Competition-Driven Speciation in Cichlid Fish

Total Page:16

File Type:pdf, Size:1020Kb

Competition-Driven Speciation in Cichlid Fish ARTICLE Received 30 Oct 2013 | Accepted 10 Feb 2014 | Published 28 Feb 2014 DOI: 10.1038/ncomms4412 Competition-driven speciation in cichlid fish Kai Winkelmann1,2, Martin J. Genner2, Tetsumi Takahashi3 & Lukas Ru¨ber4 Theoretically, competition can initiate divergence in habitat use between individuals of a species, leading to restricted gene flow and eventual speciation. Evidence that sister species differ in habitat use is commonplace and consistent with this mechanism, but empirical experimental support is surprisingly scarce. Here we provide evidence that competition has taken a key role in the evolution of genetically distinct ecomorphs of the Lake Tanganyika cichlid fish Telmatochromis temporalis. Experiments show that differences in substrate use between a large-bodied rock-living ecomorph and a neighbouring small-bodied shell-living ecomorph are mediated by size-dependent competition that drives assortative mate-pair formation. Specifically, adults of the larger ecomorph outcompete adults of the smaller ecomorph on favoured rock substrate, compelling the smaller adults to use shell habitat. These results support a role for competition in maintaining reproductive isolation, and highlight the need to identify ecological processes that impose selection to improve our understanding of speciation and adaptive radiation. 1 Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. 2 School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK. 3 Laboratory of Animal Ecology, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Kyoto 606-8502, Japan. 4 Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, Bern 3005, Switzerland. Correspondence and requests for materials should be addressed to K.W. (email: [email protected]) or to M.J.G. (email: [email protected]). NATURE COMMUNICATIONS | 5:3412 | DOI: 10.1038/ncomms4412 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4412 he theory of ecological speciation proposes that ecologi- a cally based divergent selection leads to the evolution of Tdifferences among populations in habitat use, in turn restricting gene flow and promoting reproductive isolation1,2. Relative success of individual phenotypes on different habitat types will depend on resources available3 and ecological interactions4,5 (such as competition, predation or parasitism) that impose natural selection upon them. Examples where ecological speciation has been invoked are widespread6,7 and there is abundant phylogenetic and population genetic evidence that the speciation process is frequently associated with divergent patterns of resource use. However, it is often unclear how selection has promoted the divergence of ecomorphs and driven associated assortative mating. There is need for more thorough investigations of how natural selection operates during speciation. b c Specifically, experimental evidence of competition’s role in speciation has remained elusive8,9. This is despite the concept 10 being implicit in the work of Darwin , evidence that competition 1 2 for limited resources can restrict habitat use and geographic Lake Tanganyika 11–13 overlap of species , and signs that competition can drive 3 divergent eco-phenotypic character displacement where closely 4 related lineages occur in sympatry14,15. 5 Theoretical studies predict competition as a driving force in speciation, particularly in non-allopatric scenarios16,17. In simulations, competition has either been modelled among individuals in a single environment competing for resource along Lufubu River a single axis (for example, food), or among individuals competing for resources along an environmental gradient (for example 13 18–20 12 temperature, humidity and soil nutrients) . Evidence from the 6 11 10 resource-use patterns and spatial distributions of sister species 7 pairs in nature conform to expected outcomes of such modelled Izi 8 processes, but direct experimental evidence of competition as a 9 driving force for evolutionary diversification is notably rare. River Moreover, whether competition can directly enforce reproduction Lunzua River isolation among populations remains an open question. Figure 1 | T. temporalis from Lake Tanganyika. (a) The smaller shell In this study, we used population genetic and experimental ecomorph occupies empty shells of the gastropod N. tanganyicense. Fish evidence to demonstrate a role for competition in speciation pictured are rock (right/orange) and shell (left/yellow) ecomorph males within the cichlid fish adaptive radiation of Lake Tanganyika in from localities 10 and 11, respectively. Scale bar, 10 mm. (b) Samples for East Africa. The littoral shoreline of this lake comprises a mosaic population-level phylogenetic analyses were from 13 sites in the south of of habitats, alternating between rock, open sand, vegetation- 21,22 the lake. Orange circles ¼ rock habitat sites and yellow circles ¼ shell dominated and patchily distributed shell beds . A species habitat. Site 13 was mixed rock and shell substrate. Live fish for behavioural characteristic of the rock and shell habitats is Telmatochromis experiments were from six sites (2, 3, 4, 5, 10 and 11). Scale bar, 10 km. temporalis (Cichlidae, Lamprologini), a substrate-spawner with 23 (c) Map of Africa with the East African Great Lakes, including Lake biparental care and a lake-wide distribution . To avoid predation Tanganyika. Scale bar, 2,000 km. by other fishes, mammals or birds, it uses rock or shell