OR10X1 (Human) Recombinant Protein (P01)

Total Page:16

File Type:pdf, Size:1020Kb

OR10X1 (Human) Recombinant Protein (P01) OR10X1 (Human) Recombinant Protein (P01) Catalog # : H00128367-P01 規格 : [ 2 ug ] List All Specification Application Image Product Human OR10X1 full-length ORF ( ENSP00000335495, 1 a.a. - 309 a.a.) Enzyme-linked Immunoabsorbent Assay Description: recombinant protein with GST-tag at N-terminal. Western Blot (Recombinant Sequence: MKINQTILKEFILVGFSVYPHVQTFLFVVFFCLYLLTLAGNLIIMGLTWVDR protein) SLHTPMYLFLSALSFSETCYTLTIVPKMLEDLLAKDRSISVTGCSLQMCFF LGLGGTNCIILTLMGYDRFLAICNPLRYPLLMTNIVCGQLVASACTAGFFIS Antibody Production LTETALIFRDSFCRPNLVKHFFCHMLAVIRLSCIDSNHTEFIITLISVSGLLG TLLLIILTDVFIISTVLRIPSAEGKQKAFTTCASHLTVVIIHFGFASIVYLKPEA Protein Array SGDDTLIAVPYTVITPFLSPIIFSLRNKDMKNAFRRMMGNTVALKK Host: Wheat Germ (in vitro) Theoretical MW 60.8 (kDa): Preparation in vitro wheat germ expression system Method: Purification: Glutathione Sepharose 4 Fast Flow Quality Control 12.5% SDS-PAGE Stained with Coomassie Blue. Testing: Storage Buffer: 50 mM Tris-HCI, 10 mM reduced Glutathione, pH=8.0 in the elution buffer. Storage Store at -80°C. Aliquot to avoid repeated freezing and thawing. Instruction: Note: Best use within three months from the date of receipt of this protein. MSDS: Download Datasheet: Download Applications Enzyme-linked Immunoabsorbent Assay Western Blot (Recombinant protein) Page 1 of 2 2020/8/11 Antibody Production Protein Array Gene Information Entrez GeneID: 128367 GeneBank ENST00000334579 Accession#: Protein ENSP00000335495 Accession#: Gene Name: OR10X1 Gene Alias: OR1-13,OR1-14,OR10X1P Gene olfactory receptor, family 10, subfamily X, member 1 Description: Gene Ontology: Hyperlink Gene Summary: Olfactory receptors interact with odorant molecules in the nose, to initiate a neuronal response that triggers the perception of a smell. The olfactory receptor proteins are members of a large family of G-protein- coupled receptors (GPCR) arising from single coding-exon genes. Olfactory receptors share a 7-transmembrane domain structure with many neurotransmitter and hormone receptors and are responsible for the recognition and G protein-mediated transduction of odorant signals. The olfactory receptor gene family is the largest in the genome. The nomenclature assigned to the olfactory receptor genes and proteins for this organism is independent of other organisms. [provided by RefSeq Other olfactory receptor OR1-13 pseudogene,olfactory receptor OR1- Designations: 14,olfactory receptor, family 10, subfamily X, member 1 pseudogene Gene Pathway Olfactory transduction 服務條款 | 隱私權政策 | 著作及商標 | 網站地圖 ©2020 亞諾法生技股份有限公司 Abnova Corporation. 版權所有. Page 2 of 2 2020/8/11.
