Stage-Specific Proteomic Expression Patterns of the Human Filarial

Total Page:16

File Type:pdf, Size:1020Kb

Stage-Specific Proteomic Expression Patterns of the Human Filarial Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia Sasisekhar Bennurua,1, Zhaojing Mengb, José M. C. Ribeiroc, Roshanak Tolouei Semnania, Elodie Ghedind, King Chanb, David A. Lucasb, Timothy D. Veenstrab, and Thomas B. Nutmana aLaboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892; bLaboratory of Proteomics and Analytical Technologies, Advanced Technology Program, SAIC–Frederick, Frederick, MD 21702; cLaboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892; and dCenter for Vaccine Research, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Paul B. Rainey, Massey University, Auckland, New Zealand, and accepted by the Editorial Board May 1, 2011 (received for review August 5, 2010) Global proteomic analyses of pathogens have thus far been limited stop codon read-throughs, frame shifts, and predicted orphan to unicellular organisms (e.g., protozoa and bacteria). Proteomic genes. These data also can help delineate the expression status of analyses of most eukaryotic pathogens (e.g., helminths) have been known and predicted/hypothetical genes. restricted to specific organs, specific stages, or secretomes. We Proteomic analyses of most eukaryotic pathogens (e.g., hel- report here a large-scale proteomic characterization of almost all minths) have been restricted to specific organs, specific stages, or the major mammalian stages of Brugia malayi, a causative agent secretomes. Previously, we and others have described the secre- of lymphatic filariasis, resulting in the identification of more than tomes of Bm (1–3). We report here large-scale proteomic anal- 62% of the products predicted from the Bm draft genome. The yses of almost all the major mammalian stages of Bm, resulting in analysis also yielded much of the proteome of Wolbachia, the the identification of more than 62% of the products predicted obligate endosymbiont of Bm that also expressed proteins in from the Bm draft genome (4). We also report the identification a stage-specific manner. Of the 11,610 predicted Bm gene prod- of the majority of the expressed proteins of the Bm–Wolbachia ucts, 7,103 were definitively identified from adult male, adult fe- (wBm), the obligate endosymbiont of Bm that also appears to male, blood-borne and uterine microfilariae, and infective L3 express proteins in a stage-specific manner. larvae. Among the 4,956 gene products (42.5%) inferred from the genome as “hypothetical,” the present study was able to con- Results fi fi rm 2,336 (47.1%) as bona de proteins. Analysis of protein fam- Overview of Bm Proteome. To assemble a high-density proteome ilies and domains coupled with stage-specific expression highlight map of Bm, proteins from the adult male (AM) and adult female the important pathways that benefit the parasite during its de- (AF) parasites, microfilariae (MF), L3 larvae (L3), and the im- fi velopment in the host. Gene set enrichment analysis identi ed mature (i.e., uterine) MF (UTMF) were extracted. After having extracellular matrix proteins and those with immunologic effects been digested into tryptic peptides, each stage was analyzed in- fi as enriched in the micro larial and L3 stages. Parasite sex- and dependently by using reverse-phase liquid chromatography– fi fi stage-speci c protein expression identi ed those pathways re- tandem MS (RPLC-MS/MS). The spectra were searched against fi lated to parasite differentiation and demonstrates stage-speci c the genomic databases for Bm and its endosymbiont Wolbachia expression by the Bm endosymbiont Wolbachia as well. (wBm). A total of 72,318 unique peptides were matched to 6,981 proteins (3,653, 3,688, 3,135, 2,672, and 4,843 proteins) from filaria | nematode AM, AF, MF, L3 larvae, and UTMF, respectively (SI Appendix, Table S1). Combining these data with those from a study per- isease associated with infection by Brugia malayi (Bm) and formed previously on the Bm secretome (1) (that included 122 DWuchereria bancrofti, the two major causative organisms of proteins not found in the current analyses) and 164 additional human lymphatic filariasis, is the second leading cause of mor- proteins (based on peptide matches that identified more than bidity/disability worldwide, in large part because of the parasites’ one protein; SI Appendix, Table S2) resulted in the definitive ability to alter the structural and functional integrity of the identification of a total of 7,103 proteins of the 11,610 proteins lymphatics, leading to lymphedema and elephantiasis. Invasion, (∼61%) predicted from the genome (4) [Fig. 1A and SI Appen- establishment of infection within the host and development are dix, Table S2; Brugia Proteome Database (http://exon.niaid.nih. essential processes within the complex parasite life cycle (SI gov/transcriptome/brugia/Brugia_Proteome.zip)]. MICROBIOLOGY