Gene Expression in the Microfilariae of Brugia Pahangi

Total Page:16

File Type:pdf, Size:1020Kb

Gene Expression in the Microfilariae of Brugia Pahangi GENE EXPRESSION IN THE MICROFILARIAE OF BRUGIA PAHANGI RICHARD DAVID EMES A thesis submitted for the degree of Doctor of Philosophy Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Glasgow University June 2000 © Richard D Ernes 2000 ProQuest Number: 13818964 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818964 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY 1184 3 COPH \ To Mum and Dad With love and thanks. List of Contents Page List of Contents i Declaration xi Acknowledgements xii Abbreviations xiv List of Figures xvi Abstract xxii Chapter 1 Introduction. Page 1.1 The parasite. 1 1.1.1 Filarial nematodes. 1 1.1.2 Life cycle. 2 1.2 The human disease. 4 1.2.1 Clinical spectrum of disease. 4 1.2.2 Diagnosis and treatment of lymphatic filariasis. 6 1.2.3 Control of lymphatic filariasis. 8 1.3 The microfilariae. 9 1.3.1 Periodicity of the mf. 9 1.3.2 Non-continuous development of filarial nematodes. 11 1.3.3 The microfilarial sheath. 17 1.3.4 Modulation of the host immune response by the mf. 18 1.4 Cloning stage-specific genes from filarial nematodes. 19 1.4.1 The filarial genome project. 21 1.4.2 Determining gene function in parasitic nematodes. 25 1.4.3 Cloning of differentially expressed genes. 28 1.5 Aims of the project. 30 Chapter 2 Materials and methods. 2.1 Maintenance of parasite life cycle. 31 2.1.1 Maintaining susceptible mosquitoes. 31 2.1.2 Maintaining B. pahangi parasites. 31 2.1.3 Recovery of infective L3 stage B. pahangi. 32 2.1.4 Recovery of mammalian-derived larvae. 32 2.2 Molecular biology techniques. 33 2.2.1 Standard PCR protocol. 33 2.2.2 "Hot Start" PCR. 33 2.2.3 PCR mix for 100 pi reaction (Taq polymerase). 34 2.2.4 Agarose gel electrophoresis 35 2.2.5 Preparation of restriction fragments for 36 use as size markers in gel electrophoresis. 2.2.6 Purification of DNA from agarose gels. 36 2.2.6.1 Purification by Spin-X columns. 36 2.2.6.2 Purification of DNA from agarose gels 37 by QIAquick gel extraction kit (Qiagen). 2.2.7 Ligation and transformation. 37 2.2.8 In-gel Ligation. 39 2.2.9 Plasmid miniprep. 40 2.2.10 Glycerol stocks of bacterial cultures. 41 2.2.11 Restriction digestion of DNA. 41 2.2.12 Genomic DNA isolation. 41 2.2.13 Preparation of genomic DNA for Southern blotting. 43 ii 2.2.14 DEPC treatment of solutions used for RNA work. 44 2.2.15 RNA extraction. 44 2.2.16 Preparation of RNA for northern blotting. 45 2.2.17 Southern and northern blotting. 46 2.2.18 First strand cDNA synthesis 46 2.2.19 Random (High Prime) labelling and purification of 47 DNA probes. 2.2.20 Automated sequencing. 48 2.2.21 Genotypes of bacterial strains used. 50 2.2.22 Analysis of mmc-1 5' upstream region. 50 2.2.22.1 Screening of a B. pahangi genomic library. 50 2.2.22.2 Cloning of mmc-1 upstream region by PCR. 51 2.3 Production of mammalian-derived mf cDNA library. 52 2.3.1 Generation of mammalian-derived mf cDNA 52 2.3.2 Ligation of cDNA to predigested Uni-ZAP XR 53 vector and packaging of library. 2.3.3 Calculation of titre and percentage recombinants 54 of the primary library 2.3.4 Amplification of primary library. 