1

Genetic analysis and substrate utilization of fungal isolates from the standing dead material of the moss Schistidium apocarpum from a High Arctic site

A thesis submitted to the University of Manchester for the degree of MPhil in the Faculty of Engineering and Physical Sciences

2011

Garwai Leung

School of Earth, Atmospheric and Environmental Sciences

2

Contents

List of figures and tables Page 7

Abstract Page 9

Declaration Page 10

Copyright statement Page 11

Acknowledgements Page 12

Chapter 1: Introduction Page 13

1.1 Arctic environment Page 13

1.2 What has been found? Page 14 1.2.1 Fungal taxa Page 14 1.2.2 Function Page 14 1.2.2.1 Endophyte Page 15 1.2.2.2 Saprotrophic Page 15 1.2.3 Habitat Page 16

1.3 Which techniques to use for fungal identification and to determine breakdown of carbon substrates? Page 16 1.3.1 Traditional techniques Page 17 1.3.2 BIOLOG Page 17 1.3.3 Genetic analysis Page 17

3

1.4 Substrate utilization Page 18

1.4.1 Casein Page 19 1.4.2 Cellulose Page 19 1.4.3 Chitin Page 20 1.4.4 Lignin Page 20 1.4.5 Starch Page 21 1.4.6 Tannic acid Page 22 1.4.7 Pectin Page 22 1.4.8 Xylan Page 23

1.5 Gaps in knowledge Page 24

1.6 Aims and hypothesis Page 25

Chapter 2: Methods Page 26

2.1 DNA Extraction Page 26

2.2 DNA Amplification Page 27

2.3 Sequencing Page 28

2.4 Subculturing of fungal isolates Page 29

2.5 Mycelia extension rate and carbon substrate tests Page 30

2.5.1 Mycelial extension rate test Page 31 2.5.2 Casein medium Page 31 2.5.3 Cellulose medium Page 32 2.5.4 Chitin medium Page 32 4

2.5.5 Lignin medium Page 33 2.5.6 Pectin medium Page 33 2.5.7 Starch medium Page 34 2.5.8 Tannic acid medium Page 34 2.5.9 Xylan medium Page 34

Chapter 3: Results Page 35

3.1 Identifications Page 35

3.2 Phylogenetic trees Page 37

3.3.1 Cumulative mycelia extension Page 42 3.3.2 Mean Extension Rate Page 45

3.4 Carbon substrate tests Page 48 3.4.1 Casein Page 49 3.4.2 Cellulose Page 49 3.4.3 Chitin Page 50 3.4.4 Lignin Page 50 3.4.5 Pectin Page 50 3.4.6 Starch Page 51 3.4.7 Tannic acid Page 52 3.4.8 Xylan Page 53

Chapter 4: Discussion Page 54

4.1 Isolate identities Page 54

5

4.1.1 Cadophora luteo-olivacea Page 54 4.1.2 Debaryomyces hansenii Page 54 4.1.3 Fimetariella rabenhorstii Page 55 4.1.4 Hypocrea viridescens Page 55 4.1.5 Monodictys arctica Page 55 4.1.6 Penicillium camemberti Page 56 4.1.7 sclerotioides Page 56 4.1.8 Phoma herbarum Page 57

4.2 Relationship between temperature and extension rate Page 57

4.3 Inference of function from substrate utilization Page 58

4.4 Temperature relation to substrate utilization Page 59

4.5 Future work Page 59

Chapter 5: Conclusion Page 60

References Page 62

Appendices Page 68

Appendix 1 Page 68 Appendix 2 Page 69 Appendix 3.1 Page 70 Appendix 3.2 Page 71 6

Appendix 4 Page 74 Appendix 5 Page 79 Appendix 6.1 Page 85 Appendix 6.2 Page 104 Appendix 6.3 Page 121

Final word count: 17,985

7

List of Figures and Tables

Chapter 1: Introduction

Figure 1.1- Map of Svalbard Page 13 Figure 1.2- ITS section of fungal DNA Page 18 Figure 1.3- Cellulose structure Page 19 Figure 1.4- Chitin structure Page 20 Figure 1.5- Lignin structure Page 21 Figure 1.6- Starch structure Page 21 Figure 1.7- Tannic acid structure Page 22 Figure 1.8- Pectin structure Page 23 Figure 1.9- Xylan structure Page 24

Chapter 2: Methods

Table 2.1- List of isolates grouped by morphology from Schistidium apocarpum and Dryas octopela and isolates subcultured in this study Page 27 Table 2.3- List of components for a PCR reaction Page 28

Chapter 3: Results

Table 3.1- Identities of subcultured isolates and percentages to Page 36 Figure 3.1.1- Complete phylogenetic tree of isolates Page 39 Figure 3.1.2- Phoma sclerotioides and Monodictys arctica tree section of Figure 3.1.1 Page 40 Figure 3.1.3- Phoma herbarum and Penicillium tree section of Figure 3.1.1 Page 41 Figure 3.1.4- Remaining tree section of figure 3.1.1 Page 42 Figure 3.2.1- Mean cumulative mycelial extension, in millimetres, at 4oC Page 43 Figure 3.2.2- Mean cumulative mycelial extension, in millimetres, at 10oC 8

Page 44 Figure 3.2.3- Mean cumulative mycelial extension, in millimetres, at 25oC Page 45 Figure 3.3.1- Mean extension rate of Phoma sclerotioides isolates at all temperatures Page 46 Figure 3.3.2- Mean extension rate of Penicillium taxa at all temperatures Page 46 Figure 3.3.3- Mean extension rate of mesophilic taxa at all temperatures Page 47 Figure 3.3.4- Mean extension rate of Phoma herbarum and Monodictys arctica at all temperatures Page 47 Table 3.2- Average reaction strength to carbon substrates in semi-defined solid media Page 48 Figure 3.4.1- Picture of negative to strongly positive reactions of casein test Page 49 Figure 3.4.2- Picture of negative to strongly positive reactions of cellulose test Page 50 Figure 3.4.5- Picture of negative to strongly positive reactions of pectin test Page 51 Figure 3.4.6- Picture of negative to strongly positive reactions of starch test Page 52 Figure 3.4.7- Picture of negative to strongly positive reactions of tannic acid test Page 53 Appendix

Table A1- Original isolate sequencing data Page 79

Figure A1- MP phylogenetic tree of Phoma sclerotioides ITS sequences Page 81

Figure A2- ML phylogenetic tree of Phoma sclerotioides ITS sequences Page 82

Figure A3- MP phylogenetic tree of ITS, G3P, HIS loci of Ph. Sclerotioides Page 83

Figure A4- MP phylogenetic tree of ITS, G3P, HIS loci of Ph. Sclerotioides Page 84 9

Abstract

The University of Manchester Garwai Leung MPhil

Genetic analysis and substrate utilization of fungal isolates from the standing dead material of the moss Schistidium apocarpum from a High Arctic site 2011

Fungi isolated from the litter of the moss Schistidium apocarpum, from a site in Svalbard, Norway (78°56 N, 11°50 E), were placed into 12 different groups using culture morphology. Representative isolates from each group were then subcultured and identified by sequencing the Internal Transcribed Spacer region (ITS1-5.8S-ITS2) of the ribosomal DNA. Sequences were compared to species from the BLASTn database and were aligned using CLUSTALW. A phylogenetic tree was constructed using MEGA 5 and bootstrapped 1000 times. Subcultured isolates were tested to see if they could degrade several pure carbon sources (casein, cellulose, lignin, pectin, starch, tannic acid, and xylan) as analogues of carbon substrate, found in plant litter, at 6oC. Isolates were also grown at three different temperatures (4, 10 and 25oC) and mycelia extension rates were measured. The majority of isolates were identified as Phoma sclerotioides, a known cause of brown root rot in in temperate regions with harsh winters. Other isolates identified included Debaryomyces hansenii, Fimetariella rabenhorstii, Hypocrea viridescens, Monodictys arctica, Penicillium camemberti and Phoma herbarum. Isolate identities and enzyme activity were similar to mid-late stage of decomposition although isolates were from standing-dead material and it is possible to be at the start of decomposition. This study shows a variety of fungi have the potential to utilize carbon sources from Schistidium apocarpum litter at low temperatures, therefore they are likely to be contributing to the mineralization of carbon in the arctic environment.

10

Declaration

No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning.

11

Copyright statement

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the “Copyright”) and he has given The University of Manchester certain rights to use such copyright including for administrative purposes. ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in time. This page must form part of any such copies made. iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual property (the “Intellectual property”) and any reproductions of the copyright works in the thesis, for example graphs and tables (“Reproductions”), which may be described in this thesis may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions iv. Further information on the conditions under which disclosure, publication and commercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant Thesis restriction declarations deposited in the University Library, The University Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations) and in The University’s policy on Presentation of Theses

12

Acknowledgements

I would like to take this opportunity to show my gratitude to all those who supported me throughout this thesis. To my family who have been with me all the way, who have given me daily support so that I may finish this thesis. To my supervisors, Clare Robinson and Geoff Robson, for accepting me into the course and for helping me with completing it, your knowledge and dedication has helped made this possible. Thanks also to my friends from the lab group who have made the course much easier to go through. To all my friends who have encouraged me to do the best I can to finish what I have started.

Thank you all.

13

Chapter 1: Introduction

1.1 Arctic environment The arctic environment plays a pivotal role in global climate change. It is therefore important to observe changes to this biosphere, so that appropriate policies may be implemented. Key aspects of this habitat are the soil and the organisms that directly affect the soil. Approximately 11% of the world’s soil carbon is in tundra regions, and 95% of organic carbon in tundra regions is in soil (Ludley and Robinson 2008). This highlights the need to understand carbon cycling in soils of these regions, key to this is investigating soil fungi which play a pivotal role as saprobes, decomposing organic matter and in turn recycling the carbon. Supporting these fungi by being hosts, and as sources of nutrient as dead litter, are different types of vascular and non-vascular plants. Examples of these plants are Dryas octopetala, and Schistidium apocarpum, a vascular and non-vascular plant respectively, both of which cover a polar semi desert site in Svalbard, Norway, near the research station Ny-Ålesund (78°56 N, 11°50 E) (Figure 1.1). Dryas octopetala covers roughly 11%, and S. apocarpum covers roughly 0.5% of the soil surface area (Madan et al. 2007).

Figure 1.1 Svalbard, Norway, and the site (tab A Ny-Ålesund) from where the samples for this study were acquired (78°56 N, 11°50 E). Image Courtesy of Google Maps

14

1.2 What has been found?

1.2.1 Fungal taxa

A variety of fungi has been found in the arctic regions, with samples from Canadian, Alaskan, and Russian research sites in various arctic environments ranging from boreal forests to semi-polar desert sites. Similarly, fungi taxa from the Antarctic continent have also been isolated from such sites as wooden lodges from past expeditions. The fungi found include the more ubiquitous taxa such as Aspergillus, Cladosporium, and Penicillium (Ozerskaya et al. 2009). The diversity of fungi decreases in these extreme high/low latitudes compared with temperate latitudes . More directly relevant to this current project are results obtained from previous undergraduate projects, using the samples from the same research site as the current study. One of two projects supervised by Geoff Robson, using the same collection of fungal isolates provided by Clare Robinson as in the current study, found that by sequencing the Internal Transcribed Spacer regions (ITS), fungi from the taxa Phoma, Oidiodendron, Cladosporium, and Thelebolaceae were present from samples of standing dead material of Schistidium apocarpum. Because of problems with DNA extraction however, the sample size was relatively small (8 samples out of 32 were sequenced), and so frequency of isolation could not be established, only that these organisms existed (Student-7024498 2008). In a previous temperate soil study fungi were separated into ‘abundant’ and ‘occasional’ fungi based on isolation frequencies (Deacon et al. 2006). Entirely new species can also be discovered sometimes from modifications of methodology, or by simply encountering a new organism by chance (Davey and Currah 2007)

1.2.2 Function

Fungi can act as endophytes with plants (see section 1.2.2.1), but can also be pathogens where they are weakly pathogenic. Since the fungi as pathogens can utilize substrates from living plants, they can also utilize these same substrates once the plants are dead as saprotrophs, which can arguably be the most important functions fungi have, as the process of decomposition is of equal importance to 15

photosynthesis in land ecosystems (Ludley and Robinson 2008). Saprotrophic fungi therefore play an important function in carbon, phosphate and nitrogen cycling. This variation in function also translates to varying abilities to utilize different substrates. Deacon et al. (Deacon et al. 2006), using BIOLOG plates to test for differences in function, between ‘abundant’ and ‘occasional’ taxa, found that both had similar functions in terms of substrates used, however it was noted that it was possible that the ‘occasional’ or ‘infrequent’ taxa had more important functional roles in decomposition, as they were more active and utilized a larger range of substrates. The ability for psychrophilic and psychrotrophic fungi to function even at low temperatures, make them important decomposers of stored food products, such as fruit and vegetables, and important commercially as their enzymes can be used for products such as detergents (Robinson 2001). Cold tolerant fungi are also important in agriculture as cold adaptations in fungal pathogens can cause disease in dormant plants, such as forage crops, winter cereals, and conifer seedlings (Hoshino et al. 2009).

1.2.2.1 Endophyte

Endophytes are fungi or bacteria that live within plant cells, which usually show little or no signs of parasitism (Higgins et al. 2007) i.e. it is a form of symbiosis with the host plant. This association with plants can be beneficial to the plant, for example Lolium perenne a species of ryegrass has shown greater resistance to a species of beetle, Sphenophorus parvulus, because of the presence of an endophyte Acremonium loliae (Ahmad et al. 1986). There are two ways for endophytes to be transmitted, either by horizontal transmission, where the endophyte is transmitted from one organism to another, or vertical transmission where it is from parent to offspring (Higgins et al. 2007).

1.2.2.2 Saprotrophic

Although the process of saprotophy is not exclusive to fungi, they nevertheless contribute to the process in soil systems. Decomposition determines the amount of 16

organic carbon in soil, an increase in decomposition leads to a decrease in organic carbon in the soil (Kirschbaum 1995), as it is broken down into inorganic compounds such as CO2 and H2O (Aerts 2006). Kirschbaum also pointed out that this could lead to a positive feedback system; whereby warming from anthropogenic CO2 would lead to more CO2 release by decomposition, thereby further increasing warming. The magnitude of this positive feedback system is unknown, although it is suggested it could be significant if methanogens (methane producing Archaea) are also considered and would possibly be irreversible (Khvorostyanov et al. 2008).s

1.2.3 Habitat

In terms of geographical location, arctic fungi cover a wide range of habitats, because of their ability to disperse over wide areas. These range from peatlands, to boreal forests, and semi-desert sites. As in the arctic, fungi have also been found in the Antarctic at such sites as the McMurdo Dry Valleys as cryptoendolithic organisms (Ruisi et al. 2007). Fungi living in cold environments are not usually psychrophilic, rather the majority are psychrotrophic perhaps because soil temperatures are a few degrees above air temperatures at most times of the year (Robinson 2001). Fungi that do survive these conditions not only require enzymatic function at low temperatures, but also cryoprotective mechanisms to withstand the freeze-thaw cycles, e.g. the ability to maintain a fluid membrane at low temperatures, antifreeze protein, and cryoprotectant sugars (Robinson 2001).

1.3 Which techniques to use for fungal identification and to determine breakdown of carbon substrates?

Identifying fungi involves the utilization of several traditional and molecular techniques. Currently, not all fungi can be identified by either purely traditional or purely molecular methods. Therefore studies often rely on a mixture of these techniques to create a clearer picture.

17

1.3.1 Traditional techniques

Identifying fungi using traditional techniques involve isolating the fungi from standing dead material or plant litter. This is done by various chemical washes, to ‘clean’ the organic material, and to be more selective of the type of organisms to be isolated i.e. fungi over bacteria (Tam et al. 2001). Samples can also be simply serially washed with sterile water to remove fungal spores and bacteria (Deacon et al. 2006). Once isolated samples are plated, for example using Warcup soil plates (selective for active mycelia growth (Warcup 1955)), to identify fungal colony forming units, then the fungi can be further isolated to single colonies of one species, termed pure culture. These colonies can then be sub-cultured onto specific media to test for function e.g. the ability of the isolate to metabolize carbon substrates with visible colony growth, or visible interactions with the medium tested e.g. decolourization. Organisms can also be identified, up to a point, by morphology by visible inspection, using light/ fluorescent microscopy, or electron microscopy (Hambleton et al. 2003). For more specific species identification however, it is necessary to accompany morphological identification with molecular techniques.

1.3.2 BIOLOG

BIOLOG analysis involves identifying organisms by their substrate utilization. These substrates can be modified to make them more ecologically relevant. The GN- BIOLOG (Deacon et al. 2006) and Eco-BIOLOG (Tam et al. 2001) plates have been used to analyze carbon utilization, and as a result the function of the fungi investigated. The advantages of this method as pointed out by Tam et al. (2001), is the ability to identify rapidly the fungi by their functional capacities. The disadvantage of using BIOLOG is that there is variation even within species about which substrates are utilized.

1.3.3 Genetic analysis

The advent of molecular techniques has redefined classifications of micro-organisms. With fungi it is possible to identify species using the Internal Transcribed Spacer 18

regions (ITS) which are probably the most widely sequenced regions of DNA for fungi. ITS is most useful for identifying organisms at the species level because this region of ribosomal DNA has higher variation compared to the Small and Large Subunits (SSU and LSU). This variation is probably because of the lack of evolutionary pressure on these non-functional sites. Fungal ITS sequences can then be compared with those on genetic databases to find the closest match, ideally with 97% similarity or above, and 100% coverage of the ITS region. Sequences from the databases can also be used to create phylogenetic comparisons between other taxa. (Higgins et al. 2007) ITS 1 and ITS 4 are the most widely used primers for identification of fungi (Figure 1.2) (Vilgalys 2001).

Figure 1.2 Primer regions (Image courtesy of Duke University Mycology Lab website http://www.biology.duke.edu/fungi/mycolab/primers.htm )

1.4 Substrate utilization

A substrate in biochemical terms is any molecule that interacts with enzymes. By growing organisms in the presence of single substrates, it is possible to obtain information on their possible roles in the environment as well as possible industrial applications. It is also possible to identify species by which substrates are degraded (see 1.3.2 BIOLOG).

19

1.4.1 Casein

Casein is the principal protein in milk, its presence giving the milk its white opaqueness. Hydrolysis of casein leaves more soluble and transparent derivates. This transition from opaque white to transparent white is used as an indicator of non- specific proteolysis (Windholz 1983). Plant proteins function in a variety of roles including enzymatic activity and as structural support as part of the cell membrane. They provide a source of amino acids for the to make its own proteins for similar roles (Agrios 2005).