Appendix, Fig. S1), with many of the parasitic stages being targets Genomic analysis predicted that 4,956 (42.7%) of the 11,610 for therapeutic intervention or vaccines. Each of the filarial life potential proteins were hypothetical proteins; the present study cycle stages has characteristics that are shared and others that are stage-specific. Filarial infections are often characterized by a series of dis- Author contributions: S.B. and T.B.N. designed research; S.B., Z.M., J.M.C.R., K.C., and crete host responses directed at the parasite and its endosym- D.A.L. performed research; J.M.C.R., E.G., T.D.V., and T.B.N. contributed new reagents/ biont Wolbachia that evolve during the course of infection. analytic tools; S.B., Z.M., J.M.C.R., R.T.S., E.G., T.D.V., and T.B.N. analyzed data; and S.B. Because proteins are usually the effectors of most biological and T.B.N. wrote the paper. fl functions, proteomic data enable a more direct understanding of The authors declare no con ict of interest. these important processes compared with those inferred from This article is a PNAS Direct Submission. P.B.R. is a guest editor invited by the Editorial Board. genomic studies. Absolute quantification of genome-wide ex- Data deposition: Detailed database and extensive annotation of the genome-wide pro- pressed proteins is not yet within our reach for most eukaryotes. teins identified from Brugia malayi and its endosymbiont Wolbachia is available for However, spectral counts of massive MS-based data (e.g., ob- download from the National Institutes of Health server mentioned in the manuscript. served frequencies of each peptide) allow for relative quantifi- 1To whom correspondence should be addressed. E-mail: [email protected]. cation. Proteomic data also allow for clearer genomic curation by This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. improving annotation and the identification of translational sites, 1073/pnas.1011481108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1011481108 PNAS | June 7, 2011 | vol. 108 | no. 23 | 9649–9654 Downloaded by guest on September 26, 2021 Fig. 1. (A) Venn diagrams illustrating the overview of the Brugia proteome. The total numbers of proteins definitively identified (N = 7,103) include the excretory-secretory products and the somatic proteins. In addition, the 164 proteins for which a definitive identification could not be made are depicted separately as nonunique. (B) Functional annotation of the total Brugia proteome. Pie chart representing the percentage of proteins within each functional category as a function of the total proteome. Only a single annotation was assigned to a given protein. All unknown and hypothetical proteins have been classified as uncharacterized. Note that metabolism includes amino acid, carbohydrate, nuclear, and energy metabolism. A complete list is given with ad- ditional annotation and embedded links in the Brugia Proteome Database (http://exon.niaid.nih.gov/transcriptome/brugia/Brugia_Proteome.zip). was able to confirm 2,336 (47.1%) of these 4,956 predicted proteins identified by LC-MS/MS (SI Appendix, Fig. S4, red) proteins as bona fide proteins. Interestingly, 594 of these 2,336 suggests a close overlap between the two sets of data (Fig. S4), hypothetical proteins are classified as “conserved hypothetical but the larger proteins were more readily detected by LC-MS/ proteins.” Although the function of these “conserved” proteins is MS than those with lower molecular weight (MW). Indeed, the not completely known, approximately 30% of these could be median length of the proteins detected using LC-MS/MS was 353 assigned probable functions based on a conserved sequence residues, whereas that of the nondetected proteins (inferred motif or subtle similarities to other characterized functional and from the genome) was 168 residues (SI Appendix, Fig. S5). The structural features. Moreover, there appears to be some stage- LC-MS/MS identification of a greater number of higher-MW specific enrichment/abundance of many of the conserved hypo- proteins (compared with lower-MW proteins) could be a result thetical proteins (SI Appendix, Fig. S2) that may fill in the gaps of Bm using multidomain proteins in its parasitic lifestyle or believed to be missing in specific metabolic pathways or that may because smaller proteins generate fewer tryptic peptides avail- act as mediators with activities that have not been recognized able for identification. Although the latter hypothesis seems to previously (reviewed in ref. 5). be supported by the increasing number of peptides detected in relation to size (SI Appendix, Fig. S6), analysis of the number of fi fi Stage-Speci c Expression. Among the identi ed proteins from peptides identified as a proportion of the total theoretical tryptic each of the stages (Fig. 1A), 31% (2,255 and 7,267) were fi peptides (SI Appendix, Fig. S7) does not suggest that there was expressed exclusively in one of the ve stages analyzed.