56 2.4 Production of mammalian-derived and 56 vector-derived mf cDNAs. 2.4.1 Mf exsheathment and purification. 56 2.4.2 Preparation of cDNA probes. 57 2.5 Screening of mammalian-derived mf cDNA library. 58 iii 2.5.1 Plating the mammalian-derived mf cDNA library. 58 2.5.2 Differential screening of the mammalian-derived 58 mf cDNA library. 2.5.3 In vivo excision of the pBluescript phagemid. 60 from the Uni-Zap vector. 2.6 Analysis of gene expression by semi-quantitative 60 RT-PCR. 2.6.1 Ethidium Bromide plate assay for quantitation 61 ofcDNA. 2.6.2 Preparation of cDNA panel from different 61 life-cycle stages for RT-PCR analysis. 2.6.3 Titration of RT-PCR amplified products. 62 2.6.4 Semi-quantitative RT-PCR analysis. 63 2.7 5’ RACE 64 2.8 Culture of B. pahangi parasites in vitro. 65 2.9 Production and purification of MBP-MMC-1 66 fusion protein. 2.9.1 Cloning of MMC-1 downstream of the MalE gene. 66 2.9.2 Subcloning of MMC-1 into pMal-p2. 67 2.9.3 Transformation of Topp competent cells. 67 2.9.4 Large scale expression of MBP-MMC-1 68 2.9.5 Affinity purification of the MBP -MMC-1 69 fusion protein. iv 2.9.6 Digestion of MBP-MMC-1 fusion protein 70 and purification of recombinant MMC-1. 2.10 Raising anti-MMC-1 immune sera. 70 2.11 Immunochemical techniques. 71 2.11.1 SDS polyacrylamide gel electrophoresis (PAGE) 71 2.11.2 SDS-sample cocktail extracts. 74 2.11.3 Molecular weight markers. 74 2.11.4 Staining SDS-Polyacrylamide gels with 75 silver nitrate. 2.11.5 Western blotting. 75 2.11.6 Metabolic labelling of mf and immunoprecipitation 77 of MMC-1. 2.12 Culture of mf for collection of E/S products. 78 2.13 Effect of MMC-1 IgG on parasite development 79 in mosquitoes. 2.13.1 Isolation of IgG from immunised rabbit serum. 79 2.13.2 Feeding mosquitoes. 79 2.13.3 Assessing the development of parasites. 79 2.14 Fluorescent localisation of MMC-1. 80 2.14.1 Staining whole parasites. 80 2.14.2 Staining of permeabilised parasites. 81 2.15 Analysis of immune response to MMC-1 antigen. 82 2.15.1 Preparation of soluble extracts. 82 2.15.2 Protein assay the Bradford method. 83 v 2.15.3 Animals and infection protocols. 83 2.15.4 Preparation of spleen cells. 84 2.15.5 Proliferation assay. 84 2.15.6 Analysis of cytokine production by ELISA. 85 2.15.7 IgG responses to MMC-1 86 2.15.8 Human IgG responses to MMC-1 87 Chapter 3 Production and screening of a mammalian-derived mf cDNA library. 3.1 Introduction. 88 3.2 Results. 90 3.2.1 Artificial exsheathment of mf. 90 3.2.2 Agarose pad purification of exsheathed mf. 91 3.2.3 Comparison of different media for the culture 92 of B. pahangi mf. 3.2.4 Comparison of cDNA produced from mammalian- 94 derived and vector-derived mf. 3.3 Screening of a B. malayi mf cDNA library. 95 3.4 Construction of a B. pahangi cDNA library. 96 3.4.1 Characterisation of the B. pahangi mf cDNA library. 97 3.4.2 Differential screening of the B. pahangi 98 cDNA library. 3.4.3 Confirmation of differential expression by 100 reverse northern. 3.4.4 Analysis of differentially expressed cDNAs. 101 3.4.5 Selection of genes for further study. 101 3.5 Discussion. 104 Chapter 4 Analysis of vmc-2. 