Recommended publications
  • Bahl Et Al Revisedmanuscript.Pdf
    This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Bahl, Aileen; Pöllänen, Eija; Ismail, Khadeeja; Sipilä, Sarianna; Mikkola, Tuija; Berglund, Eva; Lindqvist, Carl Mårten; Syvänen, Ann-Christine; Rantanen, Taina; Kaprio, Jaakko; Kovanen, Vuokko; Ollikainen, Miina Title: Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass Year: 2015 Version: Please cite the original version: Bahl, A., Pöllänen, E., Ismail, K., Sipilä, S., Mikkola, T., Berglund, E., . Ollikainen, M. (2015). Hormone Replacement Therapy Associated White Blood Cell DNA Methylation and Gene Expression are Associated With Within-Pair Differences of Body Adiposity and Bone Mass. Twin Research and Human Genetics, 18 (6), 647-661. doi:10.1017/thg.2015.82 All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user. Hormone replacement therapy associated white blood cell DNA methylation and gene expression are associated with within-pair differences of body adiposity
    [Show full text]
  • Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude
    REPORTS Digestive and Kidney Diseases) and The University of Omnibus, with accession code GSE21661. These data, as Figs. S1 to S6 Luxembourg–Institute for Systems Biology Program to well as phenotype data, are also available on our Tables S1 to S12 C.D.H. T.S.S. was supported by NIH Genetics Training laboratory Web site, http://jorde-lab.genetics.utah. References Grant T32. All studies have been performed with edu. Please contact R.L.G. for access to DNA samples. informed consent approved by the Institutional Board of 10 March 2010; accepted 6 May 2010 Qinghai Medical College of Qinghai University in Supporting Online Material Published online 13 May 2010; Xining, Qinghai Province, People’s Republic of China. All www.sciencemag.org/cgi/content/full/science.1189406/DC1 10.1126/science.1189406 SNP genoptypes are deposited in Gene Expression Materials and Methods Include this information when citing this paper. also estimated single-nucleotide polymorphism Sequencing of 50 Human Exomes (SNP) probabilities and population allele frequen- cies for each site. A total of 151,825 SNPs were Reveals Adaptation to High Altitude inferred to have >50% probability of being var- iable within the Tibetan sample, and 101,668 had Xin Yi,1,2* Yu Liang,1,2* Emilia Huerta-Sanchez,3* Xin Jin,1,4* Zha Xi Ping Cuo,2,5* John E. Pool,3,6* >99% SNP probability (table S2). Sanger se- Xun Xu,1 Hui Jiang,1 Nicolas Vinckenbosch,3 Thorfinn Sand Korneliussen,7 Hancheng Zheng,1,4 quencing validated 53 of 56 SNPs that had at least Tao Liu,1 Weiming He,1,8 Kui Li,2,5 Ruibang Luo,1,4 Xifang Nie,1 Honglong Wu,1,9 Meiru Zhao,1 95% SNP probability and minor allele frequencies Hongzhi Cao,1,9 Jing Zou,1 Ying Shan,1,4 Shuzheng Li,1 Qi Yang,1 Asan,1,2 Peixiang Ni,1 Geng Tian,1,2 between 3% and 50%.
    [Show full text]
  • Supporting Information Supplementary Methods Patients for Whole Genome Sequencing and Validation Cohort. Heparinized Bone Marrow
    Supporting Information Supplementary Methods Patients for whole genome sequencing and validation cohort. Heparinized bone marrow samples were obtained from 8 RAEB patients with informed consent for WGS according to the ethics review board of Shanghai Institute of Hematology. Briefly, these 8 patients were 4 RAEB-1, 4 RAEB-2, 5 males, 3 females, 1 with complex karyotype, 1 with +8, 5 with normal karyotype, and classified as intermediate to very high risk level. 6 patients died 4-23 months after diagnosis of infection, hemorrhage, cerebral infarction or evolution to AML (complete information see Table S1). The validation cohort consisted of 188 various subtypes of MDS patients diagnosed and treated in Shanghai Ruijin Hospital and Shanghai No.6 People’s Hospital. All patients provided written informed consent. Bone marrow and paired buccal samples were obtained after informed consent. DNA sample preparation. Mononuclear cells (MNC) were separated by density gradient centrifugation using Ficoll in 8 RAEB patients and 188 MDS patients from validation cohort. Subsequently, CD34+ cells were isolated by magnetic cell separation (Miltenyi Biotech, Bergisch Gladbach, Germany) to reach a purity of 89-97.7% (average: 93.1%) in 8 RAEB patients. Flow through CD34- cells were also collected for analysis. Skin biopsy was obtained for analysis of normal genome and extracted by DNeasy Blood & Tissue Kit (Qiagen). Genomic DNA of CD34+ cells were isolated by QuickGene DNA whole blood kit L (FUJIFILM, Life Science). Genomic DNA of MNC from validation set was extracted by Wizard® Genomic DNA Purification Kit (Promega). DNA library preparation. Genomic DNA was sheared by sonication 1 and adaptors were ligated to the resulting fragments.