1.4.2 Cellulose

Cellulose is the most abundant sources of carbohydrate within plants. It functions as structural support for cells, being found mainly in cell walls, and in some mosses 16- 29% of a cell wall is made of cellulose (Spiess et al. 1984). The structure of cellulose is composed of glucose β monosaccharides that are arranged in 1-4 glycosidic link chains (Figure 1.3), which in turn are arranged side by side to form microfibrils (Agrios 2005). Recent developments in alternative fuels have found that cellulose in vascular plants, such as corn, sugar canes, and palm-oil trees, can be used to produce ethanol, which can be used as a biofuel. Concerns have been raised that using food crops as fuel is undesirable, and alternate cellulose sources are now being developed (Lin and Tanaka 2006).

Figure 1.3- A sample chain of β glucose linked by 1-4 glycosidic bonds. Note the alternating inversion of the –OH group which does not occur in starch due to β configuration of glucose (Campbell and Reece 2005).

20

1.4.3 Chitin

Chitin is a cellulose-like polymer found in fungi and invertebrates. Similar to cellulose it functions as structural support for cells and is found in cell walls. Other similar characteristics chitins have with cellulose, is N-acetylglucosamine, a derivative of glucose in the chains (Figure 1.4), which is layered in a similar fashion to microfibrils. (Windholz 1983)

Figure 1.4- A chitin chain composed of N-acetylglucosomine units (Windholz 1983)

1.4.4 Lignin

Lignin is a polyphenolic compound (Firgure 1.5) that is, like cellulose, abundant in vascular plants, forming 15 to 38% of a woody plant, although in non-vascular plants there is little lignin. It acts as support for cellulose, protecting it from enzymatic activity, as well as additional structural support for the plant (Agrios 2005). Taller vascular plants tend to have more lignin when compared to shorter plants. The lack of lignin from non-vascular plants makes sense in evolutionary terms, since most non-vascular plants tend to be short, there would have been no selective pressure to produce much lignin (Siegel 1969). Lignin-like polyphenolic compounds are present as an alternative structural support in bryophytes (Davey and Currah 2006).

21

Figure 1.5- Generic structure of lignin (Hammel 1997)

1.4.5 Starch

A common polysaccharide found in most plants, starch plays a role of energy storage, energy being available as glucose when starch is broken down. Unlike cellulose, α glucose is the basic monosaccharide that links together to form starch. Starch is a ready source of carbon for fungi as it is ubiquitous in most plant cells (Figure 1.6) (Agrios 2005).

Figure 1.6- Glucose in α configuration, linked by 1,4 glycosidic bonds forming starch. Note the uniform direction of the –OH group compared to cellulose (Campbell and Reece 2005).

22

1.4.6 Tannic Acid

Tannic acid has been used as an analogue for enzyme activity against soluble polyphenols. It is a commercial derivative of tannin. As mentioned above, such polyphenols are found in moss cell walls, and as lignin provides rigidity for vascular plants, tannin like polyphenols also provide rigidity for moss (Wilson et al. 1989).

Figure 1.7- Structure of tannic acid (Image from Sigma-Auldrich products line http://www.sigmaaldrich.com/thumb/structureimages/97/mfcd00066397.gif)

1.4.7 Pectin

Pectin is another cell wall polysaccharide, acting as an intercellular cementing agent (Windholz 1983). Unlike cellulose or starch it is composed of different monosaccharides (Agrios 2005). The chain of pectin (Figure 1.8) consists of α 1,4 bonded D-polygalacturonate, interspersed with 1-2-rhamanose (Windholz 1983). 23

Figure 1.8- Structure of pectin and resulting by-products produced from various enzymes acting on different linkages between the different sugars (Agrios 2005).

1.4.8 Xylan

Xylan is a complex polysaccharide found in cell walls, formed by 1,4 β linkages between different monosaccharides (Figure 1.9). Xylan in vascular plants is a major component of the cell wall and is part of the hemicelluloses (Carafa et al. 2005), a group of cellulose cross-linking glycans (Agrios 2005). Although hemicellulose is abundant in bryophytes, forming around 54-70% of cell walls (Spiess et al. 1984), xylan itself is lacking (Carafa et al. 2005).

24

Figure 1.9- Xylan chain including possible components of side chains (Kulkarni et al. 1999).

1.5 Gaps in knowledge

Previous studies have laid a foundation for future research, as there are still many gaps in the knowledge regarding arctic fungi. For example estimation about the diversity of fungi in Arctic soils could be too small by several magnitudes and the order of succession in fungal assemblages is also poorly characterized (Ludley and Robinson 2008). Although it has been indicated that ‘infrequent’ fungi are present as a “backup” for when the ‘abundant’ fungi are replaced (Deacon et al. 2006), there do not appear to be any studies that aim to test this, specifically for arctic fungi.

25

1.6 Aims and hypotheses

A collection of fungal isolates, which had been stored at 4oC, was provided. Fungi were isolated at 4oC from a total of 90 samples (30 samples each year, for three years) of standing-dead material of Schistidium apocarpum from a 150 m2 area of polar semi-desert within the Dryas octopetala zone of Svalbard (78o56’N, 11o50’E), close to Ny-Ålesund in the High Arctic. Full details of the area are given in Madan et al. (2007) (Madan et al. 2007)

Aims:

The aims of this study were: (1) to identify the fungi isolated from standing-dead material of Schistidium apocarpum, as an example of a High Arctic moss, (2) to determine mycelial extension rates of these fungi at a range of temperatures (4, 10 and 25oC), and (3) to characterise the functional potential, defined by carbon substrate utilization at 6oC, of ‘common’ and ‘occasional’ fungal taxa.

Hypothesis:

1) Isolates would likely contain taxa from Phoma, Cladosporium, Thelebolus and Oidiodendron as identified in a previous undergraduate project 2) Isolates should include less frequent fungi that have yet to be identified 3) “Infrequent” fungi have differing functions then “common” fungi

26

Chapter 2: Materials and methods

2.1 DNA Extraction

Appropriate COSHH forms were completed regarding substance storage and experimental procedures and submitted to lab 1.604, Stopford Building, University of Manchester Faculty of Life Sciences, signed by COSHH supervisor Geoff Robson and countersigned by Health and Safety advisor or TRM on inspection. Fungal cultures were managed as required under the relevant DEFRA Plant Health Licenses (DEFRA licence (PHL 193/4907)). Standard operating procedures included (i) Security: for example, isolated fungi were kept in a designated refrigerator, only named people had access, the names of authorised people were given on the outside of the laboratory (but not on the cold room). (ii) Administration and recording: Dated records were kept of all introductions and material was labelled at all stages. (iii) Transport: Isolated fungi were contained on Petri plates by wrapping the plates in Parafilm. Slope cultures were transported in screw-top bottles. (iv) Containment facilities: Primary containment facilities were not shared. Fungal cultures were isolated and subcultured in the laminar flow cabinet in the laboratory. (v) Experimental procedure: On finishing the experiment, plates and ‘discard’ isolates were transported sealed, and autoclaved; workers wore standard clean designated laboratory coats which were left in the laboratory. (vi) Hygiene and disposal: Bench tops and the laminar flow cabinet were treated with 1% Trigene and 70% IMS to kill fungal material; all biological material was autoclaved for disposal.

Isolates with similar cultural characteristics (e.g. colony extent, colour and amount of melanisation) were grouped together and each group was given a letter from A-O. Of the 662 isolates (Table 2.1), 43 were selected for DNA sequencing. The number of isolates that were selected from each A-O group is also shown in Table 2.1.

27

Isolate Moss SCM Dryas SCD Isolate Moss SCM Dryas SCD A 220 5 84 5 I 0 0 2 2 B 38 3 1 1 J 0 0 1 1 C 113 5 154 5 K 3 3 7 3 D 88 5 180 5 L 88 5 10 3 E 26 3 25 3 M 11 3 1 1 F 2 2 0 0 N 0 0 3 3 G 21 3 5 3 O 39 3 1 1 H 9 3 29 3 U 4 0 0 0 Total 662 503

Table 2.1 List of all isolates that appeared viable, from both Schistidium apocarpum moss and Dryas octopela dwarf shrub. This table also lists isolates that were subcultured (SCM = Subcultured moss, SCD= Subcultured Dryas)

Extraction of DNA was carried out using the FastDNA Spin Kit for Soil by MP Biomedicals (Illkirch, France). This kit was the one that had been found previously to be most useful in extracting DNA from the isolates according to previous unpublished undergraduate projects. The method for extraction was according to the manual (see Appendix 1). Some modifications to the protocol were made as follows. Since samples were on PDA growth medium and not soil, samples were excised from the agar medium with sterile toothpicks into the E-Lysing tubes. Instead of using the MP FastPrep homogenizing unit, a Precellys® 24 homogenizing unit (Bertin technologies, Paris, France) was used and samples were homogenized at a speed setting of 5500 rpm (7,590 g) for 40 seconds. Since the unit of measurement used on the centrifuge was in rpm, all centrifugation for extraction was set at 10,000 rpm which is roughly the same as 14,000 g i.e. 1 rpm = 1.38 g (according to the Qiagen Purification Kit’s spin protocol). The amount of DES (DNA Elution Solution) used was 65µl, but rather then pipette up and down to mix, as the protocol suggested, the pipette tip was used to gently stir the mixture, as it was too viscous and the samples would become stuck in the pipette tip.

2.2 DNA amplification

The polymerase used for amplification was Phusion High-Fidelity DNA polymerase (Finnzymes, Keilaranta , Espoo, Finland). Preparing samples for PCR amplification 28

followed the manual that came with the Phusion polymerase set, 50 µl samples were prepared according to Table 2.3.

Component 50 µl reaction

5x Phusion HF buffer 10 µl 10 mM dNTPs 0.4 µl ITS 1/4 primer 1 µl each primer Template 8 µl MgCl2 buffer 1.6 µl

Phusion DNA Polymerase 0.5 µl

Table 2.2- List of components for PCR

reaction. Remaining DEPC H2O added to make a 50 µl for PCR

Samples were placed inside a Bio-Rad PCR machine, and run on a protocol in 3 cycles. Cycle 1 involved preparing a hot-start of 98oC as recommended by the manual for Phusion Polymerase, for 45 seconds. Cycle 2 involved 10 s at 98oC for denaturation to occur, then cooling to 55oC for 30 s for annealing, followed by 15 s at 72oC to elongate DNA strands. Cycle 2 was repeated 30 times, until the final 3rd cycle where final elongation took place. The cycle ended at 4oC for temporary/ overnight storage until the program was stopped. PCR products were then run through gel electrophoresis (agarose gel 1.25% (w/v) + 1 in 25 of ethidium bromide) for 45 min at 76 volts. A ladder (Bioline, London, UK, HyperLadder IV), with a size range of 100 bp to 1000 bp, was used to identify bands at ~500 bp.

2.3 Sequencing

Samples were prepared for sequencing by purification using the QIAquick purification kit (QIAGEN, UK, catalogue number 28104). The instruction for the PCR Purification Spin Protocol were used (see Appendix 2), with modifications to the procedure in that samples were directly mixed in the spin column, no pH indicator was added, and the amount used in step 9 was 50 µl of Buffer EB (see Appendix 2). Purified samples were analyzed using the Nanodrop 1000 spectrometer (Thermo Scientific, USA) to determine the quantity of DNA and the purity of the samples. 29

These were determined by measuring the ng µl-1 and the absorbancy at 260/280 (A260/280) e.g. a good sample will have between 4-10+ ng µl-1 and the absorbancy will be at around 2.00. Sequencing was carried out by the University of Manchester’s Stopford Building sequencing department. Purified samples were prepared for forward and reverse sequencing; a 10 µl solution was made by addition of 4 pmol of ITS1/4 primers, 10 ng µl-1 of purified products (diluted from the Nanodrop value) and the remainder was DEPC water. The sequence information from the samples was downloaded from the University of Manchester servers, then viewed via the FinchTV software package (Geospiza inc, version 1.40), and the results were uploaded to the PubMed BLASTn sequencing database to be compared to existing sequences for fungal taxa. Query coverage and maximum identity were considered to be accurate if they both matched over 97%.

Further analysis of phylogenetic relationships between the fungi was performed by comparing known sequences to test sequences via the Align Genome website (http://www.genome.jp/tools/clustalw/ ), then using MEGA5 software (Molecular Evolutionary Genetics Analysis software version 5.11) created bootstrapped trees using the Neighbour-Joining method (Saitou and Nei 1987). Sequences of isolates were compared individually with known sequences, as well as between individuals of a group of isolates, and groups of isolates with known sequences.

Further sequencing was performed on Phoma sclerotioides with different primers that act on different regions as suggested in personal communication by Wunsch and Bergstrom (Wunsch and Bergstrom 2010); Elongation factor 1-alpha, Glyceraldehyde 3-phosphates, and Histone loci were used in PCR amplification and sequencing was performed by the same University of Manchester sequencing service. Phylogenetic trees were then constructed by Wunsch (See PCR cycle settings in Appendix 3.1 and Phylogenetic analysis methodology in Appendix 3.2)

2.4 Subculturing of fungal isolates

All isolates used for DNA extraction were subcultured onto potatoe dextrose agar medium (PDA), which was made according to the instructions on the bottle 30

(ForMedium, Hunstanton, Norfolk, UK, reference number PDA0102): PDA powder,

48 g, was placed in 1 L of H2O. This medium was poured into 50 ml tubes placed as slopes, with 25 ml of PDA in each tube. A sterilized toothpick was then used to cut out a section (minimum of approx. 4 x 4 x 2 mm) of each original isolate which was transferred to the new PDA medium. The inoculated slope tubes were then placed in a cold room at 4oC and extension was checked once every week. These samples were then subcultured again onto plates containing specific carbon sources to measure substrate usage. All subculturing was carried out aseptically in a level 2 biological safety cabinet.

2.5 Mycelia extension rate and carbon substrate tests

Seventeen isolates of 43 were selected for growth rate tests at 4, 6, and 25oC and 6oC for carbon substrate utilization tests. This was done by selecting one isolate representing a species in a characterized group, from Table 2.2, and by whether the selected isolate grew at all as some selected isolates could not be subcultured. Four replicate plates were subcultured from each isolate for each growth rate temperature and each carbon substrate test. The media used to test for enzyme activity were stored at 6oC (see 2.5.1 for temperatures used for media storage for the growth rate tests). Prior to subsequent tests, isolates were first subcultured onto 20 ml PDA plates and stored at 6oC. The media were made according to the IMI Handbook Biochemical Tests for Fungi (Peterson and Bridge 1994) and, unless stated otherwise, components, pH adjustments, and pressure were all followed accordingly (see Appendix 4). The agar component was modified: a Melford High Gel Strength agar (Melford, catalogue code: M1002) was used (15 g) instead of the Sigma Oxoid Number 3 agar. Since autoclave temperature relates to pressure, the following temperature settings were used to achieve the correct pressure (Alfa 2005): 110oC = 5 psi, 116oC = 10 psi, 121oC = 15 psi. Substrate tests on solid media were analyzed qualitatively from no reaction (-ve) to strong reactions (+++ve). Plugs cut from isolates, grown from PDA plates, were placed facing down so that mycelium was directly in contact with the agar medium. Acidity was adjusted using hydrogen chloride (HCl) to increase acidity and sodium hydroxide (NaOH) to decrease acidity. The pH while being adjusted was 31

monitored continuously with a pH probe while the medium was being stirred on a magnetic stirrer plate.

2.5.1 Mycelial extension rate test

The purpose of the mycelia extension rate test was to differentiate psychrotolerant from psychrophilic fungi. Plugs were cut out from PDA plate subcultures, using a 5mm diameter cork borer, and transferred to the centre of fresh PDA plates (9cm diameter). Vertical (designated A) and horizontal (designated B) lines were drawn through the centre of the plug to be used as a reference for measurements. Colony extension measurements (in millimetres) were carried out daily for 2 weeks at 4, 6, and 25 degrees Celsius. Four replicate plates of each isolate were studied at each of the temperatures.

2.5.2 Casein medium

Casein medium was used as an indication for protease activity in fungi, with positive results giving a zone of clearance around the colony. Although hydrolysis of casein can be due to acid production, the majority of casein degradation is due to enzyme activity (Windholz 1983). The ability to degrade protein is useful as it can be a source of nitrogen for fungi and so has an effect on the nitrogen cycle; protein containing nitrogen can be degraded into nitrogen components which can be used by plants or other microbes. Unlike for the starch and pectin test, the zone of clearance is more obvious in the casein test and requires no addition of chemicals to flood the plate. The source of the casein was from dried semi-skimmed milk (Marvel Original dried skimmed milk) which was added last to the components during mixing. It was found that a loose lid on the Duran bottle during autoclaving would prevent the skimmed milk from forming a skin-like layer that is not soluble in water, which was probably because of increased steam penetration. Medium was then poured into 20 ml Petri dishes and inoculated with agar plugs cut with toothpicks from the PDA plate isolates. Four replicate plates were made for each isolate and were stored at 6oC in the dark for 3-4 weeks.

32

2.5.3 Cellulose medium

As the most abundant sources of carbohydrates in plant structures, cellulose can be a significant source of carbon for fungi. A dye diffusion method using cellulose azure was set up according to the IMI Biochemical Tests handbook ((Peterson and Bridge 1994); Appendix 4). Cellulose azure from MegaZyme (catalogue code: I-ACELL) was used in the overlay medium, although the composition of the basal medium was unchanged from the IMI handbook (Appendix 4). The dye diffusion method works on the principle that the dye is bound to the cellulose in the overlay medium, and is released into the basal medium when cellulose is degraded into simpler components. The strength of the enzyme activity is determined by how much dye is released into the medium over the incubation period, no diffusion indicates a negative result for cellulose activity. The basal medium was first prepared in a flask, with 5 ml glass bijou bottles used as the final containers for the medium. There was a need for the basal medium to be continuously stirred when pipetting into the bottles. This was to ensure that the medium was evenly dispersed between the bottles so that the media would solidify normally. To ensure that the overlay medium would not solidify before it could be added to the basal medium, after autoclaving, a hot water bath was set up at 70oC between pipetting. Care was also taken to ensure that the overlay medium did not intrude into the basal medium, which would give a false positive if missed. Four replicate bottles were made for each isolate, and the medium was stored at 6oC in darkness before and after inoculation with agar plugs from PDA plate isolates. Inoculated medium was incubated for 7-14 days and checked for enzyme activity every 3 days.

2.5.4 Chitin medium

Similar to the cellulose medium, a dye diffusion method was used for the chitin medium (chitin azure from Sigma, catalogue code: C-3020); a basal medium was made and overlaid with medium containing chitin azure, and likewise a water bath at 70oC was kept nearby so the overlay medium did not solidify while being pipetted (see Appendix 4). The principle for this dye diffusion method is the same as that of cellulose azure. Again how well chitin is degraded is determined by how much dye is 33

released by the fungus and diffuses into the basal medium. Four replicate bottles for each isolate were made and stored at 6oC in the dark for 5-6 weeks.