4.1 Introduction. Ill 4.2 Results 111 4.2.1 Nucleotide sequence information. 111 4.2.2 Generation of gene specific probes. 114 4.2.3 Comparison of vmc-2 cDNA and genomic 114 PCR fragments. 4.2.4 Northern blot analysis of vmc-2. 115 4.2.5 Attempts to obtain a full length transcript of vmc-2. 116 4.2.6 Southern blot analysis of high molecular weight DNA. 119 4.2.7 The temporal expression pattern of vmc-2 in vivo. 120 4.2.7.1 Semi-quantitative RT-PCR. 120 4.2.7.2 Titration of gene products produced by RT-PCR. 121 4.2.7.3 Test of life-cycle stage cDNAs. 122 4.2.7.4 Semi-Quantitative RT-PCR of vmc-2. 122 4.3 Discussion. 124 vii Chapter 5 Analysis of mmc-1. 5.1 Introduction. 131 5.2 Results. 132 5.2.1 The mmc-1 clone. 132 5.2.2 Identifying homologues of mmc-1. 133 5.2.3 Is mmc-1 SL1 trans- spliced ? 135 5.2.4 Comparison of cDNA and genomic 137 sequence of mmc-1 5.2.5 Northern blot analysis of mmc-1. 137 5.2.6 Southern blot analysis of ramc-1. 138 5.2.7 Zooblot analysis of mmc-1. 139 5.2.8 Temporal expression of mmc-1 in vivo. 141 5.2.9 Expression of mmc-1 in mf in utero. 142 5.2.10 Expression of mmc-1 in mf in vitro. 143 5.2.10.1 Does temperature influence mmc-1 expression? 144 5.2.10.2 Does the presence of FCS or glucose affect 145 the expression of mmc-1 ? 5.3 Attempts to isolate the upstream region of mmc-1. 146 5.3.1 Screening of a Brugia pahangi genomic DNA library.
Recommended publications
  • NEW RECORDS on ACANTHOCEPHALANS from CALIFORNIA SEA LIONS ZALOPHUS CALIFORNIANUS (PINNIPEDIA, OTARIIDAE) from CALIFORNIA, USA Fa
    Vestnik Zoologii, 52(3): 181–192, 2018 Fauna and Systematics DOI 10.2478/vzoo-2018-0019 UDC 595.133:599.5(794) NEW RECORDS ON ACANTHOCEPHALANS FROM CALIFORNIA SEA LIONS ZALOPHUS CALIFORNIANUS (PINNIPEDIA, OTARIIDAE) FROM CALIFORNIA, USA O. I. Lisitsyna1, O. Kudlai1- 3, T. R. Spraker4, T. A. Kuzmina1* 1Schmalhausen Institute of Zoology, NAS of Ukraine, vul. B. Khmelnytskogo, 15, Kyiv, 01030 Ukraine 2Institute of Ecology, Nature Research Centre, Akademijos, 2, 08412, Vilnius, Lithuania 3 Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom 2520, South Africa 4Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80526, USA *Corresponding author E-mail [email protected] New Records on Acanthocephalans from California Sea Lions Zalophus californianus (Pinnipedia, Otariidae) from California, USA. Lisitsyna, O. I. Kudlai, O., Spraker, T. R., Kuzmina, T. A. — To increase the currently limited knowledge addressing acanthocephalans parasitizing California sea lions (Zalophus californianus), 33 animals including pups, juvenile and adult males and females from the Marine Mammal Center (TMMC), Sausalito, California, USA were examined. Totally, 2,268 specimens of acanthocephalans representing fi ve species from the genera Andracantha (A. phalacrocoracis and Andracantha sp.), Corynosoma (C. strumosum and C. obtuscens) and Profi licollis (P. altmani) were found. Profi licollis altmani and A. phalacrocoracis, predominantly parasitize fi sh-eating birds; they were registered in Z. californianus for the fi rst time. Prevalence and intensity of California sea lion infection and transmission of acanthocephalans in these hosts of diff erent age groups were analyzed and discussed.
