Hawk-Moths, Family Sphingidae and Forewings Browner
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS ROMANIA January 2007 Forest Resources Development Service Working Paper FBS/28E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Romania. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Romania TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests and diseases................................................................................................. 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases................................................................................................................ -
1 June 2021 Researchgate: Researchgate.Net/Profile
DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication. -
Biological and Landscape Diversity in Slovenia
MINISTRY OF THE ENVIRONMENT AND SPATIAL PLANNING ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA Biological and Landscape Diversity in Slovenia An overview CBD Ljubljana, 2001 MINISTRY OF THE ENVIRONMENTAL AND SPATIAL PLANNING ENVIRONMENTAL AGENCY OF THE REPUBLIC OF SLOVENIA Published by: Ministry of the Environment and Spatial Planning - Environmental Agency of the Republic of Slovenia Editors in chief and executive editors: Branka Hlad and Peter Skoberne Technical editor: Darja Jeglič Reviewers of the draft text: Kazimir Tarman Ph.D., Andrej Martinčič Ph.D., Fedor Černe Ph.D. English translation: Andreja Naraks Gordana Beltram Ph.D. (chapter on Invasive Species, ......., comments on the figures), Andrej Golob (chapter on Communication, Education and Public Awareness) Revision of the English text: Alan McConnell-Duff Ian Mitchell (chapter on Communication, Education and Public Awareness) Gordana Beltram Ph.D. Designed and printed by: Littera Picta d.o.o. Photographs were contributed by: Milan Orožen Adamič (2), Matjaž Bedjanič (12), Gordana Beltram (3), Andrej Bibič (2), Janez Božič (1), Robert Bolješič (1), Branka Hlad (15), Andrej Hudoklin (10), Hojka Kraigher (1), Valika Kuštor (1), Bojan Marčeta (1), Ciril Mlinar (3), Marko Simić (91), Peter Skoberne (57), Baldomir Svetličič (1), Martin Šolar (1), Dorotea Verša (1) and Jana Vidic (2). Edition: 700 copies CIP - Kataložni zapis o publikaciji Narodna in univerzitetna knjižnica, Ljubljana 502.3(497.4)(082) 574(497.4)(082) BIOLOGICAL and landscape diversity in Slovenia : an overview / (editors in chief Branka Hlad and Peter Skoberne ; English translation Andreja Naraks, Gordana Beltram, Andrej Golob; photographs were contributed by Milan Orožen Adamič... et. al.). - Ljubljana : Ministry of the Environment and Spatial Planning, Environmental Agency of the Republic of Slovenia, 2001 ISBN 961-6324-17-9 I. -
List of UK BAP Priority Terrestrial Invertebrate Species (2007)
UK Biodiversity Action Plan List of UK BAP Priority Terrestrial Invertebrate Species (2007) For more information about the UK Biodiversity Action Plan (UK BAP) visit https://jncc.gov.uk/our-work/uk-bap/ List of UK BAP Priority Terrestrial Invertebrate Species (2007) A list of the UK BAP priority terrestrial invertebrate species, divided by taxonomic group into: Insects, Arachnids, Molluscs and Other invertebrates (Crustaceans, Worms, Cnidaria, Bryozoans, Millipedes, Centipedes), is provided in the tables below. The list was created between 1995 and 1999, and subsequently updated in response to the Species and Habitats Review Report published in 2007. The table also provides details of the species' occurrences in the four UK countries, and describes whether the species was an 'original' species (on the original list created between 1995 and 1999), or was added following the 2007 review. All original species were provided with Species Action Plans (SAPs), species