substrate for shelter, egg laying and rearing young. It has two distinct ecomorphs, a large-bodied rock-morph (wild adult males: 75.7– 88.1 mm standard length (SL), wild adult females: 53.1–62.0 mm ecomorph have greater gonad size than comparably size SL) and a small-bodied shell-morph (wild adult males: 40.3– individuals of larger rock ecomorph. This suggests that 44.8 mm SL, wild adult females: 26.8–29.4 mm SL) found on shell differences in development of gonads have a genetic basis, and 23 is consistent with field observations that the shell ecomorph beds , which are dominated by empty Neothauma gastropod 23,24 shells22 (Fig. 1a). The two habitats are typically separated by matures at a smaller size than the rock ecomorph . Finally, we stretches of sand or muddy habitat24–26. Analyses of field- demonstrate using a series of controlled laboratory experiments collected samples have shown evidence of reproduction isolation that divergent habitat-use patterns, and assortative mate-pair between the T. temporalis ecomorphs23,24, and has revealed formation can be replicated in laboratory conditions, and that differences between them in reproductive biology (egg number23 habitat use is determined by size-dependent competition for and size at reproduction23) and morphology (body shape24). territorial space. Given the widespread evidence for habitat However, previous research has not identified the mechanisms differences between sister species in nature, we conclude that restricting gene flow, or tested for a genetic basis to observed competition may have a broad role in generating patterns of phenotypic differences. divergent habitat use, which in turn promotes reproductive Here we present evidence from mitochondrial DNA (mtDNA) isolation and eventual speciation. sequences and nuclear AFLP (amplified fragment length poly- morphism) markers supporting the hypothesis that the shell and Results rock ecomorphs have diverged due to evolutionary processes Evolutionary history of populations. We sampled 13 popula- operating over local spatial scales. We next demonstrate using a tions covering 170 km of shoreline and encompassing both shell common garden experiment that individuals of the smaller shell and rock habitats (Fig. 1b; Supplementary Table 1). All shell 2 NATURE COMMUNICATIONS | 5:3412 | DOI: 10.1038/ncomms4412 | www.nature.com/naturecommunications & 2014 Macmillan Publishers Limited. All rights reserved. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4412 ARTICLE habitats were in close proximity to rock habitat (range 20 m to for differences in gonad mass between ecomorphs (rock/shell) 2 km). We reconstructed the evolutionary relationships of sam- and sampling sites (Chibwensolo 2-3, Mbita Island 10-11, Fig. 1), pled populations using mtDNA sequences and nuclear genome- while controlling for body mass, in males and females separately. wide AFLP markers (Fig. 2, Supplementary Figs 1 and 2). The Both sexes of the shell ecomorph had significantly greater gonad results showed that the primary genetic structure was explained mass than equivalents of the rock ecomorph (analysis of by geographic separation among populations, rather than diver- covariance (ANCOVA); males F1,77 ¼ 8.714, P ¼ 0.004, shell gence between ecomorphs (Supplementary Table 2). These results males n ¼ 42, rock males n ¼ 40; females F1,84 ¼ 26.440, imply that the processes that have driven and maintained the Po0.001, shell females n ¼ 43, rock females n ¼ 46; phenotypic and genetic divergence between neighbouring Supplementary Fig. 3). There was no significant difference ecomorphs occur at the local scale and are consistent with a between the Chibwensolo or Mbita island sampling sites for pattern of parallel evolution, suggested from previous analyses of males (ANCOVA; F1,77 ¼ 2.667, P ¼ 0.106), but a significant 23,24 microsatellite and mtDNA markers . difference was present for females (ANCOVA; F1,84 ¼ 4.214, P ¼ 0.043). Although the
Recommended publications
  • Molecular Phylogenetic Evidence That the Chinese Viviparid Genus Margarya (Gastropoda: Viviparidae) Is Polyphyletic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Article SPECIAL ISSUE June 2013 Vol.58 No.18: 21542162 Adaptive Evolution and Conservation Ecology of Wild Animals doi: 10.1007/s11434-012-5632-y Molecular phylogenetic evidence that the Chinese viviparid genus Margarya (Gastropoda: Viviparidae) is polyphyletic DU LiNa1, YANG JunXing1*, RINTELEN Thomas von2*, CHEN XiaoYong1 & 3 ALDRIDGE David 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin 10115, Germany; 3 Aquatic Ecology Group, Department of Zoology, Cambridge University, Downing Street, Cambridge CB2 3EJ, UK Received February 28, 2012; accepted May 25, 2012; published online February 1, 2013 We investigated the phylogeny of the viviparid genus Margarya, endemic to Yunnan, China, using two mitochondrial gene frag- ments (COI and 16S rRNA). The molecular phylogeny based on the combined dataset indicates that Margarya is polyphyletic, as two of the three well-supported clades containing species of Margarya also comprise species from other viviparid genera. In one clade, sequences of four species of Margarya even cluster indiscriminately with those of two species of Cipangopaludina, indi- cating that the current state of Asian viviparid taxonomy needs to be revised. Additionally, these data suggest that shell evolution in viviparids is complex, as even the large and strongly sculptured shells of Margarya, which are outstanding among Asian viviparids, can apparently be easily converted to simple smooth shells.