2.5.5 Lignin medium

Lignin along with cellulose is abundant in plant litter as it is also a major component of the cell wall. The two compounds are chemically bound to each other as a lignocellulose complex in plants, with lignin acting as a protective compound that prevents cellulose being hydrolyzed by enzymes (Otjen and Blanchette 1984). Therefore it is important in industry and the natural environment if cellulose is the intended substrate, to hydrolyse lignin first. Because of the discontinuation of the Poly R-478 dye, the methodology in the IMI Handbook was substituted with the method described in Robinson et al. (1993; see Appendix 4) using lignin from Sigma Aldrich (Lignin, alkali, Sigma-Aldrich Company, UK, product no. 370595). The size of the zone of clearance showed how strong the enzyme activity was. Four replicate plates were made for each isolate and stored at 6oC in darkness for 5-6 weeks.

2.5.6 Pectin medium

The method used for creating the pectin medium followed that of the IMI Handbook (see Appendix 4), using citrus pectin (Sigma, catalogue number: P9135). Pectinase is of particular interest to industry as it has been used for commercial purposes, for example, by increasing yields in fruit juice production. Pectin, like most other substrates listed, are polysaccharides in plants. Pectin was found to coagulate quite readily when in contact with water, so adding the pectin slowly and in small amounts was required so that it would disperse properly in the mixture. After incubation of 4- 5 weeks at 6oC in the dark, replicate plates of four for each isolate, were flooded with 0.01% malic acid, and left to stand for 1 hour and then drained of the acid. This was followed by flooding with ruthenium red dye and left to stand for 2 days. The strength of enzyme activity was indicated by a dark pink border around the colony, with stronger activity having darker pink borders and negative activity being unstained. 34

2.5.7 Starch medium

The breakdown of starch is indicative of amylase activity. Starch is a good source of carbon for the fungi and its utilization can be readily observed through zones of clearance after the medium is flooded with Lugol’s iodine solution. Areas that are not affected by amylase would remain dark purple/ black and would be considered a negative result regardless of whether fungal growth occurred, whereas areas with starch degradation would be clear with white/yellow borders connected to the stained purple areas. Replicate plates of four for each isolate were flooded with Lugol’s iodine after 4-5 weeks at 6oC in the dark.

2.5.8 Tannic acid

Tannic acid is a commercial form of tannin, a polyphenol similar to lignin. The methodology was also similar in that a basic medium was made and the tannic acid (Tannic acid, Sigma-Aldrich Company, UK, product no. 403040) mix was sterile filtered and mixed into the basic media (see Appendix 4). The final medium was then inoculated with the isolate and left for 5 weeks at 6oC in darkness. This method was followed according Giltrap 1982 (Giltrap 1982) and Bending and Read 1997 (Bending and Read 1997)

2.5.9 Xylan medium

Xylan can refer to several polysaccharide structures within plants composed of xylose, a pentose sugar with potential industrial applications for ethanol biofuels. The method to test for xylanase activity was a modified version of the cellulose dye diffusion method, with xylan azure replacing cellulose azure (see Appendix 4). The amount of dye from the overlay diffusing into the basal is indicative of the strength of xylanase activity. Xylan azure was found to contain an excess of dye and so required washing before being mixed into the media. This was done using a sterile vacuum filter unit with a 0.22 um pore size. The xylan azure was washed until the effluent was clear. 35

Chapter 3 Results

3.1 Identifications

Fungal isolates were provided by Clare Robinson originating from standing dead material of Schistidium apocarpum from a Dryas octopela zone of Ny-Ålesund Svalbard. Fungi were isolated from surface sterilized 2 mm2 fragments (Fisher et al. 1995), plated onto 2% malt extract agar medium with 4 mg l-1 of Novobiocin, colonies were then plated onto PDA and stored at 4oC (Robinson et al. 1998). The fungal taxon that was identified most frequently was Phoma sclerotioides, a fungus that is described as a Brown Root Rot (BBR) pathogen for Alfalfa (. Initial sequencing from original isolates (see Appendix 5 Table A1) showed that Ph. sclerotioides usually had the highest percentage in max identity and query coverage, as well as consistent clear peaks when viewed via FinchTV. It was possible to sequence the majority of the original isolates, although some had lower than the optimal +97% for query coverage or max identity, for an accurate identification. Sequences using ITS4 also generally gave higher percentages for max identity and query coverage. It was also the case that ITS4 sequencing generated better peaks, and in some cases ITS4-sequenced isolates were the only ones showing peaks. Subsequent sequencing from fresh subcultures of isolates showed higher percentages of max identity and query coverage in all fungi (with exception to those that were not able to be subcultured) and less difference between percentages of max identity and query coverage between ITS1 and ITS4 sequencing (see Table 3.1), although some peaks were less clear in ITS1 sequenced isolates. Subculturing also allowed successful identification of fungi that could not be sequenced properly from the original isolate, e.g. K3 was not identifiable because of short muddled peaks, however when subcultured and sequenced later, it was identifiable as an uncultured clone MBS 12-5. Morphology was also briefly compared by eye between plates of isolates as a means to assess whether sequencing was accurate. Isolates identified as Ph. sclerotioides, for example were consistent in morphology once subcultured onto fresh PDA medium (original isolates differed in terms of colony growth and melanin production and sometimes colour of mycelia), i.e. the mycelia appeared light creamy 36

brown and produced melanin that darkened the PDA to orange brown to dark orange brown colour.

Table 3.1 Max identity and query coverage for sequenced isolates. Note the colour coding, red is unidentifiable/ not sequenced, yellow is sequenced but with peaks that are poorly defined or have low max identity and query coverage, and green are those that have well-defined peaks. Query coverage and maximum identity are also divided for ITS1/ITS4 sequences.

Query coverage Max Identity Sample Identity (%) (%) SA1 Phoma sclerotioides 99/99 98/98 SA2 Phoma sclerotioides 98/96 98/98 SA3 Phoma sclerotioides 98/99 98/98 SA4 Phoma sclerotioides 98/99 98/99 SA5 Phoma sclerotioides 99/99 98/98

SB1 Phoma sclerotioides 99/99 98/98 SB2 Phoma sclerotioides 99/99 99/98 SB3 Phoma sclerotioides 99/99 99/98

SC1 SC2 SC3 Fimetariella rabenhorstii 100/99 99/99 SC4 SC5

SD1 SD2 Phoma sclerotioides 97/99 99/97 SD3 Phoma sclerotioides 99/99 99/99 SD4 Phoma sclerotioides 99/99 98/98 SD5

SE1 Penicillium camemberti 99/100 100/100 SE2 Mrakia stokesii strain 99 / 98 100 / 98 SE3 Penicillium camemberti 100/99 100/99

SF1 Hypocrea viridescens 100/100 99/99 SF2 Hypocrea viridescens 100/100 100/100

SG1 Phoma sclerotioides 99/99 99/99 37

SG2 Phoma sclerotioides 99/99 99/99 SG3

SH1 SH2 Scytalidium lignicola 100/99 100/98 SH3 Scytalidium lignicola 99/99 100/98

SK1 Phoma herbarum 100/100 100/99 SK2 Phoma herbarum 96/100 99/99 SK3 Uncultured fungus clone MBS12-5 100/87 100/100

SL1 SL2 Penicillium echinulatum 99/99 99/99 SL3 SL4 SL5

SM1 Phoma sclerotioides 99/99 99/99 SM2 Monodictys arctica 84/99 99/98 SM3 Phoma sclerotioides 91/99 99/98

SO1 SO2 SO3 Debaryomyces hansenii 100/99 100/100

3.2 Phylogenetic trees

A phylogenetic tree was constructed from the sequenced isolates. Similar sequences to the isolates (+97% in both max identity and query coverage) from the NCBI BLASTn were used as comparisons. Alignment of sequences was done using the CLUSTALW algorithm from the website Align Genome (Japan) (http://www.genome.jp/tools/clustalw/), aligned sequences were then used to construct a tree using the Neighbour-Joining method. The optimal tree with the sum of branch length = 0.74766455 is shown (Figure 3.1.1-3.1.4). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein 1985). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were 38

computed using the Maximum Composite Likelihood method (Tamura et al. 2004) and are in the units of the number of base substitutions per site. The analysis involved 127 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 248 positions in the final dataset. The complete tree (Figure 3.1.1) shows distinct groups for related isolates and BLASTn comparisons. In particular, all isolates identified as Ph. sclerotioides showed very close relatedness to those listed in the NCBI database. Monodictys arctica and Phoma herbarum group are shown to be closely related to the Phoma sclerotioides group, although M. arctica was more closely related to Ph. sclerotioides than Ph. herbarum. Ph. herbarum group was also closely related to the Scytalidium lignicola. Isolate K3 was related closest to an uncultured fungus clone MBS12-5, but is also related to several other NCBI samples (Discosia, Discostroma, Robillarda, Seimatosporium Sordariomycetes). The two F isolates identified as Hypocrea viridescens are shown to be closely related to Trichoderma sequences, however this is because Hypocrea is the teleomorph to the Trichoderma anamorph. Isolate C3 was separated into its own phylogenetic group and closely related to Fimetariella rabenhorstii and more distantly related to Coniochaeta savoryi. The C3 and F phylogenetic groups also clustered together more closely with each other, than other phylogenetic groups. Isolate O3 in its own distinctive group, was matched closely with Debaryomyces hansenii based on query coverage and max identity, but was a closer match with Debaryomyces castelli based on the phylogenetic tree. It also should be noted that Debaryomyces castelli and Debaryomyces hansenii sequences had 100%/100% for max identity and query coverage match when compared with each other. This might mean that a different region of DNA should be used to better differentiate between the two. Phylogenetic trees of Phoma sclerotioides isolates in this study and variants of Phoma sclerotioides constructed by Begstrom and Wunsch show that the isolates were very closely related to Phoma sclerotioides var. sclerotioides (Appendix Figures A1-A4).

39

Figure 3.1.1 Phylogenetic tree of sequencable isolates and comparisons from the NCBI database. Tree constructed with data from Table 3.1. Zoomed in sections of this tree are in Figure 3.1.2-3.1.4. Scale size 0.02 using Saccharomyces cerevisiae as the outlier. ITS1/ITS4 sequences of isolates are labelled as e.g. SA11/SA14 40

Figure 3.1.2- Section of the overall phylogenetic tree of all identified isolates (Figure 3.1.1); section contains Phoma sclerotioides and Monodictys arctica as the closest relatives in the isolates. 41

Fig 3.1.3- Section of the overall phylogenetic tree of all identified isolates (Figure 3.1.1); section contains Phoma herbarum and Penicillium strains. Penicillium taxa were more distantly related to the Phoma and Monodictys taxa.

42

Figure 3.1.4- Section of phylogenetic tree (Figure 3.1.1) showing close relationships between Fimetariella rabenhorstii and Hypocrea/Trichoderma taxa. These were in turn were more closely related to the K3 Uncultured fungus clone MBS12-5. Finally the most distantly related to all the taxa was Debaryomces castelli isolates with Saccharomyces cerevisiae as the outlier.

3.3.1 Radial Growth

Measurements of cumulative mycelia extension showed that most isolates of the same taxon/similar taxa clustered closely together at all temperatures. All isolates also displayed at least some ability to grow to some degree in all temperatures. At 4oC Phoma sclerotioides generally had the fastest extension rate with the largest 43

average diameter growth reaching 29.4 mm (Figure 3.2.1). The majority of other isolates were still able to grow but grew slowly. E2 did not reach stationary phase, the flattening of the line was because measurements were no longer being taken, as growth of secondary colonies, from spores, around the initial plug contaminated the results. Slowest extension was exhibited by Phoma herbarum a taxon related to Ph. sclerotioides (K1 and K2).

Figure 3.2.1 - Average cumulative mycelia extension of 4 replicates for each isolate, at 4oC, in 90 mm (90,000 μm) Petri dishes. See Table 3.1 for names of isolates.

At 10oC isolates generally had a larger colony diameter and greater cumulative extension than at 4oC. Phoma sclerotioides isolates extended the fastest at 10oC out of the three temperatures tested (Figure 3.2.2). However the fastest growing isolate at 10OC was Hypocrea viridescens with final mean growth reaching 53.1 mm almost 4 times more than the 14.1 mm mean growth at 4oC. Phoma herbarum isolates grew much better at 10oC with isolates growing twice the diameter of those at 4oC, but extension was slower when compared to Phoma sclerotioides at 4oC. Penicillium taxa also exhibited a slight increase in extension growth at 100C. Isolate E2 again became contaminated with its own spores on day 8.

44

Figure 3.2.2- Average cumulative mycelia extension of 4 replicates for each isolate, at 10oC, in 90 mm Petri dishes. See Table 3.1 for names of isolates.

Most isolates that extended quickly at 10oC extended more slowly at 25oC often stopping before reaching 10 mm in diameter. Phoma sclerotioides taxa clustered together again, but colonies extended little beyond the initial plug of agar medium (Figure 3.2.3). Phoma herbarum appeared to extend well at 25oC, matching similar extension ratesthan previous temperatures, doubling those at 10oC. Hypocrea viridescens (F2) isolate remained the fastest in terms of growth, reaching the edge of the plate within a week. Final mean diameter of F2 was averaged at 57 mm as measurements stopped for one of the contaminated plates early on by a foreign fungus, which lowered the value. Contamination occurred more frequently at 25oC as Parafilm became more susceptible to breakage, and spores from the samples that were more active and external sources also became more active.

45

Figure 3.2.3 - Average cumulative mycelia extension of 4 replicates for each isolate, at 10oC, in 90 mm Petri dishes. See Table 3.1 for names of isolates.

3.3.2 Mean extension rate

The mean extension rate was calculated using the value of the slope from the log phase of the cumulative mycelial extension. The final value was calculated by taking the mean growth rates of an isolate and plotted onto a graph (Figures 3.3.1 – 3.3.5).

Isolates identified as the same taxa were very close in extension rate similar to cumulative mycelia extension. The shape of the growth curve as a result was also matched closely between the same taxa for example Phoma sclerotioides (Figure 3.3.1) isolates all showed a maximal growth rate at 10oC with the lowest growth rate at 25oC. This is not true however when at the genus level for example Phoma sclerotioides and Phoma herbarum had different growth rates and cumulative mycelia extension to each other (Figure 3.3.1 and Figure 3.3.4) 46

Figure 3.3.1- Phoma sclerotioides isolates and their aveerage growth rate at all 3 temperatures. All of these isolates show a higher growth rate at 4 and 10oC compared to 25oC suggesting quasi-psychrophilly (Frisvad et al. 2006) psychrotolerance.

Figure 3.3.2- Penicillium isolates E1 showed a higher growth rate at 25oC although L2 is showing more ambiguity. Mrakia stokesii (E2) again appears to be a contaminent. 47

Figure 3.3.3- Isolates in this graph showed a mesophilic style growth curve increasing as temperature increases. Growth rate in F2 is the fastest at both 10 and 25oC

Figure 3.3.4- Remaining isolates include the two more closely related Phoma herbarum isolates as well as the Monodictys arctica isolates.

48

3.4 Carbon substrate tests

The results of carbon substrate tests varied between most isolates (Table 3.4.1), however organisms within the same taxon i.e. Phoma sclerotioides were consistent with each other. Penicillium taxa appeared to have the greatest range of enzymes able to degrade most substrates tested, quickly and effectively. Both Cadophora luteo-olivae, and Debaryomyces hansenii showed mostly negative results. This is likely to be due to the little to no extension rates that these isolates showed. Efficacy of the enzyme is related to the size of clearance zone, or the amount of dye diffused in medium. Therefore the size of colony in the medium is less important than the size of the clearance zone, or than the amount of dye diffused.

Isolate Organism Casein Cellulose Pectin Starch Tannic

A4 Phoma sclerotioides ++ + - + - B1 Phoma sclerotioides + + - ++ ++ D4 Phoma sclerotioides ++ +++ - ++ - G1 Phoma sclerotioides ++ ++ - + - Frequent fungiFrequent M1 Phoma sclerotioides ++ + + ++ + K1 Phoma herberum ++ + ++ + - E1 Penicillium sp. + +++ + +++ -

L2 Penicillium sp. BF11 +++ +++ + + -

K2 (Cadophora) sp. AB10 ++ ++ ++ + + F2 Hypocrea viridescens ---- + + - - C3 Fimetariella rabenhorstii ++ +++ - ++ - K3 Uncult. clone MBS12-5 + ++ - + -

Infrequentfungi E2 Mrakia stokesii strain +++ +++ + ++ - H3 Scytalidium lignicola - ++ ++ + - M2 Monodictys arctica + + +++ ++ + O3 Debaryomyces hansenii + - - - - Control - - - - -

Table 3.2- Average (from 4 replicates) reaction strength of all the organisms for all of the substrates, (+++) = strong positive reaction, (++) = positive reaction, (+) = weak positive reaction, (-) = negative reaction.

49

3.4.1 Casein

The ability to degrade casein was present in most fungi tested, with all Phoma isolates being more or less consistent with each other. Casein is also the only substrate Debaryomyces hansenii could utilize visibly. The difference in efficacy of the enzymes used to break down casein between frequent and infrequent isolates, points to a slightly higher efficacy in frequently occurring fungi (Table 3.2).

Figure 3.4.1- Strong positive reaction for casein (left L21), negative reaction (right H34) incubated at 6oC in the dark, note the lack of clearing zone on H34 despite larger colony growth after ~4 weeks in the dark.

3.4.2 Cellulose

The ability to degrade cellulose was slightly greater in the fungi tested then either casein or starch. At least five isolates also showed strongly positive reactions (Table 3.2), with only two isolates showing no degradation at all. When frequent and infrequent fungi were compared, degradation of cellulose showed practically no difference between them, although both isolates showing negative results were present in the infrequent fungi.

50

Figure 3.4.2- Comparison of strongly positive, positive, weakly positive, and negative, reactions in cellulose dye diffusion (left to right control, B11, G12, L2). Samples incubated at 6oC after 1 week in the dark.

3.4.3 Chitin

There were no positive reactions for chitinase activity in any of the tested isolates. Results from Deacon et al support this conclusion as accurate as almost all of the samples in that study also showed negative results (Deacon et al. 2006).

3.4.4 Lignin

Similar to the chitin test, all samples showed negative results, which again was supported by prominence of negative results in Deacon et al’s 2006 paper.

3.4.5 Pectin

The ability to degrade pectin in the fungi tested was lower than for most of the other substrates tested, with most showing lower, or no activity on pectin. There was a clear difference between frequent and infrequent fungi as well, with most of the frequent isolates having much lower activity then samples labelled as infrequent isolates. Phoma in particular, with exception of Phoma herbarum and isolate M1, 51

showed negative results for pectinase activity. Both Penicilliium isolates showed low ability to degrade pectin. Monodictys arctica however showed the strongest activity with a very clear dark pink border (see Figure 3.4.5, bottom right plate).

Figure 3.4.5- Comparisons of pectin utilization, going from bottom left clockwise to bottom right, are negative, weak positive, positive and strong positive results. The ability to degrade pectin is indicated by the pinkness of ruthenium red absorbed in the colony as well as the size of the border i.e. larger borders and darker colour indicate a stronger reaction. Plates were incubated at 6oC for ~4 weeks in the dark.