statements, or are included within grouped plans or statements, whereas there are no published plans for the species added in 2007. Scientific names and commonly used synonyms derive from the Nameserver facility of the UK Species Dictionary, which is managed by the Natural History Museum. Insects Scientific name Common Taxon England Scotland Wales Northern Original UK name Ireland BAP species? Acosmetia caliginosa Reddish Buff moth Y N Yes – SAP Acronicta psi Grey Dagger moth Y Y Y Y Acronicta rumicis Knot Grass moth Y Y N Y Adscita statices The Forester moth Y Y Y Y Aeshna isosceles -
A T L a S Parazytoidów Szkodników Pierwotnych Sosny
ATLAS JACEK HILSZCZAN´ SKI, CEZARY BYSTROWSKI parazytoidów szkodników pierwotnych sosny ATLAS parazytoidów szkodników pierwotnych sosny ISBN 978-83-61633-21-1 ATLAS parazytoidów szkodników pierwotnych sosny JACEK HILSZCZAN´ SKI, CEZARY BYSTROWSKI ATLAS parazytoidów szkodników pierwotnych sosny Wydano na zlecenie Dyrekcji Generalnej Lasów Państwowych Warszawa 2010 © Centrum Informacyjne Lasów Państwowych ul. Bitwy Warszawskiej 1920 r. nr 3, 02-362 Warszawa tel.: (22) 822-49-31, fax: (22) 823-96-79 e-mail: [email protected] www.lasy.gov.pl Recenzenci prof. dr hab. Agnieszka Draber-Mońko (Muzeum i Instytut Zoologii PAN) prof. dr hab. Tadeusz Kaźmierczak (Katedra Entomologii Leśnej Uniwersytetu Rolniczego w Krakowie) mgr inż. Piotr Gawęda (Zespół Ochrony Lasu w Gdańsku) Redakcja Aleksandra Dominiewska Autorzy zdjęć i rysunków Jacek Hilszczański, Cezary Bystrowski Zdjęcie na 4 stronie okładki: Wojciech Gil Projekt graficzny i redakcja techniczna Bożena Widłaszewska Korekta Elżbieta Kijewska ISBN 978-83-89744-88-3 Przygotowanie do druku ANTER – Poligrafia, ul. Jaracza 8 m. 18, 00-378 Warszawa Druk i oprawa Ośrodek Rozwojowo-Wdrożeniowy Lasów Państwowych w Bedoniu ul. Sienkiewicza 19, 95-020 Andrespol Spis treści Wstęp ................................................................ 7 1. Definicje i terminologia morfologii parazytoidów . 9 2. Zarys biologii i identyfikacja wybranych taksonów parazytoidów . 17 2.1. Błonkówki . 17 2.2. Muchówki . 27 3. Metody zbioru, hodowli i preparowania . 33 3.1. Błonkówki . 33 3.2. Muchówki . 35 4. Zasady używania atlasu . 37 5. Przegląd systematyczny parazytoidów . 38 Rząd: Hymenoptera – błonkówki . 38 Rząd: Diptera – muchówki . 40 6. Opisy gatunków . 43 7. Literatura . 209 Wstęp Jedną z najliczniejszych grup w świecie owadów są parazytoidy należące do rzę- dów błonkówek (Hymenoptera) i muchówek (Diptera). -
Wildlife Review Cover Image: Hedgehog by Keith Kirk
Dumfries & Galloway Wildlife Review Cover Image: Hedgehog by Keith Kirk. Keith is a former Dumfries & Galloway Council ranger and now helps to run Nocturnal Wildlife Tours based in Castle Douglas. The tours use a specially prepared night tours vehicle, complete with external mounted thermal camera and internal viewing screens. Each participant also has their own state- of-the-art thermal imaging device to use for the duration of the tour. This allows participants to detect animals as small as rabbits at up to 300 metres away or get close enough to see Badgers and Roe Deer going about their nightly routine without them knowing you’re there. For further information visit www.wildlifetours.co.uk email [email protected] or telephone 07483 131791 Contributing photographers p2 Small White butterfly © Ian Findlay, p4 Colvend coast ©Mark Pollitt, p5 Bittersweet © northeastwildlife.co.uk, Wildflower grassland ©Mark Pollitt, p6 Oblong Woodsia planting © National Trust for Scotland, Oblong Woodsia © Chris Miles, p8 Birdwatching © castigatio/Shutterstock, p9 Hedgehog in grass © northeastwildlife.co.uk, Hedgehog in leaves © Mark Bridger/Shutterstock, Hedgehog dropping © northeastwildlife.co.uk, p10 Cetacean watch at Mull of Galloway © DGERC, p11 Common Carder Bee © Bob Fitzsimmons, p12 Black Grouse confrontation © Sergey Uryadnikov/Shutterstock, p13 Black Grouse male ©Sergey Uryadnikov/Shutterstock, Female Black Grouse in flight © northeastwildlife.co.uk, Common Pipistrelle bat © Steven Farhall/ Shutterstock, p14 White Ermine © Mark Pollitt, -