    [Show full text]
  • Chapter 6 Crabs
    Chapter 6. Freshwater crabs of Africa: diversity, distribution, and conservation. Cumberlidge, N.¹ ¹ Department of Biology, Northern Michigan University, Marquette, Michigan 49855, USA The Purple March Crab Afrithelphusa monodosa (Endangered) which lives in swamps and year-round wetland habitats in north-western Guinea where it is known from only a few specimens from two localities. This species is clearly a competent air-breather and has a pair of well-developed pseudolungs. It is mainly threatened by habitat loss and degradation. © PIOTR NASKREKI An unidentifi ed freshwater crab species within the family Potamonautes. This specimen was collected in central Africa, a region noted for its limited fi eld sampling. © DENIS TWEDDLE IUCN AFR2011_pp178-199_chapter 6_crabs V2.indd 178 4/3/11 18:59:15 The Purple March Crab Afrithelphusa monodosa (Endangered) which lives in swamps and year-round wetland habitats in north-western Guinea. © PIOTR NASKREKI Potamonautes lirrangensis (Least Concern), a relatively abundant and widespread species found in large slow fl owing rivers in rainforests across central and eastern Africa. © DENIS TWEDDLE CONTENTS 6.1 Overview of the African freshwater crab fauna 180 6.1.1 Biogeographic patterns 182 6.2 Conservation status 183 6.3 Patterns of species richness 184 6.3.1 All freshwater crab species: interpretation of distribution patterns 186 6.3.2 Threatened species 187 6.3.3 Restricted range species 188 6.3.4 Data Defi cient species 190 6.4 Major threats 191 6.4.1 Habitat destruction 191 6.4.2 Pollution 192 6.4.3
    [Show full text]
  • The Ohio Cichlid Associations Buckeye Bulletin Is Produced Monthly by the Ohio Cichlid Association
    The Ohio Cichlid Association Buckeye Bulletin December 2009 In This Issue: Extravaganza: Aquarists love OCA’s Cichlid & Catfish event. Why are we handing Ad Konings a giant check? Who is Jim Smith and what is the Jim Smith Memorial Fund? Next Meeting: Friday December 4th at 8pm OCA Mission The OCA is an organization dedicated to the advancement and dissemination of information relating to all aspects of the biology of cichlids and related aquatic life. Our purpose is to promote the interest, keeping, study, breeding, and the educational exhibition of Cichlids. Additionally, the exchange of ideas, meeting new people, and distribution of information concerning Cichlids is of primary interest. On The Cover This month’s cover features a pic from Extravaganza 2009. Ohio Cichlid Association President, Don Danko, (right) and Speaker Chairman, Dan Woodland (left) present Ad Konings a giant check. Why? See Extravaganza details inside. 2009 OHIO CICHLID ASSOCIATION OFFICERS Emperor Emeritus Mike Neelon President Don Danko 440-526-0755 Brecksville [email protected] Vice President Lew Carbone 419-681-1628 Norwalk [email protected] Treasurer Rhonda Sorensen 216-398-8966 Cleveland [email protected] Programs Dan Woodland 440-885-2033 Parma [email protected] Membership Kyle May 216-548-5165 Strongsville [email protected] Andrew Subotnik Barberton [email protected] B.A.P. Mark Chaloupka 330-468-1966 Northfield [email protected] Catfish B.A.P. Dave Ayres 330-758-2421 Boardman [email protected] Bowl Show Andrew Subotnik
    [Show full text]
  • Eco-Ethology of Shell-Dwelling Cichlids in Lake Tanganyika
    ECO-ETHOLOGY OF SHELL-DWELLING CICHLIDS IN LAKE TANGANYIKA THESIS Submitted in Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE of Rhodes University by IAN ROGER BILLS February 1996 'The more we get to know about the two greatest of the African Rift Valley Lakes, Tanganyika and Malawi, the more interesting and exciting they become.' L.C. Beadle (1974). A male Lamprologus ocel/alus displaying at a heterospecific intruder. ACKNOWLEDGMENTS The field work for this study was conducted part time whilst gworking for Chris and Jeane Blignaut, Cape Kachese Fisheries, Zambia. I am indebted to them for allowing me time off from work, fuel, boats, diving staff and equipment and their friendship through out this period. This study could not have been occured without their support. I also thank all the members of Cape Kachese Fisheries who helped with field work, in particular: Lackson Kachali, Hanold Musonda, Evans Chingambo, Luka Musonda, Whichway Mazimba, Rogers Mazimba and Mathew Chama. Chris and Jeane Blignaut provided funds for travel to South Africa and partially supported my work in Grahamstown. The permit for fish collection was granted by the Director of Fisheries, Mr. H.D.Mudenda. Many discussions were held with Mr. Martin Pearce, then the Chief Fisheries Officer at Mpulungu, my thanks to them both. The staff of the JLB Smith Institute and DIFS (Rhodes University) are thanked for help in many fields: Ms. Daksha Naran helped with computing and organisation of many tables and graphs; Mrs. S.E. Radloff (Statistics Department, Rhodes University) and Dr. Horst Kaiser gave advice on statistics; Mrs Nikki Kohly, Mrs Elaine Heemstra and Mr.