    [Show full text]
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • Vector-Borne Diseases of Small Companion Animals in Namibia: Literature Review, Knowledge Gaps and Opportunity for a One Health Approach
    Page 1 of 7 Review Article Vector-borne diseases of small companion animals in Namibia: Literature review, knowledge gaps and opportunity for a One Health approach Authors: Namibia has a rich history in veterinary health but little is known about the vector-borne 1 Bruce H. Noden diseases that affect companion dogs and cats. The aim of this review is to summarise the Minty Soni2 existing published and available unpublished literature, put it into a wider geographical Affiliations: context, and explore some significant knowledge gaps. To date, only two filarial pathogens 1Department of Entomology (Dirofilaria repens and Acanthocheilonema dracunculoides) and three tick-borne pathogens and Plant Pathology, (Babesia canis vogeli, Hepatozoon canis and Ehrlichia canis) have been reported. Most studies Oklahoma State University, United States have focused solely on dogs and cats in the urban Windhoek and surrounding areas, with almost nothing reported in rural farming areas, in either the populous northern regions or 2Rhino Park Veterinary Clinic, the low-income urban areas where animal owners have limited access to veterinary services. Windhoek, Namibia With the development of several biomedical training programmes in the country, there is Correspondence to: now an excellent opportunity to address zoonotic vector-borne diseases through a One Health Bruce Noden approach so as to assess the risks to small companion animals as well as diseases of public health importance. Email: [email protected] Postal address: Introduction 127 Noble Research Center, 2 Department of Entomology Namibia consists of a large land area (823 290 km ) with a relatively small population (2 160 000) and Plant Pathology, (CIA 2014) living in 13 regions.
    [Show full text]
  • Brugia Pahangi
    RESEARCH ARTICLE Efficacy of subcutaneous doses and a new oral amorphous solid dispersion formulation of flubendazole on male jirds (Meriones unguiculatus) infected with the filarial nematode Brugia pahangi Chelsea Fischer1, Iosune Ibiricu Urriza1, Christina A. Bulman1, KC Lim1, Jiri Gut1, a1111111111 Sophie Lachau-Durand2, Marc Engelen2, Ludo Quirynen2, Fetene Tekle2, Benny Baeten2, 3 4 1 a1111111111 Brenda Beerntsen , Sara Lustigman , Judy SakanariID * a1111111111 a1111111111 1 Dept. of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America, 2 Janssen R&D, Janssen Pharmaceutica, Beerse, Belgium, 3 Veterinary a1111111111 Pathobiology, University of Missouri-Columbia, Columbia, Missouri, United States of America, 4 Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America * [email protected] OPEN ACCESS Citation: Fischer C, Ibiricu Urriza I, Bulman CA, Lim K, Gut J, Lachau-Durand S, et al. (2019) Efficacy of Abstract subcutaneous doses and a new oral amorphous solid dispersion formulation of flubendazole on River blindness and lymphatic filariasis are two filarial diseases that globally affect millions male jirds (Meriones unguiculatus) infected with of people mostly in impoverished countries. Current mass drug administration programs rely the filarial nematode Brugia pahangi. PLoS Negl on drugs that primarily target the microfilariae, which are released from adult female worms. Trop Dis 13(1): e0006787. https://doi.org/10.1371/ journal.pntd.0006787 The female worms can live for several years, releasing millions of microfilariae throughout the course of infection. Thus, to stop transmission of infection and shorten the time to elimi- Editor: Roger K.
    [Show full text]
  • Filarial Genomics Steven A
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 11-2004 Filarial Genomics Steven A. Williams Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Williams, Steven A., "Filarial Genomics" (2004). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/45 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] GLOBAL PROGRAM TO ELIMINATE LF 37 3.3 FILARIAL GENOMICS Steven A. Williams Summary of Prioritized Research Needs but few genes were cloned and identified. By the end of 1994, only 60 Brugia genes had been submitted to the Genbank 1) Collecting materials database. It was clear that a new approach for studying the a) Before the opportunity is lost to preserve their ge- filarial genome was needed to make rapid progress in under- nomes, collect geographically representative isolates of standing the biology and biochemistry of these parasites. The the various species and strains of the human filarial genome project approach represented a complete departure parasites, from the way parasite genes had been studied in the past. 2) Constructing libraries Genome projects are typically not directed at the identifica- a) Construct updated and additional genomic and cDNA tion of individual genes, but instead at the identification, clon- libraries to represent completely the different stages ing, and sequencing of all the organism’s genes. and species of filarial parasites, At the first meeting of the Filarial Genome Project (1994), 3) Sequencing B.