Pest Alert: Box Tree Moth (Cydalima Perspectalis)
Pest Alert Box Tree Moth (Cydalima perspectalis) The box tree moth is an invasive pest that primarily feeds on boxwood species (Buxus spp). In its native range, it also feeds on burning bush (Euonymus alatus), Japanese spindletree (E. japonicus), purple holly (Ilex chinensis), and orange jessamine (Murraya paniculate) once boxwood in the vicinity are completely defoliated. Distribution and Spread The box tree moth is native to temperate and subtropical regions in Asia. It was first reported in Europe in 2007, after which it spread rapidly across European countries and into Western Asia and Northern Africa. In 2018, it was documented in Canada. The rate of spread for the box tree moth has varied since its introduction in Europe, with some cases peaking at 96 miles per year. Long distance movement of the box tree moth across Europe occurred primarily through the movement of infested Adult moths (top and bottom left), damage (bottom) boxwood plantings. Box tree moths are highly mobile and used for edging, as hedges, thick brown border spanning 1.6 and are good fliers. Natural spread and/or clipped into different shapes to 1.8 inches. Some adults have of this moth in Europe is about 3 to make topiaries. The box tree completely brown wings with a small to 6 miles per year. One analysis moth can cause heavy defoliation of white streak on each forewing. Males from Europe concluded that natural boxwood plants if populations are left and females show both colorations. dispersal from continental Europe unchecked. Defoliation of existing to the United Kingdom was possible, and new growth can kill the plant. -
Evolution of Insect Color Vision: from Spectral Sensitivity to Visual Ecology
EN66CH23_vanderKooi ARjats.cls September 16, 2020 15:11 Annual Review of Entomology Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology Casper J. van der Kooi,1 Doekele G. Stavenga,1 Kentaro Arikawa,2 Gregor Belušic,ˇ 3 and Almut Kelber4 1Faculty of Science and Engineering, University of Groningen, 9700 Groningen, The Netherlands; email: [email protected] 2Department of Evolutionary Studies of Biosystems, SOKENDAI Graduate University for Advanced Studies, Kanagawa 240-0193, Japan 3Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; email: [email protected] 4Lund Vision Group, Department of Biology, University of Lund, 22362 Lund, Sweden; email: [email protected] Annu. Rev. Entomol. 2021. 66:23.1–23.28 Keywords The Annual Review of Entomology is online at photoreceptor, compound eye, pigment, visual pigment, behavior, opsin, ento.annualreviews.org anatomy https://doi.org/10.1146/annurev-ento-061720- 071644 Abstract Annu. Rev. Entomol. 2021.66. Downloaded from www.annualreviews.org Copyright © 2021 by Annual Reviews. Color vision is widespread among insects but varies among species, depend- All rights reserved ing on the spectral sensitivities and interplay of the participating photore- Access provided by University of New South Wales on 09/26/20. For personal use only. ceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. -
2019 UDAF Insect Report