    [Show full text]
  • Lake Tanganyika Strategic Action Programme
    ,,,,/ The Strategic Action Programme for the Protection of Biodiversity and Sustainable Management of the Natural Resources of Lake Tanganyika and its Basin November 2010 1 Page for Signature 2 Contents ACKNOWLEDGMENTS ............................................................................................................................. 5 FOREWORD ............................................................................................................................................. 6 EXECUTIVE SUMMARY ............................................................................................................................. 8 ABBREVIATIONS AND ACRONYMS .......................................................................................................... 9 GLOSSARY OF TERMS ............................................................................................................................ 12 1 INTRODUCTION .................................................................................................................. 15 1.1 NEED FOR JOINT ACTION - SHARED RESOURCES IN LAKE TANGANYIKA AND ITS BASIN ............................ 15 1.1.1 The Lake Tanganyika and its Basin .................................................................................. 15 1.1.2 The People ....................................................................................................................... 16 1.1.3 Causes of Threats to Biodiversity and Sustainable Use of Natural Resources in the Lake Basin 18 1.1.4 Previous Projects
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Multilocus Phylogeny of the Afrotropical Freshwater Crab Fauna Reveals Historical Drainage Connectivity and Transoceanic Dispersal Since the Eocene
    Syst. Biol. 64(4):549–567, 2015 © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syv011 Advance Access publication February 3, 2015 Multilocus Phylogeny of the Afrotropical Freshwater Crab Fauna Reveals Historical Drainage Connectivity and Transoceanic Dispersal Since the Eocene ,∗ , SAV E L R. DANIELS1 ,ETHEL E. PHIRI1,SEBASTIAN KLAUS2 3,CHRISTIAN ALBRECHT4, AND NEIL CUMBERLIDGE5 1Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland 7602, South Africa; 2Department of Ecology and Evolution, J. W. Goethe-University, Biologicum, Frankfurt am Main 60438, Germany; 3Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Peoples Republic of China; 4Department of Animal Ecology and Systematics, Justus Liebig University, Giessen 35392, Germany; and 5Department of Biology, Northern Michigan University, Marquette, MI 49855-5376, USA ∗ Correspondence to be sent to: Department of Botany and Zoology, Private Bag X1, University of Stellenbosch, Matieland 7602, South Africa; E-mail: mailto:[email protected] Received 15 November 2014; reviews returned 22 December 2014; accepted 28 January 2015 Associate Editor: Adrian Paterson Abstract.—Phylogenetic reconstruction, divergence time estimations and ancestral range estimation were undertaken for 66% of the Afrotropical freshwater crab fauna (Potamonautidae) based on four partial DNA loci (12S rRNA, 16S rRNA, cytochrome oxidase one [COI], and histone 3). The present study represents the most comprehensive taxonomic sampling of any freshwater crab family globally, and explores the impact of paleodrainage interconnectivity on cladogenesis among freshwater crabs. Phylogenetic analyses of the total evidence data using maximum-likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) produced a robust statistically well-supported tree topology that reaffirmed the monophyly of the Afrotropical freshwater crab fauna.