    [Show full text]
  • Susceptibility in Armigeres Subalbatus
    Mosquito Transcriptome Profiles and Filarial Worm Susceptibility in Armigeres subalbatus Matthew T. Aliota1, Jeremy F. Fuchs1, Thomas A. Rocheleau1, Amanda K. Clark2, Julia´n F. Hillyer2, Cheng- Chen Chen3, Bruce M. Christensen1* 1 Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 2 Department of Biological Sciences and Institute for Global Health, Vanderbilt University, Nashville, Tennessee, United States of America, 3 Department of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan Authority Abstract Background: Armigeres subalbatus is a natural vector of the filarial worm Brugia pahangi, but it kills Brugia malayi microfilariae by melanotic encapsulation. Because B. malayi and B. pahangi are morphologically and biologically similar, comparing Ar. subalbatus-B. pahangi susceptibility and Ar. subalbatus-B. malayi refractoriness could provide significant insight into recognition mechanisms required to mount an effective anti-filarial worm immune response in the mosquito, as well as provide considerable detail into the molecular components involved in vector competence. Previously, we assessed the transcriptional response of Ar. subalbatus to B. malayi, and now we report transcriptome profiling studies of Ar. subalbatus in relation to filarial worm infection to provide information on the molecular components involved in B. pahangi susceptibility. Methodology/Principal Findings: Utilizing microarrays, comparisons were made between mosquitoes exposed
    [Show full text]
  • The Invasion and Encapsulation of the Entomopathogenic Nematode, Steinernema Abbasi, in Aedes Albopictus (Diptera: Culicidae) Larvae
    insects Article The Invasion and Encapsulation of the Entomopathogenic Nematode, Steinernema abbasi, in Aedes albopictus (Diptera: Culicidae) Larvae 1, , 1, 1 2 1, Wei-Ting Liu y z , Tien-Lai Chen y, Roger F. Hou , Cheng-Chen Chen and Wu-Chun Tu * 1 Department of Entomology, National Chung Hsing University, Taichung 402, Taiwan; [email protected] (W.-T.L.); [email protected] (T.-L.C.); [email protected] (R.F.H.) 2 Department of Tropical Medicine, National Yang-Ming University, Taipei 112, Taiwan; [email protected] * Correspondence: [email protected] Contributed equally to this paper. y Present address: Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, z Taipei 112, Taiwan. Received: 25 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Simple Summary: The Asian tiger mosquito, Aedes albopictus, is widely considered to be one of the most dangerous vectors transmitting human diseases. Meanwhile, entomopathogenic nematodes (EPNs) have been applied for controlling insect pests of agricultural and public health importance for years. However, infection of mosquitoes with the infective juveniles (IJs) of terrestrial-living EPNs when released to aquatic habitats needs further investigated. In this study, we observed that a Taiwanese isolate of EPN, Steinernema abbasi, could invade through oral route and then puncture the wall of gastric caecum to enter the body cavity of Ae. albopictus larvae. The nematode could complete infection of mosquitoes by inserting directly into trumpet, the intersegmental membrane of the cuticle, and the basement of the paddle of pupae. After inoculation of mosquito larvae with nematode suspensions, the invading IJs in the hemocoel were melanized and encapsulated and only a few larvae were able to survive to adult emergence.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-48902 Stage L4 Brugia pahangi Larvae (Frozen) Citation: Acknowledgment for publications should read “The following Catalog No. NR-48902 reagent was provided by the NIH/NIAID Filariasis Research Reagent Resource Center for distribution by BEI Resources, This reagent is the tangible property of the U.S. Government. NIAID, NIH: Stage L4 Brugia pahangi Larvae (Frozen), NR- 48902.” For research use only. Not for human use. Biosafety Level: 2 Contributor: Appropriate safety procedures should always be used with Andrew R. Moorhead, D.V.M., M.S., Ph.D., Director and this material. Laboratory safety is discussed in the following Principal Investigator, Filariasis Research Reagent Resource publication: U.S. Department of Health and Human Services, Center, Department of Infectious Diseases University of Public Health Service, Centers for Disease Control and Georgia College of Veterinary Medicine Athens, Georgia, Prevention, and National Institutes of Health. Biosafety in USA Microbiological and Biomedical Laboratories. 