3.4.6 Starch

Starch utilization was widespread amongst the fungi tested, although degradation ability was generally moderate (Table 3.2). There was slightly stronger degrading ability in the frequent fungi than the infrequent. The main difference was that all negatives for starch utilization were in the infrequent fungi category. Although Hypocrea viridiscens grew quickly, there was no evidence that it would degrade starch. An interesting observation was that Phoma sclerotiodes isolates sporulated quickly and produced no melanin, unlike isolates grown on PDA when they produced a large amount of melanin and sporulated slowly. 52

Figure 3.4.6- Starch plates compared from left to right, negative (control plate), weak positive, and strong positive. Like casein the size of the colony is not indicative of the extent of enzyme production. Plates were incubated at 6oC for 4 weeks in the dark.

3.4.7 Tannic acid

Most of the isolates showed some growth, however tannic acid tests showed largely negative results with only Phoma sclerotioides isolates showing any positive results (Table 3.2), indicated by a brown colouration around the colony (the Bavendum reaction (Bending and Read 1997)). Specifically, only B14 showed a strongly positive result amongst the positive isolates (Figure 3.4.7). The time taken to show any enzyme activity was 5 weeks.

53

Figure 3.4.7- Tannic acid plates from top left (going anti-clockwise) negative with growth, weakly positive, positive and strongly positive

3.4.8 Xylan

The xylan medium could not be used as dye diffusion occurred even when no inoculants were present. The xylan azure was washed several times with water through a filter until the resulting fluid was clear, however diffusion still occurred and the media could not be used.

54

Chapter 4. Discussion

4.1 Isolate identities

The comparison of morphological identification with sequencing was accurate for the most part, with most isolates grouped together by colony morphology having highly similar/matching sequencing data. There were exceptions where isolates within a group did not match ITS sequences however most of these were similar higher up the taxanomical classification. Maximum identity and query coverage improved greatly when DNA from freshly sub-cultured isolates was used compared with the original culture.

All the fungi identified were ascomycetes; this would seem contrary to previous research where the majority of fungi in arctic soil were basidiomycetous yeasts (Butinar et al. 2011). However it should be noted that the isolates used here were from standing-dead material and so was above the top-soil. Above ground species and dynamics have been shown to differ when compared to lower layers (Heikki et al. 2005). Isolation of ascomycetes could therefore be due to the in vivo composition of the dead material or the isolation techniques used which were more favourable for the fungi.

4.1.1 Cadophora luteo-olivacea

The isolate identified as Cadophora luteo-olivacea was likely to be misidentified as the subculture did not match previous morphological descriptions; the isolate’s subculture was yeast-like in appearance compared with the green to white mycelia of Cadophora (Roberts 2004).

4.1.2 Debaryomyces hansenii

Debaryomyces hansenii is an ascomycetous yeast that has been found to be the 55

cause of food spoilage. It has also been isolated from glacial meltwater and seawater, also from the Svalbard archipelago (Butinar et al. 2011). The proximity of the two sites probably explains the presence of this species in the current study in soil organic matter from Svalbard. It is not known whether the soil was the source of the glacial strains or vice versa, although because of the high salt tolerance of this species (Prista and Loureiro-Dias 2007), it is possible that it is the latter, as adaptation to high salt tolerance indicates a likely coastal origin.

4.1.3 Fimetariella rabenhorstii

An ascomycetous fungus found as an ectomycorrhizal fungus in plants, F. rabenhorstii has been found on the root tips of Pinus sylvestris (Menkis and Vasaitis 2011) commonly known as Scots Pine. It has also been described as a saprotrophic fungus (Tedersoo et al. 2009). Pinus sylvestris is the most widely distributed conifer in the world and is found in Europe and Asia, and is particularly found in the northern hemisphere. The proximity of these forests to Svalbard could explain the presence of F. rabenhorstii among the isolates, as spores from the fungus could have been picked up by winds to the islands or possibly introduced inadvertently by animal vectors.

4.1.4 Hypocrea viridescens

Hypocrea viridescens is the teleomorph of Trichoderma viridescens. The Hypocrea/Trichoderma genus is ubiquitous in soils with Hypocrea viridescens having a mainly European origin (Jaklitsch et al. 2006). Because of this ubiquity there might be a possibility that these were contaminants, however they were isolated as monocultures and only two out of the entire isolate collection matched the same morphology. Their morphology was very distinct from every other isolate and left little ambiguity in their difference to the other isolates.

4.1.5 Monodictys arctica

Monodictys arctica is the closest relative to Phoma sclerotioides in the isolates sequenced, with a closer match than Phoma herbarum, and M. arctica itself is closely 56

related to Phoma schachtii (Figure 3.1.1). This particular fungus has been described by Day et al. (2006) and was isolated from root tips of Saxifraga oppositifolia, a flowering plant from Ellesmere Island, Nunavut, Canada (Day 2006). Saxifraga oppositifolia is distributed in high arctic regions and perhaps explains the presence of Monodictys arctica in soil organic matter from Svalbard.

4.1.6 Penicillium camemberti

Penicillium camemberti is a filamentous ascomycete that is involved in the fermentation of brie cheese. P. camemberti has also been isolated from Antarctic terrain and tested for antifreeze properties, although none was found despite the tolerance to Antarctic conditions (Xiao et al. 2010). Research has also shown that P. camemberti produces a full complement of cellulases that allows for efficient degradation of cellulose (Choi Won et al. 1992) which explains the high efficacy against cellulose of the E1 isolate.

4.1.7 Phoma sclerotioides

Phoma sclerotioides as mentioned previously is the most abundant taxon amongst the isolates found. In previous research (Wunsch and Bergstrom 2010) this species was found to be the cause of brown root rot of alfalfa and in temperate regions, they act as both pathogen and saprobe. It is possible that P. sclerotioides found here is a saprobe since they were isolated from dead standing material. Wunsch and Bergstrom (2010) have found that Ph. sclerotioides can be separated into several varieties based on morphological characteristics and sequences of more specific loci. Sequencing of three further loci, Elongation factor 1-alpha, Glyceraldehyde 3- phosphate, and Histone loci mentioned in this paper were recommended by Bergstrom and Wunsch via personal communication(Wunsch and Bergstrom 2010). PCR and sequencing were performed using these three loci for 15 isolates of Phoma sclerotioides. Further phylogenetic analysis was performed by Wunsch (Appendix Figure A1-A4) showed that isolates in this study matched closely with their Ph. sclerotioides var. sclerotioides sequences. 57

4.1.8 Phoma herbarum

Phoma herbarum has been previously isolated as a pathogen to some types of weed including several species of the genus Cannabis (McPartland 1994) and Taraxacum officinale (dandelion) and for this reason has been researched as a potential biological pesticide (Neumann 2002).

4.2 Relationship between temperature and extension rate

Although none of the isolates had an optimum growth rate below 10oC it is evident that the majority of the isolates were found to be psychrophilic to some degree and all were psychrotolerant, in that growth was apparent, but stopped after a certain time at 25oC. Previous research classified such organisms as quasi-psychrophilic (Frisvad et al. 2006). Although Hypocrea viridescens extended quickly at all temperatures, particularly at the higher temperatures, it was not one of the most frequently isolated fungi, i.e. there were only 2 isolates out of all the original samples. It is likely that the much lower temperatures (mean summer soil temperature of 6.9-8.0oC at 50mm depth (Robinson et al. 1995)) in Svalbard limited the spread of H. viridescen’s in the region, as the mycelial growth extension indicated less growth at the lowest temperature, 4oC, compared with at 10 and 25oC, indicating that further drop in temperature will see much lower extension rates. Competition from better adapted isolates would also limit the spread of the fungus, and this was indicated by the dominance of Phoma sclerotioides which had a higher extension rate; approximately doubled with isolates A4, D4, and M1 when compared to F2, as well as greater final cumulative mycelia extension measurements. Poor utilization of substrates could have also limited H. viridescens as shown by the lack of enzyme activity towards. for example, starch which is a ready source of glucose. This again can be attributed to low temperature as H. viridescens may have enzymes that are inactive against substrates at the tested temperature.

Despite its previous isolations from the arctic regions as mentioned above Monodictys arctica did not grow as rapidly or as extensively as Phoma sclerotioides. 58

Radial growth of M. arcitica was lower at 4oC than at 10oC, although both were higher than at 25oC. Extension rate however increased as temperature increased. It was possible that PDA inhibits or does not provide adequate nutrients for greater growth of M. arctica.

4.3 Inference of function from substrate utilization

Previous research concerning ascomycetes isolated from food, straw and wood from Antarctic historical huts, showed cellulose degrading abilities similar to those found in this study and at similar temperatures (15oC) (Duncan et al. 2006). Thormann et al. and Rice et al. similarly found various fungi in temperate peatland that could degrade various sources of carbon including tannic acid, cellulose and pectin (Thormann et al. 2001; Thormann et al. 2002; Thormann et al. 2003; Rice and Currah 2006), although as confirmed with fungi tested here, they lacked the ability to degrade lignin (Thormann et al. 2003).

From the substrate utilization results, the function of these fungi can be inferred, as decomposition is a multi-stage process, where different organisms can be specific for degrading different components of plant cells. The inability of the fungal isolates here to degrade lignin suggests that these isolates were not part of the lignolytic stages of decomposition. These isolates appear to be from the mid-stages of decomposition of standing-dead material of Schistidium apocarcpum, as complex molecules such as lignin tend to be degraded last (Thormann et al. 2003). However according to the same study by Thormann et al. it was also noted Phoma and Penicillium species tended to occur later in species succession during decomposition, whilst species of Trichoderma were early colonisers of dead plant tissue. Similar isolation frequencies in this study would suggest that isolates were therefore from mid-late stages of decomposition. It should be noted however that Thormann et al’s study took samples from temperate zone peatlands and may not apply to the arctic.

The difference in functional capacity between infrequent and frequent fungal isolates was small. This is in line with previous research where frequent/infrequent fungi performed similar functions (Deacon et al. 2006). It has been suggested that 59

such functional similarities between different sized populations is for stability, i.e. a decrease or removal of one organism’s population will not adversely affect the function of the system (Robinson et al. 2005) The ability to degrade the substrates was shown to not follow directly extension rate or cumulative extension, as isolates with comparably smaller radial growth and extension exhibited larger zones of cleared substrate. It is unknown whether this is due to more efficient enzymes or that larger amounts of enzymes were produced.

4.4 Temperature relation to substrate utilization

Substrate utilization tests were only carried out at one temperature (6oC) therefore no conclusions could be drawn from the results regarding the relationship between substrate degradation with temperature, other than the absence or presence of enzyme activity at that temperature. In previous research in soil systems, the rate of reaction is defined using the Q10 value which is the doubling or tripling of the rate for every 10oC temperature increase (Davidson and Janssens 2006). In the same paper by Davidson and Janssens 2006, it had been noted that increased sensitivity to temperature has also been shown in molecules that were more complex which may explain a lack of enzyme activity to lignin i.e. lignin degradation may be more temperature specific than the other substrates tested. Similarly for cellulose it was found that past 10oC, cellulose degradation could potentially increase substantially (Nadelhoffer et al. 1991) which could therefore affect the carbon feedback systems. Although research on several ascomycete species in Alaskan soils did not suggest that the 10oC threshold would be passed, as they were found to have low optimum temperatures of 6oC for enzyme activity (Flanagan and Scarborough 1974), this current study does suggest that species that favour slightly higher temperatures are present and could possibly have optimum enzyme temperatures exceeding the 10oC threshold.

4.5 Future work

Isolate identification has shown to be relatively accurate; however, the need to grow live cultures in order to extract DNA had several drawbacks. Firstly such traditional 60

techniques do not always identify the true diversity of complex heterogeneous sources such as soil or litter as micro-organisms may not grow unless in favourable conditions. Secondly, it is extremely time-consuming, not only to subculture the isolates, but also to store and transport. The use of metagenomics in soil will aid in identification of species that may have been missed in previous studies, allowing for a more accurate depiction of biodiversity (Rolf 2005) it does not provide an insight into their function.

The readiness at which substrates were degraded may not be a true indication of how the fungi would function in vivo. This is largely due to the hetrogenous nature of substrate availability, temperature and water activity, as well as the presence or absence of mobilizing elements such as invertebrates, in soil. However these factors also mean experimentation in vivo is harder to control, as well as limiting more in depth observation of processes. Further work regarding substrate utilization (and by that extent carbon mineralization) would therefore require a controlled environment that closely matches the environmental conditions. This could be done by using litter samples of Schistidium apocarpum as the substrate rather than the possible substrate. Temperature variations through 10oC increments could be used in order to obtain a possible Q10 value. Another factor to take in to account is pathogenicity of isolates to the moss, which may help explain persistence of a particular taxon. Future research should also consider the possible flux of carbon sources during the winter as at lower temperatures various microbes, including fungi can still degrade carbon (McMahon et al. 2009).

5.1 Conclusions

In summary, the validity of the original hypotheses in this study were mixed; the presence of Phoma taxa was confirmed by the isolation and identification of Phoma sclerotioides and Phoma herbarum, however Cladosporium was identified but not isolated, and Thelobolus and Oidiodendron were neither isolated nor identified. It is likely that the isolates could be separated into infrequently and frequently isolated fungal taxa; however caution is still needed to establish that this was the case amongst the un-subcultured isolates because they were not identified in this study. 61

There was definitely at least one taxon that can be considered infrequent and that is Trichoderma/ Hypocrea viridescensI. Amongst the subcultured isolates, the main difference in carbon substrate utilization was in the ability to degrade tannic acid with the only visible reactions from Phoma sclerotioides.

As the evidence for anthropogenic climate change continues to build, understanding possible feedback mechanisms to the global climate is important to predict the rate and magnitude of change. The effects of soil carbon mineralization in relation to climate change are still unclear, although several responses have been predicted. This study has provided a glimpse into the possible functions of fungi as part of the carbon cycle in the High Arctic and has shown that various fungal taxa can potentially play a key role in carbon cycling at low temperatures possibly affecting decomposition. Both mycelia extension rate measurements at varying temperatures and isolate identities suggested that such fungi are likely to remain active at higher temperatures, which could also affect the rate at which change in feedback systems can occur It can therefore be inferred that such fungi has the potential to cause significant carbon mineralization of moss components at 10oC and below. Since the function remains as inference and at only one temperature, this study does provide an impetus to complete more comprehensive testing to understand the possible sensitivity of the rates of decomposition to changes in temperature, as well as the possible change in the diversity of fungi with changes in temperature.

62

References

Aerts, R. (2006). "The freezer defrosting: global warming and litter decomposition rates in cold biomes." Journal of Ecology 94: 713-724. Agrios, G.N. (2005). Plant Pathology. London, Dreibelbis, D. Ahmad, S., Johnson-Cicalese J.M., Dickson W.K. and Funk C.R. (1986). "Endophyte- enhanced resistance in perennial ryegrass to the bluegrass billbug, Sphenophorus parvulus." Entomologia Experimentalis et Applicata 41: 3-10. Alfa, M.E. (2005). "Autoclave Temperature and Time Pressure Chart." 2010, from http://www.sterilizers.com/autoclave-time-temperature-pressure- chart.html. Bending, G.D. and Read D.J. (1997). "Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi." Mycological Research 101: 1348-1354. Butinar, L., Strmole T. and Gunde-Cimerman N. (2011). "Relative Incidence of Ascomycetous Yeasts in Arctic Coastal Environments." Microbial Ecology: 1- 12. Campbell, N.A. and Reece J.A. (2005). Biology. Carafa, A., Duckett J.G., Knox J.P. and Ligrone R. (2005). "Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants." New Phytologist 168: 231-240. Choi Won, J., Ma Zengh M. and Kang Mek S. (1992). "Purification of the cellulase complex produced by <i>Penicillium camemberti</i> and its partial characterization." Folia Microbiologica 37: 199-204. Davey, M.L. and Currah R.S. (2006). "Interactions between mosses (Bryophyta) and fungi." Canadian Journal of Botany-Revue Canadienne De Botanique 84: 1509-1519. Davey, M.L. and Currah R.S. (2007). "A new species of Cladophialophora (hyphomycetes) from boreal and montane bryophytes." Mycological Research 111: 106-116. Davidson, E.A. and Janssens I.A. (2006). "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change." Nature 440: 165-173. 63

Day, M.J.G., C.F.C. Fujimura, K.E. Egger, K.N. Currah, R.S. (2006). "Monodictys arctica, a new hyphomycetefrom the roots of Saxifraga oppositifolia collected in the Canadian High Arctic." Mycotaxon 98: 261 - 272. Deacon, L.J., Janie Pryce-Miller E., Frankland J.C., Bainbridge B.W., Moore P.D. and Robinson C.H. (2006). "Diversity and function of decomposer fungi from a grassland soil." Soil Biology and Biochemistry 38: 7-20. Duncan, S.M., Farrell R.L., Thwaites J.M., Held B.W., Arenz B.E., Jurgens J.A. and Blanchette R.A. (2006). "Endoglucanase-producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica." Environmental Microbiology 8: 1212-1219. Felsenstein, J. (1985). "Confidence Limits on Phylogenies: An Approach Using the Bootstrap." Evolution 39: 783-791. Fisher, P.J., Graf F., Petrini L.E., Sutton B.C. and Wookey P.A. (1995). "Fungal Endophytes of Dryas octopetala from a High Arctic Polar Semidesert and from the Swiss Alps." Mycologia 87: 319-323. Flanagan, P.W. and Scarborough A.M. (1974). "Physiological groups of decomposer fungi on tundra plant remains. In: Holding." Soil Organisms and Decomposition in Tundra. Tundra Biome Steering Committee, Stockholm, Sweden: p159-181. Frisvad, J.C., Larsen T.O., Dalsgaard P.W., Seifert K.A., Louis-Seize G., Lyhne E.K., Jarvis B.B., Fettinger J.C. and Overy D.P. (2006). "Four psychrotolerant species with high chemical diversity consistently producing cycloaspeptide A, Penicillium jamesonlandense sp. nov., Penicillium ribium sp. nov., Penicillium soppii and Penicillium lanosum." Int J Syst Evol Microbiol 56: 1427-1437. Giltrap, N.J. (1982). "Production of polyphenol oxidases by ectomycorrhizal fungi with special reference to Lactarius spp." Transactions of the British Mycological Society 78: 75-81. Hambleton, S., Tsuneda A. and Currah R.S. (2003). "Comparative morphology and phylogenetic placement of two microsclerotial black fungi from Sphagnum." Mycologia 95: 959-975. Hammel, K.E. (1997). Fungal Degradation of Lignin, CAB International. Heikki, P.M.P.B., Jones T.H., Richard Bardgett M.U. and Hopkins D. (2005). Trophic structure and functional redundancy in soil communities Biological Diversity and Function in Soils, Cambridge University Press. 64