    [Show full text]
  • "The Status and Distribution of Freshwater Crabs [Central Africa]" Neil Cumberlidge Northern Michigan University
    Northern Michigan University The Commons Book Sections/Chapters 2011 "The status and distribution of freshwater crabs [Central Africa]" Neil Cumberlidge Northern Michigan University Follow this and additional works at: http://commons.nmu.edu/facwork_bookchapters Part of the Biology Commons Recommended Citation Cumberlidge N. 2011. Chapter 6. The ts atus and distribution of freshwater crabs, pp. 71-78. In: Brooks, E.G.E., Allen, D.J. and Darwall, W.R.T. (Compilers). 2011. The tS atus and Distribution of Freshwater Biodiversity in Central Africa. Gland, Switzerland and Cambridge, UK: IUCN: i-ix+140pp. This Book Section/Chapter is brought to you for free and open access by The ommonC s. It has been accepted for inclusion in Book Sections/Chapters by an authorized administrator of The ommonC s. For more information, please contact [email protected],[email protected], [email protected], [email protected]. Chapter 6. Freshwater crabs of Africa: diversity, distribution, and conservation. Cumberlidge, N.¹ ¹ Department of Biology, Northern Michigan University, Marquette, Michigan 49855, USA The Purple March Crab Afrithelphusa monodosa (Endangered) which lives in swamps and year-round wetland habitats in north-western Guinea where it is known from only a few specimens from two localities. This species is clearly a competent air-breather and has a pair of well-developed pseudolungs. It is mainly threatened by habitat loss and degradation. © PIOTR NASKREKI An unidentifi ed freshwater crab species within the family Potamonautes. This specimen was collected in central Africa, a region noted for its limited fi eld sampling. © DENIS TWEDDLE The Purple March Crab Afrithelphusa monodosa (Endangered) which lives in swamps and year-round wetland habitats in north-western Guinea.
    [Show full text]
  • Characterizing Molluscan Shell Accumulations: Ecological, Depositional and Taphonomic Variations on the Northern Luiche River Platform
    Characterizing Molluscan Shell Accumulations: Ecological, Depositional and Taphonomic Variations on the Northern Luiche River Platform Students: Oceana S. Castañeda (Dartmouth College) Christine S. O’Connell (Stanford University) Mentors: Ellinor Michel and Mike Soreghan Introduction Shell gravel deposits represent geologic facies that persist into deep time as well as unique modern ecological habitats (Kidwell, 1986). Lake Tanganyika, East Africa, is home to numerous distinct facies and habitat types and provides a potential model system for understanding shell beds on a wider scale. In this ancient rift lake shell gravel occurs along axial, hinged and accommodation zone margins and seems to be particularly extensive near the mouths of relatively large rivers (Soreghan and Cohen, 1996). In the Kigoma region shell beds exist both on high-energy headlands and also blanketing the low-energy Luiche River delta platform (McGlue, et. al, 2005). However, little is understood about the mechanism by which these deposits may have formed. Examination of the northern Luiche River delta’s shell gravel has the potential to suggest a formation mechanism for these shell lags. Lake Tanganyika houses a robust sedimentary record that can be used to understand past changes in paleoenvironmental dynamics, land use and lake chemistry. However, accurate interpretation of the sedimentation record depends directly on an accurate understanding and interpretation of modern sedimentation patterns and mechanisms. The first step in understanding the depositional mechanism for the Luiche delta shell beds is to determine the source of the shell material. Lake Tanganyika’s shell beds consist primarily of the bivalve genus Caelatura and the endemic gastropod species Neothauma tanganyicense, both of which are poorly understood ecologically.