Recommended publications
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • Gastrointestinal Helminthic Parasites of Habituated Wild Chimpanzees
    Aus dem Institut für Parasitologie und Tropenveterinärmedizin des Fachbereichs Veterinärmedizin der Freien Universität Berlin Gastrointestinal helminthic parasites of habituated wild chimpanzees (Pan troglodytes verus) in the Taï NP, Côte d’Ivoire − including characterization of cultured helminth developmental stages using genetic markers Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Sonja Metzger Tierärztin aus München Berlin 2014 Journal-Nr.: 3727 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Georg von Samson-Himmelstjerna Zweiter Gutachter: Univ.-Prof. Dr. Heribert Hofer Dritter Gutachter: Univ.-Prof. Dr. Achim Gruber Deskriptoren (nach CAB-Thesaurus): chimpanzees, helminths, host parasite relationships, fecal examination, characterization, developmental stages, ribosomal RNA, mitochondrial DNA Tag der Promotion: 10.06.2015 Contents I INTRODUCTION ---------------------------------------------------- 1- 4 I.1 Background 1- 3 I.2 Study objectives 4 II LITERATURE OVERVIEW --------------------------------------- 5- 37 II.1 Taï National Park 5- 7 II.1.1 Location and climate 5- 6 II.1.2 Vegetation and fauna 6 II.1.3 Human pressure and impact on the park 7 II.2 Chimpanzees 7- 12 II.2.1 Status 7 II.2.2 Group sizes and composition 7- 9 II.2.3 Territories and ranging behavior 9 II.2.4 Diet and hunting behavior 9- 10 II.2.5 Contact with humans 10 II.2.6
    [Show full text]
  • Ascaris Lumbricoides, Roundworm, Causative Agent Of
    http://www.MetaPathogen.com: Human roundworm, Ascaris lumbricoides ● Ascaris lumbricoides taxonomy ● Brief facts ● Developmental stages ● Treatment ● References Ascaris lumbricoides taxonomy cellular organisms - Eukaryota - Fungi/Metazoa group - Metazoa - Eumetazoa - Bilateria - Pseudocoelomata - Nematoda - Chromadorea - Ascaridida - Ascaridoidea - Ascarididae - Ascaris - Ascaris lumbricoides Brief facts ● Together with human hookworms (Ancylostoma duodenale and Necator americanus also described at MetaPathogen) and whipworms (Trichuris trichiura), Ascaris lumbricoides (human roundworms) belong to a group of so-called soil-transmitted helminths that represent one of the world's most important causes of physical and intellectual growth retardation. ● Today, ascariasis is among the most important tropical diseases in humans with more than billion infected people world-wide. Ascariasis is mostly seen in tropical and subtropical countries because of warm and humid conditions that facilitate development and survival of eggs. The majority of infections occur in Asia (up to 73%), followed by Africa (~12%) and Latin America (~8%). ● Ascaris lumbricoides is one of six worms listed and named by Linnaeus. Its name has remained unchanged up to date. ● Ascariasis is an ancient infection, and A. lumbricoides have been found in human remains from Peru dating as early as 2277 BC. There are records of A. lumbricoides in Egyptian mummy dating from 1938 to 1600 BC. Despite of long history of awareness and scientific observations, the parasite's life cycle in humans, including the migration of the larval stages around the body, was discovered only in 1922 by a Japanese pediatrician, Shimesu Koino. ● Unlike the hookworm, whose third-stage (L3) larvae actively penetrate skin, A. lumbricoides (as well as T. trichiura) is transmitted passively within the eggs after being swallowed by the host as a result of fecal contamination.