    [Show full text]
  • 1 Genome-Wide Comparisons of Variation in Linkage Disequilibrium
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Genome-wide comparisons of variation in linkage disequilibrium Yik Y. Teo1,*, Andrew E. Fry1, Kanishka Bhattacharya1, Kerrin S. Small1, Dominic P. Kwiatkowski1,2, Taane G. Clark1,2 1 Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom 2 Wellcome Trust Sanger Institute, Hinxton, United Kingdom Running title: Genome-wide comparisons of LD Keywords: linkage disequilibrium, imputation, positive selection, meta-analysis, genome-wide association study * Corresponding author: Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom. Email: [email protected], phone: +44 1865 287712, fax: +44 1865 287 501. ABSTRACT Current genome-wide surveys of common diseases and complex traits fundamentally aim to detect indirect associations where the SNPs carrying the association signals are not biologically active but are in linkage disequilibrium (LD) with some unknown functional polymorphisms. Reproducing any novel discoveries from these genome-wide scans in independent studies is now a prerequisite for the putative findings to be accepted. Significant differences in patterns of LD between populations can affect the portability of phenotypic associations when the replication effort or meta-analyses are attempted in populations that are distinct from the original population which the genome-wide study is performed in. Here we introduce a novel method for genome-wide analyses of LD variations between populations that allow the identification of candidate regions with different patterns of LD. The evidence of LD variation provided by the introduced method correlated with the degree of differences in the frequencies of the most common haplotype across the populations.
    [Show full text]
  • Differentially Methylated Genes
    10/30/2013 Disclosures Key Rheumatoid Arthritis-Associated Pathogenic Pathways Revealed by Integrative Analysis of RA Omics Datasets Consultant: IGNYTA Funding: Rheumatology Research Foundation By John W. Whitaker, Wei Wang and Gary S. Firestein DNA methylation and gene regulation The RA methylation signature in FLS DNA methylation – DNMT1 (maintaining methylation) OA – DNMT3a, 3b (de novo methylation) RA % of CpG methylation: 0% 100% Nakano et al. 2013 ARD AA06 AANAT AARS ABCA6 ABCC12 