5th ed. Washington, DC: U.S. Government Printing Office, 2009; see Manufacturer: www.cdc.gov/biosafety/publications/bmbl5/index.htm. Filariasis Research Reagent Resource Center supported by Contract HHSN272201000030I, NIH-NIAID Animal Models of Disclaimers: Infectious Disease Program You are authorized to use this product for research use only. It is not intended for human use. Product Description: Classification: Onchocercidae, Brugia Use of this product is subject to the terms and conditions of Species: Brugia pahangi the BEI Resources Material Transfer Agreement (MTA). The Strain: FR3 MTA is available on our Web site at www.beiresources.org. Original Source: Brugia pahangi (B. pahangi), strain FR3 was originally obtained from researchers in Malaysia by While BEI Resources uses reasonable efforts to include Dr.
    [Show full text]
  • Natural Products As a Source for Treating Neglected Parasitic Diseases
    Int. J. Mol. Sci. 2013, 14, 3395-3439; doi:10.3390/ijms14023395 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Natural Products as a Source for Treating Neglected Parasitic Diseases Dieudonné Ndjonka 1,†, Ludmila Nakamura Rapado 2,†, Ariel M. Silber 2, Eva Liebau 3,* and Carsten Wrenger 2,* 1 Department of Biological Sciences, Faculty of Science, University of Ngaoundere, B. P. 454, Cameroon; E-Mail: [email protected] 2 Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil; E-Mails: [email protected] (L.N.R.); [email protected] (A.M.S.) 3 Institute for Zoophysiology, Schlossplatz 8, D-48143 Münster, Germany † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (E.L.); [email protected] (C.W.); Tel.: +49-251-83-21710 (E.L.); +55-11-3091-7335 (C.W.); Fax: +49-251-83-21766 (E.L.); +55-11-3091-7417 (C.W.). Received: 21 December 2012; in revised form: 12 January 2013 / Accepted: 16 January 2013 / Published: 6 February 2013 Abstract: Infectious diseases caused by parasites are a major threat for the entire mankind, especially in the tropics. More than 1 billion people world-wide are directly exposed to tropical parasites such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis, which represent a major health problem, particularly in impecunious areas. Unlike most antibiotics, there is no “general” antiparasitic drug available.
    [Show full text]
  • Asymmetric Wolbachia Segregation During Early Brugia Malayi Embryogenesis Determines Its Distribution in Adult Host Tissues
    Asymmetric Wolbachia Segregation during Early Brugia malayi Embryogenesis Determines Its Distribution in Adult Host Tissues Fre´de´ ric Landmann1*, Jeremy M. Foster2, Barton Slatko2, William Sullivan1 1 Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America, 2 New England Biolabs, Inc., Ipswich, Massachusetts, United States of America Abstract Wolbachia are required for filarial nematode survival and fertility and contribute to the immune responses associated with human filarial diseases. Here we developed whole-mount immunofluorescence techniques to characterize Wolbachia somatic and germline transmission patterns and tissue distribution in Brugia malayi, a nematode responsible for lymphatic filariasis. In the initial embryonic divisions, Wolbachia segregate asymmetrically such that they occupy only a small subset of cells in the developing embryo, facilitating their concentration in the adult hypodermal chords and female germline. Wolbachia are not found in male reproductive tissues and the absence of Wolbachia from embryonic germline precursors in half of the embryos indicates Wolbachia loss from the male germline may occur in early embryogenesis. Wolbachia rely on fusion of hypodermal cells to populate adult chords. Finally, we detect Wolbachia in the secretory canal lumen suggesting living worms may release bacteria and/or their products into their host. Citation: Landmann F, Foster JM, Slatko B, Sullivan W (2010) Asymmetric Wolbachia Segregation during Early Brugia malayi Embryogenesis Determines Its Distribution in Adult Host Tissues. PLoS Negl Trop Dis 4(7): e758. doi:10.1371/journal.pntd.0000758 Editor: Scott Leslie O’Neill, The University of Queensland, Australia Received March 26, 2010; Accepted June 7, 2010; Published July 27, 2010 Copyright: ß 2010 Landmann et al.