    [Show full text]
  • Brugia Pahangi
    RESEARCH ARTICLE Efficacy of subcutaneous doses and a new oral amorphous solid dispersion formulation of flubendazole on male jirds (Meriones unguiculatus) infected with the filarial nematode Brugia pahangi Chelsea Fischer1, Iosune Ibiricu Urriza1, Christina A. Bulman1, KC Lim1, Jiri Gut1, a1111111111 Sophie Lachau-Durand2, Marc Engelen2, Ludo Quirynen2, Fetene Tekle2, Benny Baeten2, 3 4 1 a1111111111 Brenda Beerntsen , Sara Lustigman , Judy SakanariID * a1111111111 a1111111111 1 Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America, 2 Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium, 3 Veterinary a1111111111 Pathobiology, University of Missouri-Columbia, Columbia, Missouri, United States of America, 4 Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America * [email protected] OPEN ACCESS Citation: Fischer C, Ibiricu Urriza I, Bulman CA, Lim K, Gut J, Lachau-Durand S, et al. (2019) Efficacy of Abstract subcutaneous doses and a new oral amorphous solid dispersion formulation of flubendazole on River blindness and lymphatic filariasis are two filarial diseases that globally affect millions male jirds (Meriones unguiculatus) infected with of people mostly in impoverished countries. Current mass drug administration programs rely the filarial nematode Brugia pahangi. PLoS Negl on drugs that primarily target the microfilariae, which are released from adult female worms. Trop Dis 13(1): e0006787. https://doi.org/10.1371/ journal.pntd.0006787 The female worms can live for several years, releasing millions of microfilariae throughout the course of infection. Thus, to stop transmission of infection and shorten the time to elimi- Editor: Roger K.
    [Show full text]
  • "Structure, Function and Evolution of the Nematode Genome"
    Structure, Function and Advanced article Evolution of The Article Contents . Introduction Nematode Genome . Main Text Online posting date: 15th February 2013 Christian Ro¨delsperger, Max Planck Institute for Developmental Biology, Tuebingen, Germany Adrian Streit, Max Planck Institute for Developmental Biology, Tuebingen, Germany Ralf J Sommer, Max Planck Institute for Developmental Biology, Tuebingen, Germany In the past few years, an increasing number of draft gen- numerous variations. In some instances, multiple alter- ome sequences of multiple free-living and parasitic native forms for particular developmental stages exist, nematodes have been published. Although nematode most notably dauer juveniles, an alternative third juvenile genomes vary in size within an order of magnitude, com- stage capable of surviving long periods of starvation and other adverse conditions. Some or all stages can be para- pared with mammalian genomes, they are all very small. sitic (Anderson, 2000; Community; Eckert et al., 2005; Nevertheless, nematodes possess only marginally fewer Riddle et al., 1997). The minimal generation times and the genes than mammals do. Nematode genomes are very life expectancies vary greatly among nematodes and range compact and therefore form a highly attractive system for from a few days to several years. comparative studies of genome structure and evolution. Among the nematodes, numerous parasites of plants and Strikingly, approximately one-third of the genes in every animals, including man are of great medical and economic sequenced nematode genome has no recognisable importance (Lee, 2002). From phylogenetic analyses, it can homologues outside their genus. One observes high rates be concluded that parasitic life styles evolved at least seven of gene losses and gains, among them numerous examples times independently within the nematodes (four times with of gene acquisition by horizontal gene transfer.
    [Show full text]
  • Molecular Phylogenetic Studies of the Genus Brugia Hong Xie Yale Medical School
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 1994 Molecular Phylogenetic Studies of the Genus Brugia Hong Xie Yale Medical School O. Bain Biologie Parasitaire, Protistologie, Helminthologie, Museum d’Histoire Naturelle Steven A. Williams Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Xie, Hong; Bain, O.; and Williams, Steven A., "Molecular Phylogenetic Studies of the Genus Brugia" (1994). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/37 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] Article available at http://www.parasite-journal.org or http://dx.doi.org/10.1051/parasite/1994013255 MOLECULAR PHYLOGENETIC STUDIES ON BRUGIA FILARIAE USING HHA I REPEAT SEQUENCES XIE H.*, BAIN 0.** and WILLIAMS S. A.*,*** Summary : Résumé : ETUDES PHYLOGÉNÉTIQUES MOLÉCULAIRES DES FILAIRES DU GENRE BRUGIA À L'AIDE DE: LA SÉQUENCE RÉPÉTÉE HHA I This paper is the first molecular phylogenetic study on Brugia para• sites (family Onchocercidae) which includes 6 of the 10 species Cet article est la première étude plylogénétique moléculaire sur les of this genus : B. beaveri Ash et Little, 1964; B. buckleyi filaires du genre Brugia (Onchocercidae); elle inclut six des 10 Dissanaike et Paramananthan, 1961 ; B. malayi (Brug,1927) espèces du genre : B. beaveri Ash et Little, 1964; B. buckleyi Buckley, 1960 ; B. pohangi, (Buckley et Edeson, 1956) Buckley, Dissanaike et Paramananthan, 1961; B. malayi (Brug, 1927) 1960; B. patei (Buckley, Nelson et Heisch,1958) Buckley, 1960 Buckley, 1960; B.