ABCG1 ABHD8 ABL2 ABR ABRA ACACA ACAN ACAP3 ACCSL ACN9 ACOT7 ACOX2 ACP5 ACP6 ACPP ACSL1 ACSL3 ACSM5 ACVRL1 ADAM10 ADAM32 ADAM33 ADAMTS12 ADAMTS15 ADAMTS19 ADAMTS4 ADAT3 ADCK4 ADCK5 ADCY2 ADCY3 ADCY6 ADORA1 ADPGK ADPRHL1 ADTRP AFAP1 AFAP1L2 AFF3 AFG3L1P AGAP11 AGER AGTR1 AGXT AIF1L AIM2 AIRE AJUBA AK4 AKAP12 AKAP2 AKR1C2 AKR1E2 AKT2 ALAS1 ALDH1L1-AS1 ALDH3A1 ALDH3B1 ALDH8A1 ALDOB ALDOC ALOX12 ALPK3 ALS2CL ALX4 AMBRA1 AMPD2 AMPD3 ANGPT1 ANGPT2 ANGPTL5 ANGPTL6 ANK1 ANKMY2 ANKRD29 ANKRD37 ANKRD53 ANO3 ANO6 ANO7 ANP32C ANXA6 ANXA8L2 AP1G1 AP2A2 AP2M1 AP5B1 APBA2 APC APCDD1 APOBEC3B APOBEC3G APOC1 APOH APOL6 APOLD1 APOM AQP1 AQP10 AQP6 AQP9 ARAP1 ARHGAP24 ARHGAP42 ARHGEF19 ARHGEF25 ARHGEF3 ARHGEF37 ARHGEF7 ARL4C ARL6IP 5 ARL8B ARMC3 ARNTL2 ARPP21 ARRB1 ARSI ASAH2B ASB10 ASB2 ASCL2 ASIC4 ASPH ATF3 ATF7 ATL1 ATL3 ATP10A ATP1A1 ATP1A4 ATP2C1 ATP5A1 ATP5EP2 ATP5L2 ATP6V0CP3 ATP6V1C1 ATP6V1E2 ATXN7L1 ATXN7L2 AVPI1 AXIN2 B3GNT7 B3GNT8 B3GNTL1 BACH1 BAG3 Differential methylated genes in RA FLS BAIAP2L2 BANP BATF BATF2 BBS2 BCAS4 BCAT1 BCL7C BDKRB2 BEGAIN BEST1 BEST3
    [Show full text]
  • WO 2019/068007 Al Figure 2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/068007 Al 04 April 2019 (04.04.2019) W 1P O PCT (51) International Patent Classification: (72) Inventors; and C12N 15/10 (2006.01) C07K 16/28 (2006.01) (71) Applicants: GROSS, Gideon [EVIL]; IE-1-5 Address C12N 5/10 (2006.0 1) C12Q 1/6809 (20 18.0 1) M.P. Korazim, 1292200 Moshav Almagor (IL). GIBSON, C07K 14/705 (2006.01) A61P 35/00 (2006.01) Will [US/US]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., C07K 14/725 (2006.01) P.O. Box 4044, 7403635 Ness Ziona (TL). DAHARY, Dvir [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (21) International Application Number: Box 4044, 7403635 Ness Ziona (IL). BEIMAN, Merav PCT/US2018/053583 [EilL]; c/o ImmPACT-Bio Ltd., 2 Ilian Ramon St., P.O. (22) International Filing Date: Box 4044, 7403635 Ness Ziona (E.). 28 September 2018 (28.09.2018) (74) Agent: MACDOUGALL, Christina, A. et al; Morgan, (25) Filing Language: English Lewis & Bockius LLP, One Market, Spear Tower, SanFran- cisco, CA 94105 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/564,454 28 September 2017 (28.09.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/649,429 28 March 2018 (28.03.2018) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: IMMP ACT-BIO LTD.