    [Show full text]
  • Rapid Divergence of Telmatochromis Temporalis Ecomorphs Following
    Winkelmann, K., Ruber, L., & Genner, M. J. (2017). Lake level fluctuations and divergence of cichlid fish ecomorphs in Lake Tanganyika. Hydrobiologia, 791(1), 21-34. https://doi.org/10.1007/s10750-016-2839-y Peer reviewed version Link to published version (if available): 10.1007/s10750-016-2839-y Link to publication record in Explore Bristol Research PDF-document This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Springer at http://link.springer.com/article/10.1007/s10750-016-2839-y. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ 1 Lake level fluctuations and divergence of cichlid fish 2 ecomorphs in Lake Tanganyika 3 4 Kai Winkelmann, Lukas Rüber, Martin J. Genner 5 6 Kai Winkelmann. Department of Life Sciences, The Natural History Museum, Cromwell 7 Road, London, SW7 5BD, UK. 8 9 Martin Genner and Kai Winkelmann. School of Biological Sciences, Life Sciences Building, 10 24 Tyndall Avenue, Bristol, BS8 1TQ, UK. 11 12 Lukas Rüber. Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 13 Bern, Switzerland and Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 14 6, 3012 Bern, Switzerland. 15 16 Correspondence: Martin Genner, e-mail: [email protected] 17 18 Keywords: ecological speciation, parallel evolution, population genetics, demographic 19 history 20 1 21 Abstract 22 23 Lake Tanganyika has undergone substantial climate-driven lake level fluctuations that have 24 repeatedly changed the distribution and extent of habitat for endemic fishes.
    [Show full text]
  • 1471-2148-7-7.Pdf
    BMC Evolutionary Biology BioMed Central Research article Open Access Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika – the result of repeated introgressive hybridization Stephan Koblmüller1, Nina Duftner2, Kristina M Sefc1, Mitsuto Aibara3, Martina Stipacek1, Michel Blanc1, Bernd Egger1 and Christian Sturmbauer*1 Address: 1Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria, 2Section of Integrative Biology, University of Texas at Austin,1 University Station, #C0930, Austin, TX 78712, USA and 3Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B21-4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan Email: Stephan Koblmüller - [email protected]; Nina Duftner - [email protected]; Kristina M Sefc - [email protected]; Mitsuto Aibara - [email protected]; Martina Stipacek - [email protected]; Michel Blanc - [email protected]; Bernd Egger - [email protected]; Christian Sturmbauer* - [email protected] * Corresponding author Published: 25 January 2007 Received: 12 October 2006 Accepted: 25 January 2007 BMC Evolutionary Biology 2007, 7:7 doi:10.1186/1471-2148-7-7 This article is available from: http://www.biomedcentral.com/1471-2148/7/7 © 2007 Koblmüller et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The tribe Lamprologini is the major substrate breeding lineage of Lake Tanganyika's cichlid species flock. Among several different life history strategies found in lamprologines, the adaptation to live and breed in empty gastropod shells is probably the most peculiar.
    [Show full text]
  • Depth Segregation and Diet Disparity Revealed by Stable Isotope Analyses
    Hata et al. Zoological Letters (2015) 1:15 DOI 10.1186/s40851-015-0016-1 RESEARCH ARTICLE Open Access Depth segregation and diet disparity revealed by stable isotope analyses in sympatric herbivorous cichlids in Lake Tanganyika Hiroki Hata1*, Jyunya Shibata2,3, Koji Omori2, Masanori Kohda4 and Michio Hori5 Abstract Background: Lake Tanganyika in the African Great Rift Valley is known as a site of adaptive radiation in cichlid fishes. Diverse herbivorous fishes coexist on a rocky littoral of the lake. Herbivorous cichlids have acquired multiple feeding ecomorphs, including grazer, browser, scraper, and scooper, and are segregated by dietary niche. Within each ecomorph, however, multiple species apparently coexist sympatrically on a rocky slope. Previous observations of their behavior show that these cichlid species inhabit discrete depths separated by only a few meters. In this paper, using carbon (C) and nitrogen (N) stable isotope ratios as markers, we followed the nutritional uptake of cichlid fishes from periphyton in their feeding territories at various depths. Results: δ15N of fish muscles varied among cichlid ecomorphs; this was significantly lower in grazers than in browsers and scoopers, although δ15N levels in periphyton within territories did not differ among territorial species. This suggests that grazers depend more directly on primary production of periphyton, while others ingest animal matter from higher trophic levels. With respect to δ13C, only plankton eaters exhibited lower values, suggesting that these fishes depend on production of phytoplankton, while the others depend on production of periphyton. Irrespective of cichlid ecomorph, δ13C of periphyton correlated significantly with habitat depth, and decreased as habitat depth became deeper.
    [Show full text]