Higgins, K.L., Arnold A.E., Miadlikowska J., Sarvate S.D. and Lutzoni F. (2007). "Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages." Molecular Phylogenetics and Evolution 42: 543-555. Hoshino, T., Xiao N. and Tkachenko O.B. (2009). "Cold adaptation in the phytopathogenic fungi causing snow molds." Mycoscience 50: 26-38. Jaklitsch, W.M., Samuels G.J., Dodd S.L., Lu B.-S. and Druzhinina I.S. (2006). "Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia." Stud Mycol 56: 135- 177. Khvorostyanov, D.V., Ciais P., Krinner G., Zimov S.A. and Heimann M. (2008). "Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition." Tellus B 60: 250-264. Kirschbaum, M.U.F. (1995). "The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage." Soil Biology and Biochemistry 27: 753-760. Kulkarni, N., Shendye A. and Rao M. (1999). "Molecular and biotechnological aspects of xylanases." FEMS Microbiology Reviews 23: 411-456. Lin, Y. and Tanaka S. (2006). "Ethanol fermentation from biomass resources: current state and prospects." Applied Microbiology and Biotechnology 69: 627-642. Ludley, K.E. and Robinson C.H. (2008). "'Decomposer' Basidiomycota in Arctic and Antarctic ecosystems." Soil Biology & Biochemistry 40: 11-29. Madan, N., Deacon L. and Robinson C. (2007). "Greater nitrogen and/or phosphorus availability increase plant species’ cover and diversity at a High Arctic polar semidesert." Polar Biology 30: 559-570. McMahon, S.K., Wallenstein M.D. and Schimel J.P. (2009). "Microbial growth in Arctic tundra soil at −2°C." Environmental Microbiology Reports 1: 162-166. McPartland, J.M. (1994). "Cannabis Pathogens X: Phoma, Ascochyta and Didymella Species." Mycologia 86: 870-878. Menkis, A. and Vasaitis R. (2011). "Fungi in Roots of Nursery Grown Pinus sylvestris: Ectomycorrhizal Colonisation, Genetic Diversity and Spatial Distribution." Microbial Ecology 61: 52-63. 65

Nadelhoffer, K.J., Giblin A.E., Shaver G.R. and Laundre J.A. (1991). "Effects of Temperature and Substrate Quality on Element Mineralization in Six Arctic Soils." Ecology 72: 242-253. Neumann, S.B., G.J. (2002). "Influence of host and pathogen variables on the efficacy of Phoma herbarum, a potential biological control agent of Taraxacum officinale." Canadian Journal of Botany 80: 425-429. Otjen, L. and Blanchette R.A. (1984). "Xylobolus frustulatus Decay of Oak: Patterns of Selective Delignification and Subsequent Cellulose Removal." Appl. Environ. Microbiol. 47: 670-676. Ozerskaya, S., Kochkina G., Ivanushkina N. and Gilichinsky D.A. (2009). Fungi in Permafrost. Permafrost Soils: 85-95. Peterson, R.R.M. and Bridge P.D. (1994). Biochemical Techniques for Filamentous Fungi, Wallingford, Oxon, UK CAB International. Prista, C. and Loureiro-Dias M.C. (2007). Debaryomyces Hansenii, a Salt Loving Spoilage Yeast. A Portrait of State-of-the-Art Research at the Technical University of Lisbon. M.S. Pereira, Springer Netherlands: 457-464. Rice, A.V. and Currah R.S. (2006). Oidiodendron maius: Saprobe in Sphagnum Peat, Mutualist in Ericaceous Roots? Microbial Root Endophytes: 227-246. Roberts, V. (2004). "Cadophora luteo-olivacea." 2010, from http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=488875#Strains. Robinson, C.H. (2001). "Cold adaptation in Arctic and Antarctic fungi." New Phytologist 151: 341-353. Robinson, C.H., Fisher P.J. and Sutton B.C. (1998). "Fungal biodiversity in dead leaves of fertilized plants of Dryas octopetala from a high arctic site." Mycological Research 102: 573-576. Robinson, C.H., Miller E.J.P., Deacon L.J., Bardgett R., Usher M. and Hopkins D. (2005). Biodiversity of saprotrophic fungi in relation to their function: do fungi obey the rules? Biological Diversity and Function in Soils, Cambridge University Press. Robinson, C.H., Wookey P.A., Parsons A.N., Potter J.A., Callaghan T.V., Lee J.A., Press M.C. and Welker J.M. (1995). "Responses of Plant Litter Decomposition and Nitrogen Mineralisation to Simulated Environmental Change in a High Arctic Polar Semi-Desert and a Subarctic Dwarf Shrub Heath." Oikos 74: 503-512. Rolf, D. (2005). "The metagenomics of soil." Nat Rev Micro 3: 470-478. 66

Ruisi, S., Barreca D., Selbmann L., Zucconi L. and Onofri S. (2007). "Fungi in Antarctica." Reviews in Environmental Science and Biotechnology 6: 127-141. Saitou, N. and Nei M. (1987). "The neighbor-joining method: a new method for reconstructing phylogenetic trees." Molecular Biology and Evolution 4: 406- 425. Siegel, S.M. (1969). "Evidence for the Presence of Lignin in Moss Gametophytes." American Journal of Botany 56: 175-179. Spiess, L.D., Lippincott B.B. and Lippincott J.A. (1984). "Role of the Moss Cell Wall in Gametophore Formation Induced by Agrobacterium tumefaciens." Botanical Gazette 145: 302-307. Student-7024498 (2008). Genetic analysis and identification of 32 arctic fungal isolates, University of Manchester, Final Year Project, (Unpublished) Tam, L., Derry A.M., Kevan P.G. and Trevors J.T. (2001). "Functional diversity and community structure of microorganisms in rhizosphere and non-rhizosphere Canadian arctic soils." Biodiversity and Conservation 10: 1933-1947. Tamura, K., Nei M. and Kumar S. (2004). "Prospects for inferring very large phylogenies by using the neighbor-joining method." Proceedings of the National Academy of Sciences of the United States of America 101: 11030- 11035. Tedersoo, L., Pärtel K., Jairus T., Gates G., Põldmaa K. and Tamm H. (2009). "Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales." Environmental Microbiology 11: 3166-3178. Thormann, M.N., Currah R.S. and Bayley S.E. (2001). "Microfungi isolated from Sphagnum fuscum from a southern boreal bog in Alberta, Canada." Bryologist 104: 548-559. Thormann, M.N., Currah R.S. and Bayley S.E. (2002). "The relative ability of fungi from Sphagnum fuscum to decompose selected carbon substrates." Canadian Journal of Microbiology 48: 204-211. Thormann, M.N., Currah R.S. and Bayley S.E. (2003). "Succession of microfungal assemblages in decomposing peatland plants." Plant and Soil 250: 323-333. Vilgalys, R. (2001). "Conserved primer sequences for PCR amplification and sequencing from nuclear ribosomal RNA." 2010, from http://www.biology.duke.edu/fungi/mycolab/primers.htm. 67

Warcup, J.H. (1955). "Isolation of fungi from hyphae present in soil." Nature 175: 953-954. Wilson, M.A., Sawyer J., Hatcher P.G. and Lerch Iii H.E. (1989). "1,3,5- Hydroxybenzene structures in mosses." Phytochemistry 28: 1395-1400. Windholz, M.B., S. Blumetti, R.F. Otterbein, E.S. (1983). The Merck Index, Merck & Co., Inc. Wunsch, M.J. and Bergstrom G.C. (2010). "Genetic and Morphological Evidence that Phoma sclerotioides, Causal Agent of Brown Root Rot of Alfalfa, is Composed of a Species Complex." Phytopathology 0. Wunsch, M.J. and Bergstrom G.C. (2010). ITS sequences for Phoma sclerotioides. G.R. Leung, Clare H. Xiao, N., Inaba S., Tojo M., Degawa Y., Fujiu S., Hanada Y., Kudoh S. and Hoshino T. (2010). "Antifreeze activities of various fungi and Stramenopila isolated from Antarctica." North American Fungi 5: 215-220.

68

Appendices

Appendix 1 Protocols for DNA extraction from isolates

Modified protocol from MP Biomedicals FastDNA kit for soil manual.

BEFORE USING SEWS-M SOLUTION add 100 ml, 100% ethanol to the 12 ml bottle of SEWS-M solution.

1. Add a 5-10 mm diameter plug of agar medium containing fungal mycelia from subcultured isolate, to a Lysing Matrix E tube. 2. Add 978 µl Sodium Phosphate Buffer to sample in Lysing Matrix E tube. 3. Add 122 µl MT Buffer. 4. Homogenize in a Precellys® 24 homogenizing unit for 40 seconds at a speed setting of 5500 rpm. 5. Centrifuge at 14,000 x g (~10,000 rpm) for 10 minutes to pellet debris. 6. Transfer supernatant to a clean 2.0 ml microcentrifuge tube. Add 250 µl PPS (Protein Precipitation Solution) and mix by shaking the tube by hand 10 times. 7. Centrifuge at 14,000 x g for 5 minutes to pellet precipitate. Transfer supernatant to a clean 15 ml tube. NOTE: While a 2.0 ml microcentrifuge tube may be used at this step, better mixing and DNA binding will occur in a larger tube. 8. Resuspend Binding Matrix suspension and add 1.0 ml to supernatant in 15 ml tube. 9. Place on rotator or invert by hand for 2 minutes to allow binding of DNA. Place tube in a rack for 3 minutes to allow settling of silica matrix. 10. Remove and discard 500 µl of supernatant being careful to avoid settled Binding Matrix 11. Resuspend Binding Matrix in the remaining amount of supernatant. Transfer approximately 600 µl of the mixture to a SPINTM filter and centrifuge at 14,000 x g for 1 minute. Empty the catch tube and add the remaining mixture to the SPINTM Filter and centrifuge as before. Empty the catch tube again. 12. Add 500 µl prepared SEWS-M and gently resuspend the pellet using the force of the liquid from the pipette tip. 13. Centrifuge at 14,000 x g for 1 minute. Empty the catch tube and replace. 14. Without any addition of liquid, centrifuge a second time at 14,000 x g for 2 69

minutes to “dry” the matrix of residual wash solution. Discard the catch tube and replace with a new, clean catch tube. 15. Air dry the SPINTM Filter for 5 minutes at room temperature. 16. Gently resuspend Binding Matrix (above the SPIN filter) in 70 µl of DES (DNase/ Pyrogen- Free Water). 17. Centrifuge at 14,000 x g for 1 minute to bring eluted DNA into the clean catch tube. Discard the SPIN filter. DNA is now ready for PCR and other downstream applications. Store at -20oC for extended periods or 4oC until use.

Appendix 2 Protocols for DNA purification of PCR products

Modified protocol from QIAquick PCR Purification Kit Protocol (PCR Purification Spin Protocol) BEFORE using Buffer PE add 100% ethanol according to the volume labelled on the bottle. All centrifugation are at 17,900 x g (13,00orpm). No pH indicator was added.

1. Add 5 volumes of buffer to 1 volume of PCR sample and mix e.g. 500 µl of Buffer PB to 100 µl PCR sample. 2. Place QIAquick spin column in a provided 2 ml collection tube. 3. To bind DNA, apply the sample to the QIAquick column and centrifuge for 60 s 4. Discard flow-through. Place QIAquick column back into the same tube. 5. To wash add 750 µl Buffer PE to the QIAquick column and centrifuge for 60 s 7. Discard flow-through and place the QIAquick column back in the same tube. Centrifuge the column for an additional 60 s. 8. Place QIAquick column in a clean 1.5 ml/ 2 .0 ml microcentrifuge tube. 9. To elute DNA, add 50 µl Buffer PB (10 mM Tris•Cl, pH 8.5) to the centre of the QIAquick column and centrifuge for 60 s.

70

Appendix 3.1 Thermal cycler settings for the three additional primers

Elongation factor 1-alpha

Cycle 1 95oC for 60 secs Cycle 2 95oC for 45 secs 61oC for 45 secs 73oC for 60 secs Cycle 3 4oC until needed

Glyceraldehyde 3-phosphates

Cycle 1 97oC for 60 secs Cycle 2 97oC for 45 secs 62oC for 45 secs 72oC for 60 secs Cycle 3 4oC until needed

Histone

Cycle 1 94oC for 60 secs Cycle 2 94oC for 45 secs 64oC for 45 secs 72oC for 60 secs Cycle 3 4oC until needed

71

Appendix 3.2 Method for phylogenetic analyses of ITS, G3P, and HIS by Michael

Wunsch (personal communications)

Internal transcribed spacer (ITS) sequence data of 14 putative Phoma sclerotioides isolates from Norway were aligned with ITS sequence data from 32 North American isolates of P. sclerotioides, two isolates of Leptosphaera maculans, two isolates of L. biglobosa, one isolate of L. doliolum, and one isolate of P. medicaginis. The sequences selected for inclusion in the alignment represented the full breadth of P. sclerotioides ITS haplotype diversity identified in previous studies (Larsen et al. 2007,

Wunsch et al. 2008, Wunsch et al. 2009, Wunsch et al. 2011) and one to two representative isolate from all other species within Phoma section Plenodomus for which ITS sequence data have been generated (Mendes-Pereira et al. 2003, Morales et al. 1995). P. medicaginis was included as an outgroup because it pertains to the

Didymellaceae, a strongly supported subclade of Phoma that is sister to the

Leptosphaeriaceae, the subclade to which P. sclerotioides pertains (Aveskamp et al.

2010). For the multi-locus analysis, ITS, glyceraldehydes 3-phosphate dehyrogenase

(G3P), and histone (HIS) sequence data 11 putative P. sclerotioides isolates from

Norway were aligned with 129 North American P. sclerotioides and one P. medicaginis isolate. The sequences selected for inclusion in the alignment represented the full breadth of North American P. sclerotioides haplotype diversity identified in a previous study (Wunsch et al. 2011); P. medicaginis was included as an outgroup.

Sequences were aligned with Clustal W in MegAlign (Lasergene 7.2.1;

DNASTAR, Madison, WI) using default gap and gap length parameters of 15.00 and

6.66, respectively. Alignments were manually edited to resolve inconsistencies in the alignment of individual regions of sequence.

Phylogenetic analyses of ITS region and of the concatenated ITS, G3P, and

HIS sequence partitions were conducted using maximum parsimony (MP) and 72

maximum likelihood (ML). Unweighted MP analyses were conducted with PAUP* version 4.0b10 (Swofford 2002). Heuristic searches for the most parsimonious trees were conducted with 1,000 random addition replicates and tree bisection with reconnection branch swapping. To reduce computational time, rearrangements per replicate were limited to 1,000,000. Gaps were treated as missing data, and trees were rooted with P. medicaginis. Clade stability was assessed with 1,000 bootstrap replicates. Bootstrap analysis was implemented with a heuristic search in PAUP* using 1,000 random addition sequences per replicate and tree bisection with reconnection branch swapping. To reduce computational time, random additions per replicate were limited to 10,000 during bootstrap analyses. ML analyses were conducted with GARLI v. 0.96b8 (Zwickl 2006). Forty runs were conducted until at least two searches from different starting points converged within one likelihood unit of the best tree. For each analysis, results from the best run were chosen.

Nodal support was assessed by analyzing 1,000 bootstrap replicates, with a single run conducted per replicate. Nucleotide substitution models for ML analyses were selected with the Akaike Information Criterion implemented in ModelTest 3.7

(Posada and Crandall 1998). For the analysis of the ITS region of P. sclerotioides and related Leptosphaeria spp., a general time reversible (GTR) + I (estimation of invariant sites) + G (nucleotide substitution rates assumed to be gamma distributed) model of nucleotide substitution was used. For the analysis of the concatenated ITS,

G3P and HIS sequence alignment, K81uf+I+G model of nucleotide substitution was used.

Congruence of the phylogenetic trees generated by MP and ML analyses were assessed with Kishino-Hasegawa (KH) and Templeton Wilcoxon signed rank

(WS-R) tests implemented in PAUP*. The topologies of the best trees identified by

MP and ML were different (P < 0.05) for both the ITS locus and the concatenated 3- locus datasets, and the results from the MP and ML analyses are presented separately. 73

Literature cited:

Aveskamp, M. M., Gruyter, J. de, Woudenberg, J. H. C., Verkley, G. J. M, and Crous, P. W. 2010. Highlights of the Didymellaceae: A polyphasic approach to characterize Phoma and related pleosporalean genera. Studies in Mycology 65:1-60. Larsen, J. E., Hollingsworth, C. R., Flor, J., Dornbusch, M. R., Simpson, N. L., and Samac, D. A. 2007. Distribution of Phoma sclerotioides on alfalfa and winter wheat crops in the North Central United States. Plant Dis. 91:551-558. Mendes-Pereira, E., Balesdent, M. H., Brun, H., and Rouxel, T. 2003. Molecular phylogeny of the Leptosphaeria maculans – L. biglobosa species complex. Mycological Research 107(11):1287-1304. Morales,V.M., Jasalavich,C.A., Pelcher,L.E., Petrie,A.G. and Taylor,J.L. 1995. Phylogenetic relationship among several Leptosphaeria species based on their ribosomal DNA sequences. Mycol. Res. 99 (5), 593-603 Swofford, D. L. 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer Associates, Sunderland, MA. Posada, D., and Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818. Wunsch, M. J., Dillon, M. A., Torres, R., Schwartz, H. F., and Bergstrom, G. C. 2008. First report of brown root rot of alfalfa caused by Phoma sclerotioides in Colorado and New Mexico. Plant Disease 92:653. Wunsch, M. J., Kersbergen, R., Tenuta, A. U., Hall, M. H., and Bergstrom, G. C. 2009. First report of brown root rot of alfalfa caused by Phoma sclerotioides in Maine, Ontario, and Pennsylvania. Plant Disease 93:317. Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.

74

Appendix 4 Protocols to prepare media for carbon substrate tests

Casein medium

KH2PO4 1 g KCl 0.5 g

MgSO4.7H2O 0.2 g

CaCl2.2H2O 0.1 g 15% Skimmed milk 25 ml Glucose 10 g Agar 12 g

Distilled H2O up to 1 L

Adjust pH to 5.4 and autoclave at 110oC for 30 minutes. Medium is poured into Petri dishes to set.

Cellulose medium

Basal layer

NH4H2PO4 0.1 g KCl 20 mg

MgSO4.7H2O 20 mg Agar 1.5 g

Distilled H2O 100 ml

Adjust pH to 4.5. Autoclave at 116oC (10 psi) for 10 minutes.

Overlay layer

Component 1

Cellulose azure 1 g 75

Distilled H2O 33ml

Component 2

NH4H2PO4 0.1 g KCl 20 mg

MgSO4.7H2O 20 mg Agar 1.5 g

Distilled H2O 66ml

Autoclave component 1 and 2 separately and mix whilst hot after autoclaving. Pipette 0.5 ml of overlay medium over basal medium aseptically, avoiding mixing overlay media into the basal media.

Chitin medium

Basal layer

Agar 15 g Mineral salt solution 500 ml Distilled water 500 ml

Dissolve medium by heating in a microwave then autoclave at 121oC for 20 min and pour 15 ml into each sterile corning tube.

Mineral salt solution

KH2PO4 4 g

Na2HPO4 6 g

FeSO4.7H2O 0.2 g

CaCl3 1 mg

H3BO3 10 ug

MnSO4 10 ug 76

ZnSO4 70 ug

CuSO4 50 ug

MoO3 10 ug

Distilled H2O 1 L

Overlay medium

Chitin azure 1 g Agar 15 g Mineral salt solution 500 ml Distilled water 500 ml

Autoclave the overlay medium at 121oC for 20 min. Set a water bath at 70oC, as 1ml of overlay medium is pipetted aseptically into each corning tube.