    [Show full text]
  • Filarial Genomics Steven A
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 11-2004 Filarial Genomics Steven A. Williams Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Williams, Steven A., "Filarial Genomics" (2004). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/45 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] GLOBAL PROGRAM TO ELIMINATE LF 37 3.3 FILARIAL GENOMICS Steven A. Williams Summary of Prioritized Research Needs but few genes were cloned and identified. By the end of 1994, only 60 Brugia genes had been submitted to the Genbank 1) Collecting materials database. It was clear that a new approach for studying the a) Before the opportunity is lost to preserve their ge- filarial genome was needed to make rapid progress in under- nomes, collect geographically representative isolates of standing the biology and biochemistry of these parasites. The the various species and strains of the human filarial genome project approach represented a complete departure parasites, from the way parasite genes had been studied in the past. 2) Constructing libraries Genome projects are typically not directed at the identifica- a) Construct updated and additional genomic and cDNA tion of individual genes, but instead at the identification, clon- libraries to represent completely the different stages ing, and sequencing of all the organism’s genes. and species of filarial parasites, At the first meeting of the Filarial Genome Project (1994), 3) Sequencing B.
    [Show full text]
  • Genomics of Loa Loa, a Wolbachia-Free Filarial Parasite of Humans
    ARTICLES OPEN Genomics of Loa loa, a Wolbachia-free filarial parasite of humans Christopher A Desjardins1, Gustavo C Cerqueira1, Jonathan M Goldberg1, Julie C Dunning Hotopp2, Brian J Haas1, Jeremy Zucker1, José M C Ribeiro3, Sakina Saif1, Joshua Z Levin1, Lin Fan1, Qiandong Zeng1, Carsten Russ1, Jennifer R Wortman1, Doran L Fink4,5, Bruce W Birren1 & Thomas B Nutman4 Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, L. loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4-Mb genome of L. loa and that of the related filarial parasite Wuchereria bancrofti and predict 14,907 L. loa genes on the basis of microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to those of several other nematodes, we demonstrate synteny among filariae but not with nonparasitic nematodes. The L. loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for use in humans. Despite lacking Wolbachia, L. loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role of Wolbachia in filarial biology is more subtle All rights reserved. than previously thought and reveal marked differences between parasitic and nonparasitic nematodes. Filarial nematodes dwell within the lymphatics and subcutaneous (but not the worm itself) have shown efficacy in treating humans tissues of up to 170 million people worldwide and are responsible with these infections4,5. Through genomic analysis, Wolbachia have for notable morbidity, disability and socioeconomic loss1.
    [Show full text]
  • Free-Living Marine Nematodes from San Antonio Bay (Río Negro, Argentina)
    A peer-reviewed open-access journal ZooKeys 574: 43–55Free-living (2016) marine nematodes from San Antonio Bay (Río Negro, Argentina) 43 doi: 10.3897/zookeys.574.7222 DATA PAPER http://zookeys.pensoft.net Launched to accelerate biodiversity research Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina) Gabriela Villares1, Virginia Lo Russo1, Catalina Pastor de Ward1, Viviana Milano2, Lidia Miyashiro3, Renato Mazzanti3 1 Laboratorio de Meiobentos LAMEIMA-CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina 2 Universidad Nacional de la Patagonia San Juan Bosco, sede Puerto Madryn. Boulevard Brown 3051, U9120ACF, Puerto Madryn, Argentina 3Centro de Cómputos CENPAT-CONICET, Boulevard Brown 2915, U9120ACF, Puerto Madryn, Argentina Corresponding author: Gabriela Villares ([email protected]) Academic editor: H-P Fagerholm | Received 18 November 2015 | Accepted 11 February 2016 | Published 28 March 2016 http://zoobank.org/3E8B6DD5-51FA-499D-AA94-6D426D5B1913 Citation: Villares G, Lo Russo V, Pastor de Ward C, Milano V, Miyashiro L, Mazzanti R (2016) Free-living marine nematodes from San Antonio Bay (Río Negro, Argentina). ZooKeys 574: 43–55. doi: 10.3897/zookeys.574.7222 Abstract The dataset of free-living marine nematodes of San Antonio Bay is based on sediment samples collected in February 2009 during doctoral theses funded by CONICET grants. A total of 36 samples has been taken at three locations in the San Antonio Bay, Santa Cruz Province, Argentina on the coastal littoral at three tidal levels. This presents a unique and important collection for benthic biodiversity assessment of Patagonian nematodes as this area remains one of the least known regions.