    [Show full text]
  • Investigations of Filarial Nematode Motility, Response to Drug Treatment, and Pathology
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 8-2015 Investigations of Filarial Nematode Motility, Response to Drug Treatment, and Pathology Charles Nutting Western Michigan University, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Biochemistry Commons, Biology Commons, and the Pathogenic Microbiology Commons Recommended Citation Nutting, Charles, "Investigations of Filarial Nematode Motility, Response to Drug Treatment, and Pathology" (2015). Dissertations. 745. https://scholarworks.wmich.edu/dissertations/745 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. INVESTIGATIONS OF FILARIAL NEMATODE MOTILITY, RESPONSE TO DRUG TREATMENT, AND PATHOLOGY by Charles S. Nutting A dissertation submitted to the Graduate College in partial fulfillment of the requirements for the degree of Doctor of Philosophy Biological Sciences Western Michigan University August 2015 Doctoral Committee: Rob Eversole, Ph.D., Chair Charles Mackenzie, Ph.D. Pamela Hoppe, Ph.D. Charles Ide, Ph.D. INVESTIGATIONS OF FILARIAL NEMATODE MOTILITY, RESPONSE TO DRUG TREATMENT, AND PATHOLOGY Charles S. Nutting, Ph.D. Western Michigan University, 2015 More than a billion people live at risk of chronic diseases caused by parasitic filarial nematodes. These diseases: lymphatic filariasis, onchocerciasis, and loaisis cause significant morbidity, degrading the health, quality of life, and economic productivity of those who suffer from them. Though treatable, there is no cure to rid those infected of adult parasites. The parasites can modulate the immune system and live for 10-15 years.
    [Show full text]
  • Dirofilaria Immitis
    Alho et al. Parasites & Vectors (2017) 10:142 DOI 10.1186/s13071-017-2073-0 SHORTREPORT Open Access Dirofilaria immitis in pinnipeds and a new host record Ana Margarida Alho1†, Inês Marcelino1†, Vito Colella2, Carla Flanagan3, Nuno Silva3, Jorge Jesus Correia1, Maria Stefania Latrofa2, Domenico Otranto2* and Luís Madeira de Carvalho1 Abstract Background: Dirofilaria immitis is a mosquito-borne pathogen that is spreading worldwide, and the associated infection (i.e. dirofilariosis) is becoming a threat to animals and humans living in endemic areas. Little is known about the occurrence and risk of infection of D. immitis in pinnipeds. Here we report dirofilariosis by D. immitis in several pinniped species kept in captivity in Portugal. Methods: Animals were housed in an oceanographic park located in Algarve, southern Portugal, a geographical area endemic for canine dirofilariosis. To assess the occurrence of D. immitis, blood was collected from the park’sresident pinniped population, which consisted of 16 animals (5 common seals Phoca vitulina, 2 grey seals Halichoerus grypus, 3 California sea lions Zalophus californianus and 6 South African fur seals Arctocephalus pusillus pusillus). Dirofilaria immitis nematodes were detected by real-time PCR and by the presence of circulating antigens. In addition, modified Knott’s technique was performed to detect circulating microfilariae. Necropsies and histopathological examination of two animals which died during the study were also conducted. Results: Out of the 16 pinnipeds housed at the park, seven (43.8%) were positive for D. immitis by real-time PCR (3 P. vitulina,2Z. californianus and 2 A. p. pusillus), two of which (P. vitulina) were also positive for the nematode’s antigen.
    [Show full text]