Lignin medium

NaNO3 0.5 g

KH2PO4 0.5 g KCl 0.5 g

Distilled H2O 1 L Lignin 1 g

Pectin medium

NH4H2PO4 0.9 g

(NH4)2HPO4 0.2 g

MgSO4.7H2O 0.1 g KCl 0.5 g Citrus pectin 1.0 g Agar 15 g

Distilled H2O 1 L 77

Starch medium

Czapeck solution A 50 ml Czapeck solution C 50 ml Zinc solution 1 ml Copper solution 1 ml Starch solution 50 ml Agar 12 g

Distilled H2O 850 ml

Tannic acid medium

Base agar medium

Glucose 10 g

KH2PO4 0.5 g Malt extract 2.5 g

MgSO4.7H2O 0.5 g

NH4Cl 0.5 g Agar 15 g Autoclave at 121oC for 15 minutes

Tannic acid 0.5 g

Distilled H2O 10 ml

Adjust pH to 4.7 with NaOH. Filter using 0.2 um Millipore filter and add to cooled (still liquid) media.

78

Xylan medium

Basal layer

NH4H2PO4 0.1 g KCl 20 mg

MgSO4.7H2O 20 mg Agar 1.5 g

Distilled H2O 100 ml

Adjust pH to 4.5. Autoclave at 116oC (10 psi) for 10 minutes.

Overlay layer

Component 1 Xylan azure 1 g

Distilled H2O 33ml

Component 2

NH4H2PO4 0.1 g KCl 20 mg

MgSO4.7H2O 20 mg Agar 1.5 g

Distilled H2O 66ml

Autoclave component 1 and 2 separately at 116oC and mix whilst hot after autoclaving. Pipette 0.5 ml of overlay medium over basal medium aseptically, avoiding mixing overlay media into the basal media.

79

Appendix 5 Results

Table A1- Sequencing data and identity of isolates. Not the colour coding, red is unidentifiable/ not sequenced, yellow is sequenced but with peaks that are poorly defined, and green are those that have well defined peaks. Note query coverage and maximum identity are split into ITS 1/ ITS 4.

Query coverage Max Identity Sample Identity (%) (%) A1 Phoma sclerotioides 94 / 98 84 / 98 A2 Phoma sclerotioides 95 / 98 84 / 98 A3 Phoma sclerotioides 96 / 99 98 / 98 A4 Phoma sclerotioides 99 / 99 98 / 99 A5 Phoma sclerotioides - / 97 - / 97 B1 UCFC F-RISA 18s rRNA 96 / 100 99 / 98 B2 Phoma sclerotioides 95 / 97 99 / 99 B3 Phoma sclerotioides 93 / 100 99 / 96 C1 UCFC MBS12-5 18S rRNA, ITS 94 / 90 98 / 99 C2 - - - C3 Fimetariella rabenhorstii 98 / 98 98 / 99 C4 UCFC MBS12-5 18S rRNA, ITS 92 / 92 97 / 98 C5 UCFC MBS12-5 18S rRNA, ITS 86 / - 93 / - D1 Cadophora luteo-olivae 96 / 98 92 / 97 D2 Cladosporium cladosporiodes 98 / 100 99 / 100 D3 Phoma sclerotioides 86 / 88 74 / 79 D4 Phoma sclerotioides 86 / 99 98 / 98 D5 Cladosporium cladosporiodes 99 / 100 98 / 99 E1 Penicillium sp. 98 / 96 97 / 99 E2 Mrakia stokesii strain 99 / 98 100 / 98 E3 Penicillium sp. 99 / 97 96 / 99 F1 Hypocrea viridescens 100/100 100 / 99 F2 Hypocrea viridescens 97 / 98 98 /99 G1 Phoma sclerotioides 92 / 98 97 / 99 G2 Phoma sclerotioides 79 / - 93 / - G3 Phoma sclerotioides 97 / 98 98 / 98 H1 - - - H2 Scytalidium lignicola 99 / 97 99 / 100 H3 Scytalidium lignicola 100 / 98 100 / 100 K1 Phoma herbarum 100 / 99 99 / 99 K2 (Cadophora) fungal sp. AB10 91 / 92 95 / 97 80

K3 - - - L1 Penicillium commune strain P4.2 - / 99 - / 98 L2 Penicillium sp. BF11 - / 64 - / 92 L3 Penicillium sweicickii 49 / 82 82 / 96 L4 Penicillium sweicickii 73 / 77 95 / 96 L5 Penicillium enchinulatum 73 / 96 96 / 99 M1 Penicillium enchinulatum 77 / 93 99 / 98 M2 Phoma sclerotioides - / 69 - / 99 M3 Phoma sclerotioides - / 56 - / 91 M4 Penicillium jamesonlandense - / 71 - / 87 M5 Penicillium echinulatum - / 84 - / 98 O1 - - - O2 - - - O3 UC Ascomycete - / 72 - / 93

81

Figure A1- Phylogenetic tree constructed using ITS sequences from 14 isolates of Phoma sclerotioides isolates compared to isolates from Bergstrum and Wunsch. Tree was constructed using Maximum Parsimony analysis (see Appendix 3.2 for method by Michael Wunsch) 82

Figure A2- Phylogenetic tree constructed using ITS sequences from 14 isolates of Phoma sclerotioides isolates compared to isolates from Bergstrum and Wunsch. Tree was constructed using Maximum Likelihood analysis (see Appendix 3.2 for method by Michael Wunsch) 83

Figure A3- Phylogenetic tree constructed using ITS , glyceraldehydes 3- phosphate dehyrogenase (G3P), and histone (HIS)sequences from 11 isolates of Phoma sclerotioides isolates compared to isolates from Bergstrum and Wunsch. Tree was constructed using Maximum Parsimony analysis (see Appendix 3.2 for method by Michael Wunsch) 84

Figure A4- Phylogenetic tree constructed using ITS , glyceraldehydes 3- phosphate dehyrogenase (G3P), and histone (HIS)sequences from 11 isolates of Phoma sclerotioides isolates compared to isolates from Bergstrum and Wunsch. Tree was constructed using Maximum Likelihood analysis (see Appendix 3.2 for method by Michael Wunsch)

85

Appendix 6.1- Original isolate (no subculture) sequences

Original isolates sequenced using ITS1/4 primers. Note last number of the isolate denotes which primer was used.

> A11 Phoma sclerotioides ITS 1

CTTCCTGNCTGGTCCGAGTGATATTTAAAAATATGGTGCCTGCTGGGGGCTTGACATTCACC CAACGGGCGCACAATGTGCTGGGCTCCCGCTAAGGTGCCGCTTGCCCTTGATTAAATGCGA GTCTTGTTCAATTAGCGCGGGAGTACACCCAACACCAATCATAGCTTGTTGGTACAAATGAT CCTTTGACAGGCATGCCCCATGGAATACCAAGGGGCGCAATGTGCGTTCAAAGATTCGATG ATTTACTGAATTCTGCAATTCACACTACTTATATTATTTCCCTGGGTTCTTCATGGATGCCGCA ACCAAGAGATCCGTTGTTAAAAGTTGTAATTATTATTATTTTTCAGACTTTGACTGCGCTTTCT ATGGCTGGATTGATATCCCGTAAGGGCAGTAACGCCCTGCTGCCAAAACAAACTGTACGCA AAAAGGCATGGGCAACGTTGAACAGGTGGGAGTCAATTGAACCGATTAACACTTGAAACCC GCCAGTTGAGGTAATGGTAATGATCCTTCCCCAGGTTCTCCTCCGGANGGAANA

> A14 Phoma sclerotioides ITS 4 ATTCCGTAGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGGCCCCCATCAAGTCCATATATTTGCTCTGACTC

> A21 Phoma sclerotioides ITS 1

CTGCCTGGTTCGAGTGTTATTAAATATATGGTACCCTGCTGGGGGCCTGACATTCACCCTGC GGGCGCGCAATGTGCTGGGCTTCCGCTAACATGCCGGCTGCCAATTGATTAAAGGCGACTC TTGCGCAAAAGAGCGCGGGAGTACGACCAATACTAATCATTACTTGTTGGTACAAATGACC CTCTGACAGGCATGCCCCATGGAAACNAAGGGGCGCAATGTGCGTTCAAAGATTTGATGAA 86

TTACTGAATTCTGCAATTCACACTACTTATCTTATTCCCCTGCGTTCTTCATGGATGCCGCATG CAAGAGATCCGTTGTTAAAAGTTGTAATTATTATTATTTTTCATACATTGACTGCGCTTTCTTT GGCTGGATTGATATCCCGTAGGGGCAGTAACGCCCTGCTGGGAAAACAAACTGTACGCAAA AAGGCATGGGTAACGTTGAACAGGTGAGAGTCAATTGAACCGAATAACAATTGAAACCCGA CAGTTGAGGTAATGGTAATGATCCTTCCCCTAGTTCTCCTCCGGAGG

> A24 Phoma sclerotioides ITS 4

CTTCCGTAGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCTCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGGCCCCCATCAAGTCCATATATTTGCTCTGACTCGG

> A31 Phoma sclerotioides ITS 1

GGTTCATTGTTCTTCGAGTTCATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTA CAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTG CAGTCAATGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCA TCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATC GAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCAT TTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGC CTTAAATCAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTT GCTTGTGTTGGCCCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGGATAC CCGCTGAACTTAAGCATATCAATAAGCGGAGGAAGGA

> A34 Phoma sclerotioides ITS 4 TTCCGTAGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGTT CTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTT CCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGT CTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAG AACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTG 87

AACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTC AAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAA TTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTG GCCCCCATCAAGTCCATATAT

> A44 Phoma sclerotioides ITS 4

TCCCTACCTGATCCGAGGTCAAGAGCAAATATATGGACTTGATGGGGGCCAACACAAGCAA GCAAGGGGCGCAAAATGTGCTGCGCTCCAGGCTAACATGCCGGCTGCCAATTGATTTAAGG CGAGTCTTGCGCAAAAGAGCGCGGGACAAACACCCAACACCAAGCAAAGCTTGAGGGTAC AAATGACGCTCGAACAGGCATGCCCCATGGAATACCAAGGGGCGCAATGTGCGTTCAAAGA TTCGATGATTCACTGAATTCTGCAATTCACACTACTTATCGCATTTCGCTGCGTTCTTCATCGA TGCCAGAACCAAGAGATCCGTTGTTAAAAGTTGTAATTATTATTATTTTTCAGACATTGACTG CAAATACAATGGGTGGATTGATATCCCGTAGGGGCAGTAACGCCCTGCTGGGAAAACAAAC TGTACNCAAAAAGGCATGGGTAACGTCAAACAGTCGGGCGTCAGTGACACAAAAGCGCAG GTGAACCTA

> A54 Phoma sclerotioides ITS 4

TCCGTAGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGTTN TTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTC CCAGCAGGGCGTTACTGCCCNTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTC TGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGA ACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGA ACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCA AGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAAT TGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGG CCCCCATCAAGTCCATATATTTGATCTGACTCG

> B11 Phoma sclerotioides ITS 1

GTTAAAACTCCAACCTTTGTGAACATACTACTGTTGCTTCGGCGGCCTCGCCCCGCGGCGCG CACTGCGTGACCCGGGCCAAGGCGACCGCCGGAGGCACCAAACCCTGTCTTTATAGTGGAT TTCTGAGTGGCATAAGCAAATAAATCAAAACTTTCAGCAACGGATCTCTTGGTTCTGGCATC 88

GATGAAGAACGCAGCAAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGA ATCTTTGAACGCACATTGCGCCCGCCAGTACTCTGGCGGGCATGCCTGTCTGAGCGTCATTT CAACCCTCAGGACCCGTTCGCGGGACCTGGCGTTGGGGATCAGCCCTCCGGGGCTGGCCCT TAAATCTAGTGGCGGTCCTCACGCGACCTCCTCTGTGCAGTAGTAATACCTCGCAGCTGGAA AAGCGTAAGGGCCACGCCGTAAAACCCCCTACTTCTCAAGGTTGACCTCAGATCAGGTAGG AATACCCGCTGAACTTAAGCATATCAATAAGCGAGGGA

> B14 Phoma sclerotioides ITS 4

CTCCGTAGGTGAACCTGCGGAGGGATCATTACTGAGTGTTAAAACTCCAAACCTTTGTGAAC ATACTACTGTTGCTTCGGCGGCCTCGCCCCGCGGCGCGCACTGCGTGACCCGGGCCAAGGC GACCGCCGGAGGCACCAAACCCTGTCTTTATAGTGGATTTCTGAGTGGCATAAGCAAATAA ATCAAAACTTTCAGCAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCAAAATGC GATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCC GCCAGTACTCTGGCGGGCATGCCTGTNTGAGCGTCATTTCAACCCTCAGGACCCGTTCGCG GGACCTGGCGTTGGGGATCAGCCCTCCGGGGCTGGCCCTTAAATCTAGTGGCGGTCCTCAC GCGACCTCCTCTGTGCAGTAGTAATACCTCGCAGCGGAAAAGCGTAAGGGCCACGCCGTAA AACCCCCTACTTTCAAGGTGACTCAGTCAGGTAGGAAT

> B21 Phoma sclerotioides ITS 1

NGCTCATTTGACTCCGGCACGGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTCC CAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCT GAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAA CGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAA CGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAA GCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATT GGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGC CCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTA AGCATATCAATAAGCGGAGGA

> B24 Phoma sclerotioides ITS 4

CTTCCGTAGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG 89

TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGGCCCCCCATCAAGTCCAGA

> B31 Phoma sclerotioides ITS 1 GGCGGGTTTAATTGTTCTTANAGATTCAATTGCACTCCCACCTGTTTGACGTTACCCATGCCT TTTTGCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCA TTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTG GTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAG TGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTC GAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGC AAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGC CCCTTGCTTGCTTGTGTTGGCCCCCATNAAGTCCATATATTTGCTCTTGACCTCGGATCA

> C11 UCFC MBS12-5 18S ITS 1

CATATGACTCAGCGGAGCGCATACCCGGTACCTACCCTGTAACGACCTACCCTGTANCGAGT TACCCGGGAACGGCTATCGTGTAACGTTTCGCCGATGGACATCTAAACTATTGTTATTTTACA GTAATCTGAGCGTCTTATTTTAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCA TCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATC GAATCTTTGAACGCACATTGCGCCCATTAATATTCTAGTGGGCATGCCTGTTCGAGCGTCATT TCAACCCTTAAGCCTAGCTTAATGTTGGCTATCTACTGTATTGTAGTGGCCTAAATACAACGG CGGATCTGTGGTATC

> C14 UCFC MBS12-5 18S ITS 4

CCGGGAACGGCTATGGTGTAACGNTTCGCCGATGGACATCTAAACTATTGTTATTTTACAGT AATNTGAGCGTCTTATTTTAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATC GATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGA ATCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTC AACCCTTAAGCCTAGCTTAGTGTTGGCTATCTACTGTATTGTAGTGGCCTAAATACAACGGC GGATCTGTGGTATCCTCTGATCCTAATAATTTTTTTCTTGAGGAGCTTCTCAATAAGCGGAGG CTCCGTAGGTGA 90

> C34 Fimetariella rabenhorstii ITS 4

CGTAGGTGAACCTGCGGAGGGATCATTACAGAGTTCTAAAAGACTCCCAAAACCATTGTGA ACGTACCCGTCAGCGTTGCCTCGGCGGGCGGCCCCTCCCTGGGGCCGCTGCCTCCCTCGGG GGGTGCCCGCCGGCGTACCAAAACTCTTCTGTATTTTAGTGGCCTCTCTGAGAAAACAAGCA AATAAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAA ATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGC GCCCGCCAGTACTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCCCTGCTT GGTGTTGGGGTCCTACGGCTGCCGTAGGCCCTGAAAGCTAGTGGCGGGCTCGCTATAACTC CGAGCGTAGTAGTAAAATATCTCGCTAGGGAGGTGTCGCGGGTTCCGCGCCGTGAGAAGC CCATGCTTTTACACACAGTGTC

> C41 UCFC MBS12-5 18S ITS 1

CCGTAGGTGAACCTGCGGAAGAAACGTATGAATCGGCAGGAGGCATACCCGGTACCTACCC TGTAACGACCTACCCTGTANCGAGTTACCCGGGAACGGCTATCGTGTAACGTTTCGCCGATG GACATCTAAACTATTGTTATTTTACAGTAATCTGAGCGTCTTATTTTAATAAGTCAAAACTTTC AACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGT GAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCTA GTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTTAATGTTGGCTATCTACT GTATTGTAGTGGCCTAAATACAACGGCGGATCTGTGGTATCCTCTGAACGTAGTAAATTTTT TCTCGCTTTTGTTANGTG

> D11 Cadophora luteo-olivae ITS 1

CGTAGTGACCTGCAAGCATTGCTTCGTGGCCGGCTACACTACTTCGGTAGGGTTTAAAGCCG TCGAACCTCTCGGAGAAGTTCGGTCCTGAACTCCACCCTTGAATAAATTACCTTTGTTGCTTT GGCGGGCCGCCTCGCGCCAGCGGCTTCTGCTGCTGATTGCCCGCCTTGGACCACAACTCTTG TTTTTAGTGATGTCTGAGTACTATATAAAACTTAAAACTTTGAACAACGGATCGCTTGGTTCT GGCATCAATGAATAACGCAACGAAATGCCATAAGTAATGTGAATTGCTAAATTCAGTGAAA CATCGAATCTTTGAACACACATTGCACCCACTGGTATTCCGGGGGGCATGGTTGTTCGATCG TCATTATAACCACTCAAGCTCGCGCTTGGTATTGGGC

> D14 Cadophora luteo-olivae ITS 4 91

GGGGCGTCGCCTGGCGGATACACCTACCGGACTCAATCGCGAGGAGTATTACTACGCGTAG AGCCGACAGGCACCGCCACTGATTTTAGGGGCCGCGGAACCGCGAACCCCAATACCAAGCG AGAGCTTGAGTGGTTATAATGACGCTCGAACAGGCATGCCCCCCGGAATACCAGAGGGCGC AATGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTATCGCATTTC GCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTGTTGAAAGTTTTAACTATTATATA GTACTCAGACATCACTAAAAACAAGAGTTGTGGTCCTCTGGCGGGCACTCACAGCCGAAGC CGCTGGCGCGAGGCGGCCCGCCAAAGCAACNAAGGTAATTTATTCAAGGGTGGANTTCAA AG

