is home to over 80 million specimens and objects. The Museum uses best practice in curating and preserving specimens for perpetuity. In 2012 the Molecular Collections Facilities (MCF) was opened at the NHM. The MCF houses a variety of material including botanical, entomological and zoological tissues in state-of-the-art freezers ranging in temperature from -20ºC and -80ºC to -150ºC (Figs. 1). As well as tissues, a genomic DNA collection is also being developed.
    [Show full text]
  • Reptiles and Amphibians
    A good book for beginners is Himmelman’s (2002) book “Discovering Moths’. Winter Moths (2000) describes several methods for By Dennis Skadsen capturing and observing moths including the use of light traps and sugar baits. There are Unlike butterflies, very little fieldwork has a few other essential books listed in the been completed to determine species suggested references section located on composition and distribution of moths in pages 8 & 9. Many moth identification northeast South Dakota. This is partly due guides can now be found on the internet, the to the fact moths are harder to capture and North Dakota and Iowa sites are the most study because most adults are nocturnal, and useful for our area. Since we often identification to species is difficult in the encounter the caterpillars of moths more field. Many adults can only be often than adults, having a guide like differentiated by studying specimens in the Wagners (2005) is essential. hand with a good understanding of moth taxonomy. Listed below are just a few of the species that probably occur in northeast South Although behavior and several physiological Dakota. The list is compiled from the characteristics separate moths from author’s personnel collection, and specimens butterflies including flight periods (moths collected by Gary Marrone or listed in Opler are mainly nocturnal (night) and butterflies (2006). Common and scientific names diurnal (day)); the shapes of antennae and follow Moths of North Dakota (2007) or wings; each have similar life histories. Both Opler (2006). moths and butterflies complete a series of changes from egg to adult called metamorphosis.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • 1997 Isbn #: 0-921631-18-9
    TORONTO ENTOMOLOGISTS ASSOCIATION Publication # 30 - 98 Butterflies of Ontario & Summaries of Lepidoptera Encountered in Ontario in 1997 ISBN #: 0-921631-18-9 BUTTERFLIES OF ONTARIO & SUMMARIES OF LEPIDOPTERA ENCOUNTERED IN ONTARIO IN 1997 COMPILED BY ALAN J. HANKS PRODUCTION BY ALAN J. HANKS JUNE 1998 CONTENTS PAGE 1. INTRODUCTION 1 2. WEATHER DURING THE 1997 SEASON 5 3. CORRECTIONS TO PREVIOUS T.E.A. SUMMARIES 5 4. SPECIAL NOTES ON ONTARIO LEPIDOPTERA 6 4.1 Identification & Distribution ofOntario Crescent Butterflies Paul M. Catting 6 4.2 List ofButterflies seen in the Toronto Area & General Status Report - Barry Harrison & Joseph Jones 8 4.3 The Bog Elfin (Callophrys lanoraiensis) in Ontario P.M. Catling, R.A. Layberry, J.P. Crolla & J.D. Lafontaine 10 4.4 Butterflies ofPelee Island - Robert Bowles 14 4.5 Rearing Notes from Northumberland County - Dr. W.J.D. Eberlie 15 4.6 Catocala gracilis Grote (Graceful Underwing): New to Ontario - W.G. Lamond 16 4.7 Psaphida grandis (Gray Sallow): New to Ontario and Canada - W.G. Lamond 17 4.8 Butterflies ofAlgonquin Park - Colin D. Jones 18 4.9 The 500th Noctuid - Ken Stead 21 4.10 Occurences ofNoctua pronuba - Barry Harrison 22 4.11 Observations on Lepidoptera Predation - Tim Sabo 22 5. GENERAL SUMMARY - Alan J. Hanks 24 6. 1997 SUMMARY OF ONTARIO BUTTERFLIES compiled by Alan J. Hanks 25 Hesperiidae 25 Papilionidae 33 Pieridae 35 Lycaenidae 38 Libytheidae 44 Nymphalidae 44 Apaturidae 52 Satyridae 52 Danaidae 55 7. SELECTED REPORTS OF MOTHS IN ONTARIO, 1997 compiled by Dr. Duncan Robertson 56 8. CONCISE CYCLICAL SUMMARY OF MOTHS IN ONTARIO compiled by Dr.
    [Show full text]
  • Measuring Compound Eye Optics with Microscope and Microct Images
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.422154; this version posted December 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title (<120 characters): Measuring Compound Eye Optics with Microscope and MicroCT Images 2 Article Type: Tools and Resources 3 Author Names and Affiliations: John Paul Currea1, Yash Sondhi2, Akito Y. Kawahara3, and Jamie 4 Theobald2 5 1Department of Psychology, Florida International University, Miami, FL 33199, U.S.A. 6 2Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A. 7 3Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, U.S.A. 8 Abstract (<150 words): 9 The arthropod compound eye is the most prevalent eye type in the animal kingdom, with an impressive 10 range of shapes and sizes. Studying its natural range of morphologies provides insight into visual 11 ecology, development, and evolution. In contrast to the camera-type eyes we possess, external 12 structures of compound eyes often reveal resolution, sensitivity, and field of view if the eye is 13 spherical. Non-spherical eyes, however, require measuring internal structures using imaging 14 technology like MicroCT (µCT). Thus far, there is no efficient tool to automate characterizing 15 compound eye optics. We present two open-source programs: (1) the ommatidia detecting algorithm 16 (ODA), which automatically measures ommatidia count and diameter, and (2) a µCT pipeline, which 17 calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA.
    [Show full text]
  • A Sample Article Title
    Title Museum archives revisited: Central Asiatic hawkmoths reveal exceptionally high late Pliocene species diversification (Lepidoptera, Sphingidae) Authors Hundsdoerfer, AK; Päckert, M; Kehlmaier, C; Strutzenberger, P; Kitching, I Date Submitted 2017-09-25 Anna K. Hundsdoerfer, Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, D-01109 Dresden, Germany, Tel. +49-351-7958414437, Fax. +49-351-7958414327, [email protected] Museum archives revisited: Central Asiatic hawkmoths reveal exceptionally high late Pliocene species diversification (Lepidoptera, Sphingidae) ANNA K. HUNDSDOERFER a§, MARTIN PÄCKERT a,b, CHRISTIAN KEHLMAIER a, PATRICK STRUTZENBERGER a, IAN J. KITCHING c a Senckenberg Natural History Collections Dresden, Königsbrücker Landstr. 159, D- 01109 Dresden, Germany. b Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Germany. c Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. §Corresponding author. aDNA systematics of Central Asiatic hawkmoths Hundsdoerfer et al. - 1 - Abstract Hundsdoerfer, A. K. (2016) Zoological Scripta, 00, 000-000. Three high elevation Hyles species of Central Asia have proven difficult to sample and thus only a limited number of specimens are available for study. Ancient DNA techniques were applied to sequence two mitochondrial genes from ‘historic’ museum specimens of H. gallii, H. renneri and H. salangensis to elucidate the phylogenetic relationships of these species. This approach enabled us to include the holotypes and/or allotypes and paratypes. The status of H. salangensis as a species endemic to a mountain range north of Kabul in Afghanistan is confirmed by this study. It is most closely related to H. nicaea and H. gallii, and quite distant from the clade comprising the species from H.
    [Show full text]