2019 Insect Report UTAH DEPARTMENT OF AGRICULTURE AND FOOD DIVISION OF PLANT INDUSTRY LARGE PINE WEEVIL H y l o b i u s a b i e ti s ( L i n n a e u s ) PROGRAM 2019 PARTNERS Insect Report MORMON CRICKET - VELVET LONGHORNED BEETLE - EMERALD ASH BORER - NUN MOTH - JAPANESE BEE- TLE - PINE SHOOT BEETLE - APPLE MAGGOT - GYPSY MOTH - PLUM CURCULIO - CHERRY FRUIT FLY - LARGE PINE WEEVIL - LIGHT BROWN APPLE MOTH - ROSY GYPSY MOTH - EUROPEAN HONEY BEE - BLACK FIR SAW- YER - GRASSHOPPER - MEDITERRANEAN PINE ENGRAVER - SIX-TOOTHED BARK BEETLE - NUN MOTH - EU- ROPEAN GRAPEVINE MOTH - SIBERIAN SILK MOTH - PINE TREE LAPPET - MORMON CRICKET - VELVET LONGHORNED BEETLE - EMERALD ASH BORER - NUN MOTH - JAPANESE BEETLE - PINE SHOOT BEETLE - AP- PLE MAGGOT - GYPSY MOTH - PLUM CURCULIO - CHERRY FRUIT FLY - LARGE PINE WEEVIL - LIGHT BROWN APPLE MOTH - ROSY GYPSY MOTH - EUROPEAN HONEY BEE - BLACK FIR SAWYER - GRASSHOPPER - MEDI- TERRANEAN PINE ENGRAVER - SIX-TOOTHED BARK BEETLE - NUN MOTH - EUROPEAN GRAPEVINE MOTH - SIBERIAN SILK MOTH - PINE TREE LAPPET - MORMON CRICKET - VELVET LONGHORNED BEETLE - EMERALD ASH BORER - NUN MOTH - JAPANESE BEETLE - PINE SHOOT BEETLE - APPLE MAGGOT - GYPSY MOTH - PLUM CURCULIO - CHERRY FRUIT FLY - LARGE PINE WEEVIL - LIGHT BROWN APPLE MOTH - ROSY GYPSY MOTH - EUROPEAN HONEY BEE - BLACK FIR SAWYER - GRASSHOPPER - MEDITERRANEAN PINE ENGRAVER - SIX-TOOTHED BARK BEETLE - NUN MOTH - EUROPEAN GRAPEVINE MOTH - SIBERIAN SILK MOTH - PINE TREE LAPPET - MORMON CRICKET - VELVET LONGHORNED BEETLE - EMERALD ASH BORER - NUN MOTH - JAPANESE -
Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes
Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes Akito Y. Kawahara1*, Andre A. Mignault1, Jerome C. Regier2, Ian J. Kitching3, Charles Mitter1 1 Department of Entomology, College Park, Maryland, United States of America, 2 Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America, 3 Department of Entomology, The Natural History Museum, London, United Kingdom Abstract Background: The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well- studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes. Methodology/Principal Findings: The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two- thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes. -
The Mcguire Center for Lepidoptera and Biodiversity
Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens. -
British Lepidoptera (/)
British Lepidoptera (/) Home (/) Anatomy (/anatomy.html) FAMILIES 1 (/families-1.html) GELECHIOIDEA (/gelechioidea.html) FAMILIES 3 (/families-3.html) FAMILIES 4 (/families-4.html) NOCTUOIDEA (/noctuoidea.html) BLOG (/blog.html) Glossary (/glossary.html) Family: SPHINGIDAE (3SF 13G 18S) Suborder:Glossata Infraorder:Heteroneura Superfamily:Bombycoidea Refs: Waring & Townsend, Wikipedia, MBGBI9 Proboscis short to very long, unscaled. Antenna ~ 1/2 length of forewing; fasciculate or pectinate in male, simple in female; apex pointed. Labial palps long, 3-segmented. Eye large. Ocelli absent. Forewing long, slender. Hindwing ±triangular. Frenulum and retinaculum usually present but may be reduced. Tegulae large, prominent. Leg spurs variable but always present on midtibia. 1st tarsal segment of mid and hindleg about as long as tibia. Subfamily: Smerinthinae (3G 3S) Tribe: Smerinthini Probably characterised by a short proboscis and reduced or absent frenulum Mimas Smerinthus Laothoe 001 Mimas tiliae (Lime Hawkmoth) 002 Smerinthus ocellata (Eyed Hawkmoth) 003 Laothoe populi (Poplar Hawkmoth) (/002- (/001-mimas-tiliae-lime-hawkmoth.html) smerinthus-ocellata-eyed-hawkmoth.html) (/003-laothoe-populi-poplar-hawkmoth.html) Subfamily: Sphinginae (3G 4S) Rest with wings in tectiform position Tribe: Acherontiini Agrius Acherontia 004 Agrius convolvuli 005 Acherontia atropos (Convolvulus Hawkmoth) (Death's-head Hawkmoth) (/005- (/004-agrius-convolvuli-convolvulus- hawkmoth.html) acherontia-atropos-deaths-head-hawkmoth.html) Tribe: Sphingini Sphinx (2S)