    [Show full text]
  • Table S3. RAE Analysis of Well-Differentiated Liposarcoma
    Table S3. RAE analysis of well-differentiated liposarcoma Model Chromosome Region start Region end Size q value freqX0* # genes Genes Amp 1 145009467 145122002 112536 0.097 21.8 2 PRKAB2,PDIA3P Amp 1 145224467 146188434 963968 0.029 23.6 10 CHD1L,BCL9,ACP6,GJA5,GJA8,GPR89B,GPR89C,PDZK1P1,RP11-94I2.2,NBPF11 Amp 1 147475854 148412469 936616 0.034 23.6 20 PPIAL4A,FCGR1A,HIST2H2BF,HIST2H3D,HIST2H2AA4,HIST2H2AA3,HIST2H3A,HIST2H3C,HIST2H4B,HIST2H4A,HIST2H2BE, HIST2H2AC,HIST2H2AB,BOLA1,SV2A,SF3B4,MTMR11,OTUD7B,VPS45,PLEKHO1 Amp 1 148582896 153398462 4815567 1.5E-05 49.1 152 PRPF3,RPRD2,TARS2,ECM1,ADAMTSL4,MCL1,ENSA,GOLPH3L,HORMAD1,CTSS,CTSK,ARNT,SETDB1,LASS2,ANXA9, FAM63A,PRUNE,BNIPL,C1orf56,CDC42SE1,MLLT11,GABPB2,SEMA6C,TNFAIP8L2,LYSMD1,SCNM1,TMOD4,VPS72, PIP5K1A,PSMD4,ZNF687,PI4KB,RFX5,SELENBP1,PSMB4,POGZ,CGN,TUFT1,SNX27,TNRC4,MRPL9,OAZ3,TDRKH,LINGO4, RORC,THEM5,THEM4,S100A10,S100A11,TCHHL1,TCHH,RPTN,HRNR,FLG,FLG2,CRNN,LCE5A,CRCT1,LCE3E,LCE3D,LCE3C,LCE3B, LCE3A,LCE2D,LCE2C,LCE2B,LCE2A,LCE4A,KPRP,LCE1F,LCE1E,LCE1D,LCE1C,LCE1B,LCE1A,SMCP,IVL,SPRR4,SPRR1A,SPRR3, SPRR1B,SPRR2D,SPRR2A,SPRR2B,SPRR2E,SPRR2F,SPRR2C,SPRR2G,LELP1,LOR,PGLYRP3,PGLYRP4,S100A9,S100A12,S100A8, S100A7A,S100A7L2,S100A7,S100A6,S100A5,S100A4,S100A3,S100A2,S100A16,S100A14,S100A13,S100A1,C1orf77,SNAPIN,ILF2, NPR1,INTS3,SLC27A3,GATAD2B,DENND4B,CRTC2,SLC39A1,CREB3L4,JTB,RAB13,RPS27,NUP210L,TPM3,C1orf189,C1orf43,UBAP2L,HAX1, AQP10,ATP8B2,IL6R,SHE,TDRD10,UBE2Q1,CHRNB2,ADAR,KCNN3,PMVK,PBXIP1,PYGO2,SHC1,CKS1B,FLAD1,LENEP,ZBTB7B,DCST2, DCST1,ADAM15,EFNA4,EFNA3,EFNA1,RAG1AP1,DPM3 Amp 1
    [Show full text]
  • Strong Selection During the Last Millennium for African Ancestry In
    Strong selection during the last millennium for African ancestry in the admixed population of Madagascar Denis Pierron, Margit Heiske, Harilanto Razafindrazaka, Veronica Pereda-Loth, Jazmin Sanchez, Omar Alva, Amal Arachiche, Anne Boland, Robert Olaso, Jean-François Deleuze, et al. To cite this version: Denis Pierron, Margit Heiske, Harilanto Razafindrazaka, Veronica Pereda-Loth, Jazmin Sanchez, et al.. Strong selection during the last millennium for African ancestry in the admixed population of Mada- gascar. Nature Communications, Nature Publishing Group, 2018, 9 (1), pp.932. 10.1038/s41467-018- 03342-5. hal-02112693 HAL Id: hal-02112693 https://hal.archives-ouvertes.fr/hal-02112693 Submitted on 9 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ARTICLE DOI: 10.1038/s41467-018-03342-5 OPEN Strong selection during the last millennium for African ancestry in the admixed population of Madagascar Denis Pierron1, Margit Heiske1, Harilanto Razafindrazaka2,1, Veronica Pereda-loth1, Jazmin Sanchez1, Omar Alva1, Amal Arachiche1, Anne Boland3, Robert Olaso3, Jean-Francois Deleuze3, Francois-Xavier Ricaut1, Jean-Aimé Rakotoarisoa4, Chantal Radimilahy4, Mark Stoneking5 & Thierry Letellier1 1234567890():,; While admixed populations offer a unique opportunity to detect selection, the admixture in most of the studied populations occurred too recently to produce conclusive signals.