> D24 Cladosporium cladosporiodes ITS 4

CTCCATGGGGTTGTCTTACGGCGTACCCTCCCGAACACCCTTTAGCGAATAGTTTCCACAAC GCTTAGGGGACAGAAGACCCAGCCGGTCGATTTGAGGCACGCGGCGGACCGCGTTGCCCA ATACCAAGCGAGGCTTGAGTGGTGAAATGACGCTCGAACAGGCATGCCCCCCGGAATACCA GGGGGCGCAATGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTA TCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTGTTAAAAGTTTTAAT TTATTAATTAAGTTTACTCAGACTGCAAAGTTACGCAAGAGTTTGAAGTGTCCACCCGGAGC CCCCGCCCGAAGGCAGGGTCGCCCCGGAGGCAACAGAGTCGGACAACAAAGGGTTATGAA CATCCCGGTGGTAAGACCGGGGTCACTTGTAATGATCCCTCCGCAGGTTCACCTACGGA

> D31 Phoma sclerotioides ITS 1

CCGGTGCTTTGGTGTCCTGAGGCCAAACGGTTTGACGNTGGTATGCATTTTTGCATACAGTT TGATATCTAGGACGGGATTTCCGCCCCTACATAAATAACCTTTGTTGCTTGGACTGGCCGTCT CTGTCCGACAAAAATAATTGTTACATGTTTGAACAACGAATCTCTTGGNTCTGGCATCGAGA CTAACGCCTATAAATGCGATAAATCTTGTGAATTGCAAACTTCAGTGAATCATCTAATCTATG AACNCACATTGCGCCCCTTGGTATTGTTGGGTGNTGCCTGTTCGAACGTCATTTGTACCCTCC GCACTTTGTTGGTGTTGGGTGTTTGGGCGGCGCTCTTTTGNGCGCGTCATTACTTCNACCAA TTCTNTCCCGGCATGTTAGCCTGCAGCGCACCACATTTCGTAACCTTTGCGGGCTTGCGTGTC CCCCCAANGCGTAATATACTTGNTCTTATTGACTCATCANGTAGGGATACCCGCTGACCTTA ANCTTATAAATGTTGACATGA

> D34 Phoma sclerotioides ITS 4 92

AGGTGAACCTGGGTAAGGATCATTATCATTACCTCAAGTGGGGGGTATCACCGGTGAATCT GTGTCAGAGACGCCCACCTGAACTACATCACCCAAGCAATTACGTGTGCAGTTTGTTTTCCC AGCAGGGCGTTAGTGCCCTTACGGGATATCAATCCANCCAGGACCACACAGTCAGTGTTTG AAAAATAATAATAATTACAACTTTTAACAAAGGATCTACAGGTTATGGCATGGTTGAAGAAC GCATCGAAATGGGATAAAAAGTGTGAAAGTAAGAATACAGTGAATCATCGAATATTCGAAG GCACATTGCGCCCACAGGTATTCCTTGGGGCATGCCTGTTGCAGGCTCATTTGTGCCTCCTA GTTACCATTCGTGTTGTGGGTTNTCCCGGGGTTTTTGGTTCAAGAGTCCCTATAAATCAAGG GCAGCCGGCAGGTTAGCCGGAGAGTAGCACATTTTGCGCCCAGTGCGGTAGGTGTAGGCC CCCGTCAACTCCAATATTAACATCTGACTC

> D41 Phoma sclerotioides ITS 1

AATCTGTTCTTANAGTTCAATTGACTCCCACACTGTTTGACGTTACCCATGCCTTTTTGCGTAC AGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGC AGTCAATGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCAT CGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCG AATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTT GTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCT TAAATCAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGC TTGTGTTGGCCCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGGATACCC GCTGAACTTA

> D51 Cladosporium cladosporiodes ITS1

CTTACCCCGGGATGTTCATATACCCTTTGTTGTCCGACTCTGTTGCCTCCGGGGCGACCCTGC CTTCGGGCGGGGGCTCCGGGTGGACACTTCAAACTCTTGCGTAACTTTGCAGTCTGAGTAA ACTTAATTAATAAATTAAAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAAC GCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAAC 93

GCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTTCGAGCGTCATTTCACCACTCAA GCCTCGCTTGGTATTGGGCAACGCGGTCCGCCGCGTGCCTCAAATCGACCGGCTGGGTCTT CTGTCCCCTAAGCGTTGTGGAAACTATTCGCTAAAGGGTGTTCGGGAGGCTACGCCGTAAA ACAACCCCATTTCTAAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATAT CAATAAGCGGAGGAA

> D51 Cladosporium cladosporiodes ITS1

TCCGTAGGTGAACCTGCGGAGGGATCATTACAAGTGACCCCGGTCTTACCACCGGGATGTT CATAACCCTTTGTTGTCCGACTCTGTTGCCTCCGGGGCGACCCTGCCTTCGGGCGGGGGCTC CGGGTGGACACTTCAAACTCTTGCGTAACTTTGCAGTCTGAGTAAACTTAATTAATAAATTA AAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATA AGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCCTG GTATTCCGGGGGGCATGCCTGTTCGAGCGTCATTTCACCACTCAAGCCTCGCTTGGTATTGG GCAACGCGGTCCGCCGCGTGCCTCAAATCGACCGGCTGGGTCTTCTGTCCCCTAAGCGTTGT GGAAACTATTCGCTAAAGGGTGTTCGGGAGGCTACGCCGTAAAACAACCCCATTTCTAAGG TGACTCGG

> E11 Penicillium sp. ITS1

CCTGCCCGCACGTGCTTTATTTTACCCTGATGCTTCGGCGGGCCCGCCTTAACTGGCCGCCG GGGGGCTCACGCCCCCGGGCCCGCGCCCGCCGAANACACCCTCGAACTCTGTCTGAAGATT GAAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCA TCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCG AGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATT GCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATCTCCGGGGGACGGGCCC GAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGA

> E21 Mrakia stokesii ITS1

CCTTCACATCCCATGCACCTGTGCACCGTTTGGCTCTTTTAAAAGACGCAAGTCTGCAAAGA GAGTCATCAATTTTATACATACCCCAGTCTTATGAATGTAACAGTTTTAATAAACATAATAAA 94

ACTTTTAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGT AATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTA TTCCGAGGAGCATGCCTGTTTGAGTGTCATGAAACTCTCAACCTTCAACTTTTTTATTAAGGC TGAAGGCTTGGACTTGAGCGCTGCTGGTTTTCACTAACCGGCTCGCTTGAAATGAATTAGCA GATCCTTTTTGTAATCGGTTCCACTCGACGTGATAAGTATTTCGCCGAGGACATACGAAAGT ATGGCCGAGATAAGAGAAGTCTTTTAGATCCGCTTCTAATTCTTAGATCAAGCTTGCTTGACT AA

> E24 Mrakia stokesii ITS4

CCTTCACATCCACATACACCTGTGCACCGTTTGGCTCTTTTAAAAGACGCAAGTCTGCAAAGA GAGTCATCAATTTTATACATACCCCAGTCTTATGAATGTAACAGTTTTAATAAACATAATAAA ACTTTTAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGT AATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCTCCTTGGTA TTCCGAGGAGCATGCCTGTTTGAGTGTCATGAAACTCTCAACCTTCAACTTTTTTATTAAGGC TGAAGGCTTGGACTTGAGCGCTGCTGGTTTTCACTAACCGGCTCGCTTGAAATGAATTAGCA GATCCTTTTTGTAATCGGTTCCACTCGACGTGATAAGTATTTCGCCGAGGACATAGGAAAGT ATGGCCGAGATAAGAGAAGTCTTTTAGATCCGCTTTTAATTNTTAGATCAAGCTTGCTTCACT A

> E31 Penicillium sp. ITS1

GTGGGTCAACCTGCCCGNCCGTGTTTATTTTNACTTGTTGCTTCGGCGGGCCCGCCTTAACT GGCCGCCGGGGGGCTCACGCCCCCGGGCCCGCGCCCGCCAAAGACACCCTCGAACTCTGTC TGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGG TTCCGGCATCGATGAAGAACGCACCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTG AATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGATATTCCG

> E34 Penicillium sp. ITS4

95

GATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTTTATTTTACCTTGTTG CTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGCTCACGCCCCCGGGCCCGCGCCCGCC GAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAA CTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGT AATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTAT TCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGC CCCGTCCTCCGATCTCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCT CGAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCCGGCCGGCGCTTGCCGATCAACCCA AATTTTTAT

> F11 Hypocrea viridescens ITS1

CAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCAGGCGCCC GCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTACAGCTCT GAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATG AAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCT TTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCAAC CCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCGGGAACCCCTAAGACGGGATCCCGG CCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACAACTCGCA CCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCAACTTCTGAAATGTTGACCTCGGAT CAGGTAGGAA

> F14 Hypocrea viridescens ITS4

TTGGGTGTTTTACGGACGTGGACGCGCCGCGCTCCCGGTGCGAGTTGTGCAAACTACTGCG CATGAGAGGCTGCGGCGAGACCGCCACTGTATTTCGGGGCCGGGATCCCGTCTTAGGGGTT CCCGATCCCCAACGCCGGACCCCCGGAGGGGTTCGAGGGTTGAAATGACGCTCGGACAGG CATGCCCGCCAGAATACTGGCGGGCGCAATGTGCGTTCAAAGATTCGATGATTCACTGAATT CTGCAATTCACATTACTTATCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATC CGTTGTTGAAAGTTTTGATTCATTTTGAATTTTTGCTCAGAGCTGTAAGAAATAACGTCCGCG AGGGGACTACAGAAAGAGTTTGGTTGGTCCCTCCGGCGGGCGCCTGGTTCCGGGGCTGCG ACGCACCCGGGGCGTGACCCCGCCGAGGCAACAGTTTGGTATGGTTCACATTGGGTTTGGG AGTTGTAAAC

96

> F21 Hypocrea viridescens ITS1

AAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCAGGCGCCC GCCGGANGGACCAACCAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTACAGCTCT GAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATG AAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCT TTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCAAC CCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCGGGAACCCCTAAGACGGGATCCCGG CCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACAACTCGCA CCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCAACTTCTGAAATGTTGACCTCGGAT CAGGTAGGA

> F24 Hypocrea viridescens ITS4

GTTTACAACTCCCAAACCCAATGTGAACCATACCAAACTGTTGCCTCGGCGGGGTCACGCCC CGGGTGCGTCGCAGCCCCGGAACCAGGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGT AGTCCCCTCGCGGACGTTATTTCTTACAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTT CAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATG TGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCT GGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTG GGGATCGGGAACCCCTAAGACGGGATCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCA GCCTCTCATGCGCAGTAGTTTGCACAACTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTA AAACACCCA

> G11 Phoma sclerotioides ITS 1

TGTGCCATGATGCCGACTTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTCCCA GCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCCATGTCTGA AAAATAATAATAATTACTACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAANAACG CAGCGAAATGCAATAAGTAGTGTGAATTGCAGAATTCANTGAATCATCCAATCTTTGAACGC ACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCT TTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGC 97

ACCCGGCATGTTAGCCTGGAGCGCAACACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCC CATCAAGTCCATATATTTGCTCTTGACCTCGGATCANGTAAGGATACCCGCTGAACTTANGC AT

> G14 Phoma sclerotioides ITS 4

TATGGACTTGATGGGGGGCAGACACAAGCAAGCAAGGGGCGCAAAATGTGCTGCGCTCCA GGCTAACATGCCGGCTGCCAATTGATTTAAGGCGAGTCTTGCGCAAAAGAGCGCGGGACAA ACACCCAACACCAAGCAAAGCTTGAGGGTACAAATGACGCTCGAACAGGCATGCCCCATGG AATACCAAGGGGCGCAATGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACA CTACTTATCGCATTTCGCTGCGTTCTTCATCGATGCCAGAACCAAGAGATCCGTTGTTAAAAG TTGTAATTATTATTATTTTTCAGACATGGACTGCAAATACAATGGGTGGATTGATATCCCGTA GGGGCAGTAACGCCCTGCTGGGAAAACAAACTGTACGCAAAAAGGCATGGGTAACGTCAA ACAAGTGGGCATCATTGGCACAAAAGCACCGCTGAAAACCCGCCAGTTGAGGTAATGGTAA TGATCCTTCC

> G31 Phoma sclerotioides ITS 1

GTGTCACTGACGCCCACACTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTCCC AGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTG AAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAAC GCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAAC GCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAA GCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATT GGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGC CCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTA AGC

> G34 Phoma sclerotioides ITS 4

GGAAGGATCATTACCATTACCTCAACTGGCGGGTTTTCAGCGGTGCTTTTGTGCCAATGATG 98

CCCACTTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTCCCAGCAGGGCGTTAC TGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCCATGTCTGAAAAATAATAATAA TTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGA TAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCT TGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTG GGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTT AGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTCTGCCCCCCATCAAGTCCAT A

> H21 Scytalidium lignicola ITS1

ATGTCTTTCTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAAACCC TTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTCAACAACGGATCTCTT GGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCA GTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTT CGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTA GACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCT TTGCACTCATAACGACGACGTCCAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGTAG GGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAGGATCATTACCTAGAGTTTGCG GGCT

> H24 Scytalidium lignicola ITS4

AGCCCGCAAACTCTAGGTAATGATCCTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTA GAGTTTGCGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGT GGGTTCGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAA TTAATAATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGA AATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTG CGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTT GGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCG 99

TATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTA CAT

> H31 Scytalidium lignicola ITS1

CATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAAACCC TTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTCAACAACGGATCTCTT GGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCA GTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTT CGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTA GACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCT TTGCACTCATAACGACGACGTCCAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGTAG GGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAAGGATCATTACCTAGAGTTTGC GGGC

> H34 Scytalidium lignicola ITS4

AAGCCCGCAAACTCTAGGTAATGATCCCTTCCGTAGGTGAACCTGCGGAAGGATCATTACCT AGAGTTTGCGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGT GGGTTCGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAA TTAATAATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGA AATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTG CGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTT GGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCG TATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTA CA

> K11 Phoma herbarum ITS1

100

GTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCAATTGGACAATTTAAACCCTTT GCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGATCTCTTGGT TCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTG AATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGA GCGTCATTTGTACCTTCAAGCATTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGAC TCGCCTTAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTG CACTCATAACGACGACGTCCAAAAGTACATTTTAACACTCTTGACCTCGGATCAGGTAGGGA TACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAAGGATCATTACCTANAGTTTGTGGG CTTTG

> K14 Phoma herbarum ITS4

CTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGTGGGCTTTGCCTGCTACCT CTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTT AAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGA TCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAG AATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATG CCTGTTCGAGCGTCATTTGTACCTTCAAGCATTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTG CGTGTAGACTCGCCTTAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCT CGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTAACACTCT

> K21 (Cadophora) fungal sp. AB10 ITS1

101

ATAAGCGGAAGAACCGTAACCCTTGAATAAACTACCCTTGTTGCTTTGGCGGGCCGCCTTCT CGGCCAGCGGCTTCTGCTGCTGCGCGCCCGCCACAGGACCACAACTCTTGTTTTTAGTGATG TCTGAGTACTATATAATAGTTAAAACTTTCAACAACGGATCTCTTGGTACTGGCATCAATGAA CAACGCATCGAAATGCGATAAGTAATGTGAATTGCACAATTCACTGAATCGTCCAATCTTTG AACGCACATTGCGCCCTTTGGTATTCCGAAGGGCATGCCTGTTCGAGCGTCGTTATAACCAC TCAAGCTCTCGGTTGGTATTGGGGTGCGCGGTTCCGCGGCCTCCAAAGTCAGTGGCGGTGC CTGTCGGCTCTCCGCGTAATAATACTCCTCGCGTCTGGGACCGGTAAGTTGCTTGCCAA

> K24 (Cadophora) fungal sp. AB10 ITS4

CTTCCGTAGGTGAACCTGCGGAAGGATCATTAATAAACCTAGTCGTTTGCGTACATAGGGG CAACCCTCGCGCGATGTCAGCAATACGTAGGTAACCCTTGAATAATCTACCCTAGTTGCTTT GGCGGGCCGCGGTTTCGGCCAGCGGCTTCGGCTGGTGCGCGCCCGCCAGAGGACCACAAC TCTTGTTTTTAGTGATGTCTGAGTAATATATAATAGTTAAAACTTTCAACAACGGATCTCTTG GTTCGGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAG TGAATCATCGAATCTTTGAACGCACATTGCGCCCTTTGGTATTCCGAAGGGCATGCCTGTTC GAGCGTCATTATAACCACTCAAGCTCTCGCTTGGTATTGGGGTGCGCGGTTCCGCGGCCTCT AAAGTCAGAGGCGGTGCCTGTCGGCTGTATGCGTAGTACTACTCCTCGCGTCTGGGTCCGG TAGGAGGCTCCTCTAGCA

>K31

GGAGGAACCGGAGGTGAAGCTGAGGACGACCTAATNTGCGGAGGAAGAACGGGAACGGC TATCGTGTAACGTTTCGCCGATGGACATCTAAACTATTGTTATTTTACAGTAATCTGAGCGTC TTATTTTAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGC AGCGAAATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGC ACATTGCGCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCC TAGCTTAGTGTTGGCTATCTACTGTATTGTAGTGGCCTAAATACAACGGCGGATCTGTGGTA TCCTCTGAGCGTAGTAATTTTTTTCTCGCTTTTGTTAGGTGCTGCAGCCCTCGGCCGCTAAAC 102

CCCCCAATTTTTAATGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATC AATAA

>K34

ACCTGCGGAGGGATCATTACAGAGTTTTTAACTCCCACACCCATGTGAACTTACCATTGTTGC CTCGGCAGAACCTACCCGGTACCTACCCTGTAACGACCTACCCTGTAGCGAGTTACCCGGGA ACGGCTATCGTGTAACGTTTCGCCGATGGACATCTAAACTATTGTTATTTTACAGTAATCTGA GCGTCTTATTTTAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAG AACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTG AACGCACATTGCGCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTT AAGCCTAGCTTAGTGTTGGCTATCTACTGTATTGTAGTGGCCTAAATACAACGGCGGATCTG TGGTATCCTCTGAGCGTCGTAATTTTTTTCTCGCGGAGGATAGCAACAACAAGCGGCTCTTC AG

> L14 Penicillium commune strain P4.2

GGAAGGATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTTTATTTTACC TTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGCTCACGCCCCCGGGCCCGCG CCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCTGAGTGAAAATATAAATTAT TTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCG ATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCC TGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGT TGGGCCCCGTCCTCCGATTTCCGGGGGACGAGCCCGAAAGGCAGCGGCGGCACCGCGTCC GGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCCGGCCGGCGCCTGCCGATC AACCCAAATG

> L54 Penicillium enchinulatum ITS4

103

GGTGAACTGCGGAAGGATCATTACTGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTG TTTATTCTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGCTCACGCCCC CGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCTGAGTGAAA ATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCA GCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACGCACA TTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTGCGAAGGTCATTAATACCCTCATGCCCG GCTGGTGTGTTGGAGGCGGTCCTCAGCAATACGAGGCTCCTCAGCTGAACATGCGGAGGA GCAGATCAACAATCAGAGGATCCGTAGCTGAACATGCGGAGGAGCAGATCAATAAGCGGA GGATCCGTAGG

> M14 Penicillium enchinulatum ITS4

GCTCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAG TCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGAT GAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCT TTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGC CCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATTTCCGGGGGACGAGCCCGAAAG GCAGCGGCGGCACCGCGTCCGGTCCTCGAGTGTTTGGGGGTTCTCACTGAGGGGCAGATCA ATAACCGGAGGTTCCTGTATGG

> M24 Phoma sclerotioides ITS4

CAATCCACCCATTGTATTTGCAGTCAAGTATGAAAAATAATAATAATNACAACTTTTANCAAC GGATCTATTGGTTTTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTG CAGAATTCAGTGAATCATCGAATCTTTGAACACACATTGCGCCCCTGGTATTCCATGGGGCA TGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCT CTTTTTCTCAAGACTAGGCGGAGGAGGAGAACAATAAAAAGAGGCTCTTCAGGAGAACATC CGGAGGAGCAGATCAATAAGCGGAGGTTCCTGCAGG

> M44 Phoma sclerotioides ITS4

CGACATCCCTCCCAAGATTGTAGTAGGAGTNATAATAAAAATTATAATAAACTTTCAACAAC GGATCGGATGGTTCGGGCATGGATGAAGAGAAGAGCGAAATGAAATACGTAATGTGAATT 104

GAAGAATTCAGTGAATCATCGAGTCGNGAACNCACAGTGCGCCGTGTGGTATTCCGGAGG GCATGCCTGGCCGAGTGTCATNTCTGCCCTCAAGCCAGGCTTGTGTGTTGGGCTCCGTCCCC CGATTCCGGGGGACGGGCCCGAAAGGCAGCGGGGGCACCGCATCCGGTCATGGATCCTTA GGTGATCAGGCGGAGGAGCAGATCAATAAGCAGAGGCTCTTGCAGGT

Appendix 6.2- Subcultured sequences

Subcultured isolates sequenced using ITS1/4 primers. Note last number of the isolate denotes which primer was used.