    [Show full text]
  • Susceptibility in Armigeres Subalbatus
    Mosquito Transcriptome Profiles and Filarial Worm Susceptibility in Armigeres subalbatus Matthew T. Aliota1, Jeremy F. Fuchs1, Thomas A. Rocheleau1, Amanda K. Clark2, Julia´n F. Hillyer2, Cheng- Chen Chen3, Bruce M. Christensen1* 1 Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 2 Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee, United States of America, 3 Department of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan Authority Abstract Background: Armigeres subalbatus is a natural vector of the filarial worm Brugia pahangi, but it kills Brugia malayi microfilariae by melanotic encapsulation. Because B. malayi and B. pahangi are morphologically and biologically similar, comparing Ar. subalbatus-B. pahangi susceptibility and Ar. subalbatus-B. malayi refractoriness could provide significant insight into recognition mechanisms required to mount an effective anti-filarial worm immune response in the mosquito, as well as provide considerable detail into the molecular components involved in vector competence. Previously, we assessed the transcriptional response of Ar. subalbatus to B. malayi, and now we report transcriptome profiling studies of Ar. subalbatus in relation to filarial worm infection to provide information on the molecular components involved in B. pahangi susceptibility. Methodology/Principal Findings: Utilizing microarrays, comparisons were made between mosquitoes exposed
    [Show full text]
  • The Influence of Human Settlements on Gastrointestinal Helminths of Wild Monkey Populations in Their Natural Habitat
    The influence of human settlements on gastrointestinal helminths of wild monkey populations in their natural habitat Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) – Universitätsbereich genehmigte DISSERTATION von Dipl. Biol. Alexandra Mücke geboren in Germersheim Dekan: Prof. Dr. Martin Bastmeyer Referent: Prof. Dr. Horst F. Taraschewski 1. Korreferent: Prof. Dr. Eckhard W. Heymann 2. Korreferent: Prof. Dr. Doris Wedlich Tag der mündlichen Prüfung: 16.12.2011 To Maya Index of Contents I Index of Contents Index of Tables ..............................................................................................III Index of Figures............................................................................................. IV Abstract .......................................................................................................... VI Zusammenfassung........................................................................................VII Introduction ......................................................................................................1 1.1 Why study primate parasites?...................................................................................2 1.2 Objectives of the study and thesis outline ................................................................4 Literature Review.............................................................................................7 2.1 Parasites
    [Show full text]
  • Guide to the Parasites of Fishes of Canada Part V: Nematoda
    Wilfrid Laurier University Scholars Commons @ Laurier Biology Faculty Publications Biology 2016 ZOOTAXA: Guide to the Parasites of Fishes of Canada Part V: Nematoda Hisao P. Arai Pacific Biological Station John W. Smith Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/biol_faculty Part of the Biology Commons, and the Marine Biology Commons Recommended Citation Arai, Hisao P., and John W. Smith. Zootaxa: Guide to the Parasites of Fishes of Canada Part V: Nematoda. Magnolia Press, 2016. This Book is brought to you for free and open access by the Biology at Scholars Commons @ Laurier. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Zootaxa 4185 (1): 001–274 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4185.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0D054EDD-9CDC-4D16-A8B2-F1EBBDAD6E09 ZOOTAXA 4185 Guide to the Parasites of Fishes of Canada Part V: Nematoda HISAO P. ARAI3, 5 & JOHN W. SMITH4 3Pacific Biological Station, Nanaimo, British Columbia V9R 5K6 4Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5. E-mail: [email protected] 5Deceased Magnolia Press Auckland, New Zealand Accepted by K. DAVIES (Initially edited by M.D.B. BURT & D.F. McALPINE): 5 Apr. 2016; published: 8 Nov. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 HISAO P. ARAI & JOHN W.
    [Show full text]