    [Show full text]
  • Supplementary Table S4
    Supplementary Table 4 - Patient P10 Heat maps of mutations and gene expression for patients with three or more tumor sample analyzed. P10 SNV Allele frequency Log2(FPKM+1) GeneSymbol S1 S5 S8 S1 S5 S8 S1 S5 S8 Ref KDM6A* 1 1 1 0.82 0.87 0.64 2.36 2.28 2.22 3.01 UBAP2L 1 1 1 0.63 0.58 0.47 4.72 5.10 5.33 4.78 SLC12A5 1 1 1 0.60 0.32 0.29 0.05 0.01 0.00 0.02 KDM6A FMO1 1 1 1 0.59 0.56 0.41 0.23 0.04 0.40 0.14 MCC 1 1 1 0.58 0.46 0.49 4.33 5.29 4.99 4.54 3.50 MCAM 1 1 1 0.57 0.38 0.38 2.73 2.60 3.95 3.11 CCDC60 1 1 1 0.52 0.47 0.36 0.06 0.01 0.00 1.58 3.00 RALYL 1 1 1 0.52 0.25 0.24 0.03 0.03 0.00 0.15 2.50 AGXT 1 1 1 0.50 0.40 0.29 0.01 0.00 0.00 0.04 FAM209B 1 1 1 0.46 0.33 0.35 0.01 0.02 0.02 0.09 2.00 MYO7B 1 1 1 0.45 0.52 0.34 0.01 0.00 0.01 0.13 PPARG 1 1 1 0.45 0.48 0.34 5.55 5.93 5.70 5.92 1.50 MUC4 1 1 1 0.44 0.42 0.29 0.17 0.12 0.05 0.67 Log2(FPKM+1) HRAS** 1 1 1 0.44 0.39 0.20 4.32 4.75 4.55 3.28 1.00 MIA3 1 1 1 0.39 0.38 0.19 5.30 5.35 5.15 4.70 0.50 CLTC# 1 1 1 0.39 0.39 0.37 5.57 5.93 5.81 6.05 CEP152 1 1 1 0.38 0.43 0.17 3.28 2.78 3.25 2.14 0.00 DDC 1 1 1 0.38 0.34 0.29 0.01 0.01 0.00 0.12 S1 S5 S8 Ref HERC2 1 1 1 0.38 0.36 0.25 3.60 3.77 3.09 3.14 SEMA3D 1 1 1 0.37 0.51 0.26 0.38 0.60 0.53 2.83 ZNF320 1 1 1 0.34 0.41 0.22 4.14 4.25 4.08 4.07 HRAS ERBB3# 1 1 1 0.34 0.39 0.26 5.52 5.85 5.60 4.69 KSR2 1 1 1 0.33 0.39 0.27 0.75 1.17 0.65 0.97 5.00 TRERF1 1 1 1 0.32 0.42 0.27 2.10 2.45 2.25 2.63 4.50 COG4 1 1 1 0.31 0.36 0.27 3.78 4.06 4.12 3.58 4.00 LPAR5 1 1 1 0.31 0.43 0.24 0.92 1.03 0.47 1.17 3.50 PRTN3 1 1 1 0.30 0.05 0.02
    [Show full text]
  • Gnomad Lof Supplement
    1 gnomAD supplement gnomAD supplement 1 Data processing 4 Alignment and read processing 4 Variant Calling 4 Coverage information 5 Data processing 5 Sample QC 7 Hard filters 7 Supplementary Table 1 | Sample counts before and after hard and release filters 8 Supplementary Table 2 | Counts by data type and hard filter 9 Platform imputation for exomes 9 Supplementary Table 3 | Exome platform assignments 10 Supplementary Table 4 | Confusion matrix for exome samples with Known platform labels 11 Relatedness filters 11 Supplementary Table 5 | Pair counts by degree of relatedness 12 Supplementary Table 6 | Sample counts by relatedness status 13 Population and subpopulation inference 13 Supplementary Figure 1 | Continental ancestry principal components. 14 Supplementary Table 7 | Population and subpopulation counts 16 Population- and platform-specific filters 16 Supplementary Table 8 | Summary of outliers per population and platform grouping 17 Finalizing samples in the gnomAD v2.1 release 18 Supplementary Table 9 | Sample counts by filtering stage 18 Supplementary Table 10 | Sample counts for genomes and exomes in gnomAD subsets 19 Variant QC 20 Hard filters 20 Random Forest model 20 Features 21 Supplementary Table 11 | Features used in final random forest model 21 Training 22 Supplementary Table 12 | Random forest training examples 22 Evaluation and threshold selection 22 Final variant counts 24 Supplementary Table 13 | Variant counts by filtering status 25 Comparison of whole-exome and whole-genome coverage in coding regions 25 Variant annotation 30 Frequency and context annotation 30 2 Functional annotation 31 Supplementary Table 14 | Variants observed by category in 125,748 exomes 32 Supplementary Figure 5 | Percent observed by methylation.
    [Show full text]
  • Us 2018 / 0305689 A1
    US 20180305689A1 ( 19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0305689 A1 Sætrom et al. ( 43 ) Pub . Date: Oct. 25 , 2018 ( 54 ) SARNA COMPOSITIONS AND METHODS OF plication No . 62 /150 , 895 , filed on Apr. 22 , 2015 , USE provisional application No . 62/ 150 ,904 , filed on Apr. 22 , 2015 , provisional application No. 62 / 150 , 908 , (71 ) Applicant: MINA THERAPEUTICS LIMITED , filed on Apr. 22 , 2015 , provisional application No. LONDON (GB ) 62 / 150 , 900 , filed on Apr. 22 , 2015 . (72 ) Inventors : Pål Sætrom , Trondheim (NO ) ; Endre Publication Classification Bakken Stovner , Trondheim (NO ) (51 ) Int . CI. C12N 15 / 113 (2006 .01 ) (21 ) Appl. No. : 15 /568 , 046 (52 ) U . S . CI. (22 ) PCT Filed : Apr. 21 , 2016 CPC .. .. .. C12N 15 / 113 ( 2013 .01 ) ; C12N 2310 / 34 ( 2013. 01 ) ; C12N 2310 /14 (2013 . 01 ) ; C12N ( 86 ) PCT No .: PCT/ GB2016 /051116 2310 / 11 (2013 .01 ) $ 371 ( c ) ( 1 ) , ( 2 ) Date : Oct . 20 , 2017 (57 ) ABSTRACT The invention relates to oligonucleotides , e . g . , saRNAS Related U . S . Application Data useful in upregulating the expression of a target gene and (60 ) Provisional application No . 62 / 150 ,892 , filed on Apr. therapeutic compositions comprising such oligonucleotides . 22 , 2015 , provisional application No . 62 / 150 ,893 , Methods of using the oligonucleotides and the therapeutic filed on Apr. 22 , 2015 , provisional application No . compositions are also provided . 62 / 150 ,897 , filed on Apr. 22 , 2015 , provisional ap Specification includes a Sequence Listing . SARNA sense strand (Fessenger 3 ' SARNA antisense strand (Guide ) Mathew, Si Target antisense RNA transcript, e . g . NAT Target Coding strand Gene Transcription start site ( T55 ) TY{ { ? ? Targeted Target transcript , e .
    [Show full text]
  • WO 2016/004387 Al 7 January 2016 (07.01.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/004387 Al 7 January 2016 (07.01.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61P 35/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 15/039 108 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 2 July 2015 (02.07.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/020,3 10 2 July 2014 (02.07.2014) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: H. LEE MOFFITT CANCER CENTER GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, AND RESEARCH INSTITUTE, INC. [US/US]; 12902 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Magnolia Dr., Tampa, FL 336 12-9497 (US).
    [Show full text]