>SA11 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

CCTGTTTGACGTTACCCATGCCTTTTTTTGAACNGTTTGTTTTCCCAGCAGGGCGTTACTGCC CCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTAC AACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAA GTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGG TATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGT GTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGC CTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATAT TTGCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGA GGAA

>SA14 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

TTTCCGTANGGGGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTG TTCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTT TTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAAT GTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA AGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTT TGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACC CTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAAT 105

CAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTG TTGG

>SA21 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

CGACGGTTTGACGTTCCCCTGCCTTTTTGNGTAAAGTTTGTTTTCCCAGCAGGGCGTTACTGC CCCTACCGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTA CAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAA GTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGG TATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGT GTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGC CTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATAT TTGCTCTTGACCTCGGATCAAGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAG G

>SA24 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

CTTCCGTAGGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTG TTCTTCGGTTCAATTGACTCTCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTT TTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAAT GTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA AGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTT TGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACC CTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAAT CAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTATTAGATTGAG GAG

>SA31 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

GGATTTGAAGGTGCCCCTGCCTTTTTGCGTACAGTTTGGTTTCCCAGCAGGGCGTTACTGCC CCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTAC AACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAA GTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGG TATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGT GTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGC 106

CTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATAT TTGCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGA GGAA

>SA34 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

CTTCCGTAGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGG

>SA41 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

CGGTTTGACGTTACCCCTGCCTTTTTGNNTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCC CTACCGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACA ACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGT AGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTA TTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTG TTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCT GGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTT GCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AA

>SA44 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

TTCCGTAGGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAGCGGT GCTTTTGTGTCACTGACGCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT 107

GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGG

>SA51 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

ATGTTTGACGTTCCCATGCCTTTTTNCANACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCC TACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACAA CTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA GTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTAT TCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGT TTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCT GGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTT GCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AA

>SA54 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

CTTCCGTAGGGGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGGC

>SB11 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

ATTTGACGGTGCCCCTGCCTTTTTTCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCT ACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACAAC TTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA GTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTAT TCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGT 108

TTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCT GGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTT GCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AG

>SB14 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

CTTCCGTAGGGGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGG

>SB21 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

TTGACGTTACCCATGCCTTTTTGNGTACGGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTAC GGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACAACTT TTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGT GTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTC CATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTT GTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCTGG AGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTTGC TCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAG NGA

>SB24 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

CTTCCGTAGGGGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT 109

GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGG

>SB31 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

GTTTGACGTTCCCCTGCCTTTTTGCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTA CGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACAACT TTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAG TGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTC CATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTT GTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCTGG AGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTTGC TCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA

>SB34 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

TTTCCGTAGGGGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TGG

>SC31 Fimetariella rabenhorstii 16S rRNA ITS 1

ACTCNNNGGNCCATNTGTGGCGTACCCGTCAGCGTTGCCTCGGCGGGCGGCCCCTCCCTGG GGCCGCTGCCTCCCTCGGGGGGTGCCCGCCGGCGTACCAAAACTCTTCTGTATTTTAGTGGC CTCTCTGAGAAAACAAGCAAATAAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCAT CGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCG AATCTTTGAACGCACATTGCGCCCGCCAGTACTCTGGCGGGCATGCCTGTTCGAGCGTCATT TCAACCCTCAAGCCCTGCTTGGTGTTGGGGTCCTACGGCTGCCGTAGGCCCTGAAAGCTAGT GGCGGGCTCGCTATAACTCCGAGCGTAGTAGTAAAATATCTCGCTAGGGAGGTGTCGCGGG 110

TTCCGGCCGTGAAAGCCCATCTTTTACACAAGGTTGACCTCGGATCAGGTAGGAATACCCGC TGAACTTAAGCATATCAATAAGCGGAGGAA

>SC34 Fimetariella rabenhorstii 16S rRNA ITS 4

CTTCCGTAGGTAACCTGCGGAGGGATCATTACAGAGTTCTAAAAGACTCCCAAAACCATTGT GAACGTACCCGTCAGCGTTGCCTCGGCGGGCGGCCCCTCCCTGGGGCCGCTGCCTCCCTCG GGGGGTGCCCGCCGGCGTACCAAAACTCTTCTGTATTTTAGTGGCCTCTCTGAGAAAACAAG CAAATAAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCG AAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATT GCGCCCGCCAGTACTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCCCTGC TTGGTGTTGGGGTCCTACGGCTGCCGTAGGCCCTGAAAGCTAGTGGCGGGCTCGCTATAAC TCCGAGCGTAGTAGTAAAATATCTCGCTAGGGAGGTGTCGCGGGTTCCGGCCGTGAAAGCC CATCTTTTACACAAGGTTGACCTCGGATACANGNAGCA

>SD21 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 1

CAGACTGATTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTCCCAGCAGGGCGTTAC TGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAA TTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGA TAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCT TGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTG GGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTT AGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCAT ATATTTGCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGC GGAGGAA

>SD24 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

TTCCGTAAAGGGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTGT TCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTT TCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATG TCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCC 111

TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATC AATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGT TG

>SD31 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

TTTGACGTTACCCATGCCTTTTTGNGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTA CGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACAACT TTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAG TGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTC CATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTT GTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCTGG AGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTTGC TCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA GA

>SD34 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

CTTCCGTAGGGGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAGCGG TGCTTTTGTGTCACTGACGCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTT TTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAAT GTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA AGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTT TGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACC CTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAAT CAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTG TTG

>SD41 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 1

GTTTGACGTTACCCATGCCTTTCCNCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCN ACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACAAC TTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA GTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTAT TCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGT TTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCT GGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTT 112

GCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AA

>SD44 Phoma sclerotioides ver. sclerotioides 16S rRNA ITS 4

CTTCCGTAGGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAATTG TTCTTCGGTTCAATTGACTCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTT TTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAAT GTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA AGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTT TGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACC CTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAAT CAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTG TT

>SE11 Penicillium camemberti 16S rRNA ITS 1

TCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGCTCACGCCCCCGGGCCCGCGCCCGCCG AAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAAC TTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGTA ATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATT CCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCC CCGTCCTCCGATCTCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTC GAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCCGGCCGGCGCTTGCCGATCAACCCAA ATTTTTATCCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATA AGCGGAGATTA

>SE14 Penicillium camemberti 16S rRNA ITS 4

TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTC CCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGC TCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCT GAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGA AGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTT GAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCC TCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATCTCCGGGGGACGGGCCCGAAAGGC 113

AGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCC GGCCGGCGC

>SE31 Penicillium camemberti 16S rRNA ITS 1

ACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGCTCACGCCCCCGGGCCC GCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCTGAGTGAAAATATAAA TTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAAT GCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCC CCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTG TGTTGGGCCCCGTCCTCCGATCTCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCG TCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCCGGCCGGCGCTTGCCG ATCAACCCAAATTTTTATCCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAG CATATCAATAAGCGGAGGA

>SE34 [Organism= Penicillium camemberti] 16S rRNA ITS 4

CTTCCGTAGGGGGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCT CCCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGG CTCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTC TGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATG AAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTT TGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCC CTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATCTCCGGGGGACGGGCCCGAAAGG CAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCC CGGCCGGCG

>SF11 [Organism= Hypocrea viridescens] 16S rRNA ITS 1

CGCATCCCCGGAACCAGGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTCG CGGACGTTATTTCTTACAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGG ATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCA GAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCAT GCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCGGG AACCCCTAAGACGGGATCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCATG CGCAGTAGTTTGCACAACTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCAA 114

CTTCTGAAATGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAAG CGGAGGAA

>SF14 [Organism= Hypocrea viridescens] 16S rRNA ITS 4 TTCCGTAGGTGAACCTGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCAATGTGAA CCATACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCAG GCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTAC AGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCA TCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATC GAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCAT TTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCGGGAACCCCTAAGACGGGAT CCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACAAC TCGCACC

>SF21 [Organism= Hypocrea viridescens] 16S rRNA ITS 1 TCGCAGCCCCGGAACCAGGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTC GCGGACGTTATTTCTTACAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACG GATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGC AGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCA TGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCGG GAACCCCTAAGACGGGATCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCAT GCGCAGTAGTTTGCACAACTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCA ACTTCTGAAATGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAA GCGGAGGAA

>SF24 [Organism= Hypocrea viridescens] 16S rRNA ITS 4 TTCCGTAGGGTGAACCTGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCAATGTGA ACCATACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCA GGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTA CAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGC ATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCAT CGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCA TTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCGGGAACCCCTAAGACGGGA TCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACAA CTCGC 115

>SG11 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 1

TTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCC CTACGGGATATCAATCCACCCATTGTATTTGCAGTCCATGTCTGAAAAATAATAATAATTACA ACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGT AGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTA TTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTG TTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCT GGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTT GCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AA

>SG14 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 4

CTTCCGTAGGGGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTTCAGCG GTGCTTTTGTGCCAATGATGCCCACTTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTG TTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCCA TGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA AGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTT TGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACC CTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAAT CAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTG TTG

>SG21 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 1

TGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCC TACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACAA CTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA GTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTAT TCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGT TTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCT GGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTT GCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AA

116

>SG24 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 4

CTTCCGTAGGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTTCAGCG GTGCTTTTGTGCCACTGATGCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTG TTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAA TGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA AGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTT TGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACC CTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAAT CAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTG TTGGCCCCCATCAAGT

>SH21 [Organism= Scytalidium lignicola] 16S rRNA ITS 1

AAAAAAATTAATAATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAAC GCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAAC GCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAA GCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTCAAAACAATTGG CAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGT CCAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGC ATATCAATAAGCGGAGGAAGAGCGTTAGCTAAAGTTTGCAGGCTTTGCTGGTTTTCGTTACC ATGGCTTTTAAAGTACTTACTTTCCCCGTGGGTTCCCCGCCATTGGACAATTTAACCCTTTGC AGTTGCAATCACGTCTGAAAAAAATTAATAATTACACTTTCAACAAACGGAATCTCTTGGTTC TGGCATCGATGAAAACGCACGAAATGCGATAAGTAGTGTGAATTGCAGAAATTCAGTGAAT CATCGAATCTTTGAACGCACA

>SH24 [Organism= Scytalidium lignicola] 16S rRNA ITS 4

TTTCCGTAGGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGCGGGCTTTGCCTGCTATC TCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATT TAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTCAACAACG GATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGC AGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCA TGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTT TGCGTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACA 117

TCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTACACTCTGACNTCGNAT A

>SH31 [Organism= Scytalidium lignicola] 16S rRNA ITS 1

CTGCTATCTCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATT GGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTC AACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGT GAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCAT GGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTC TCGCCTTTGCGTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGC AGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTTACACTCTTGAC CTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA

>SH34 [Organism= Scytalidium lignicola] 16S rRNA ITS 4

TCTCCGTAGGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGCGGGCTTTGCCTGCTATC TCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATT TAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTCAACAACG GATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGC AGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCA TGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTT TGCGTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACA TCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTTACACTCTGACCTNGNTC ANG

>SK11 [Organism= Phoma herbarum] 16S rRNA ITS 1

CCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAAACC CTTTGCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGATCTCTT GGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCA GTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTT CGAGCGTCATTTGTACCTTCAAGCATTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTA GACTCGCCTTAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCT TTGCACTCATAACGACGACGTCCAAAAGTACATTTTAACACTCTTGACCTCGGATCAGGTAG GGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA 118

>SK14 [Organism= Phoma herbarum] 16S rRNA ITS 4

TTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGTGGGCTTTGCCTGCTACCTC TTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTA AACCCTTTGCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGAT CTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGA ATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGC CTGTTCGAGCGTCATTTGTACCTTCAAGCATTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGC GTGTAGACTCGCCTTAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTC GCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTAACACTCTGAC

>SK21 [Organism= Phoma herbarum] 16S rRNA ITS 1

CAAGGAGAAGATGAGGTTCCTCGGTGGGTTCGCCCGCCAATTGGAGGATTAAACCCTTTGC AGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCT GGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAAT CATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCG TCATTTGTACCTTCAAGCATTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCG CCTTAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCAC TCATAACGACGACGTCCAAAAGTACATTTTAACACTCTTGACCTCGGATCAGGTAGGGATAC CCGCTGAACTTAAGCATATCAATAAGCGGAGGAA

>SK24 [Organism= Phoma herbarum] 16S rRNA ITS 4

TTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGTGGGCTTTGCCTGCTACCTC TTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTA AACCCTTTGCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGAT CTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGA ATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGC CTGTTCGAGCGTCATTTGTACCTTCAAGCATTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGC GTGTAGACTCGCCTTAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTC GCGCTTTGCAATCATAACGAGGAGGTCCAAAAGTAC

>SK31 [Organism= Uncultured fungus clone MBS12-5] 16S rRNA ITS 1

GTACCTACCCTGTAACGACCTACCCTGTAGCGAGTTACCCGGGAACGGCTATCGTGTAACGT TTCGCCGATGGACATCTAAACTATTGTTATTTTACAGTAATCTGAGCGTCTTATTTTAATAAG 119

TCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCG ATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCA TTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTTAGTGTT GGCTATCTACTGTATTGTAGTGGCCTAAATACAACGGCGGATCTGTGGTATCCTCTGAGCGT AGTAATTTTTTTCTCGCTTTTGTTAGGTGCTGCAGCCCTCGGCCGCTAAACCCCCCAATTTTTA ATGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AA

>SK34 [Organism= Uncultured fungus clone MBS12-5] 16S rRNA ITS 4

TTCCGTAGGTGAACCTGCGGAGGGATCATTACAGAGTTTTTAACTCCCACACCCATGTGAAC TTACCATTGTTGCCTCGGCAGAACCTACCCGGTACCTACCCTGTAACGACCTACCCTGTAGCG AGTTACCCGGGAACGGCTATCGTGTAACGTTTCGCCGATGGACATCTAAACTATTGTTATTTT ACAGTAATCTGAGCGTCTTATTTTAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTCTG GCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATC ATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGT CATTTCAACCCTTAAGCCTAGCTTAGTGTTGGCTATCTACTGTATTGTAGTGGCCTAAATACA ACGGCGGATCTGTGGTATCCTCTGAGCGTAGTAATTTTTTTCTCGCTTTTGTTAGGTGCTGCA GCCCTCGGCCGCTAAACCCCCCAAT

>SL11 [Organism= Penicillium echinulatum] 16S rRNA ITS 4

TGCGGAGGGCCCGCCTTAACTGGCCGCCGGGGGGCTCGGCCCCCGGGCCCGCGCCCGCCG AAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAAC TTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGTA ATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATT CCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCC CCGTCCTCCGATTTCCGGGGGACGAGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTC GAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCCGGCCGGCGCTTGCCGATCAACCCAA ATTTTTATCCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATA AGCGGAGGAA

>SL14 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 4

CTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTC CCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGC TCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCT 120

GAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGA AGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTT GAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCC TCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATTTCCGGGGGACGAGCCCGAAAGGC AGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCNNTGTAGGCCC GGCCGGCGC

>SM11 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 1

TGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCC TACGGGATATCAATCCACCCATTGTATTTGCAGTCCATGTCTGAAAAATAATAATAATTACAA CTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA GTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTAT TCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGT TTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCT GGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTT GCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AA

>SM14 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 4

CTTCCGTAGGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTTCAGCG GTGCTTTTGTGCCAATGATGCCCACTTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTG TTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCCA TGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA AGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTT TGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACC CTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAAT CAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTG T

>SM21 [Organism= Monodictys arctica ] 16S rRNA ITS 1

GAGAGGANGGGGAACTGATTCTACCCATGTCTTTTGCGTACAATTTGTTTCCTTGGTGGGCT TGCCTGCCGATAGGACATCATTAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAACATAAT AATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGC GATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCC 121

CTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGT TGGGTGTTTGTCCCGCTTTACGCGTGGACTCGCCTTAAAACAATTGGCAGCCGGCATATTGG CCTGGAGCGCAGCACATTTTGCGCCTCTTGTCATGATTGTTGGCATCCATCAAGACTATTTTT TACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAG GAA

>SM24 [Organism= Monodictys arctica ] 16S rRNA ITS 4

CTTCCGTAAGGGGAACCTGCGGAAGGATCATTAAACATCATCGGGGAGTTGGATCCAGATT GTAGGGCTTCGGTCTTGCTTTCTGCCCTTCTCTTACTGATTCTACCCATGTCTTTTGCGTACTA TTTGTTTCCTTGGTGGGCTTGCCTGCCGATAGGACATCATTAAACCTTTTGTAATTGCAGTCA GCGTCAGAAAAACATAATAATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATG AAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCT TTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTAC CCTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCCCGCTTTACGCGTGGACTCGCCTTAAAACA ATTGGCAGCCGGCATATTGGCCTGGAGCGCAGCACATTTTGCGCCTCTTGTCATGATTGTTG GCA

>SM31 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 1

GGGTGAGGTTGCCCATGACTTTTTAAAGAAGAGGAGGATTCGCAGCAGGGCGTTACTGCCC CTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGTCTGAAAAATAATAATAATTACA ACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGT AGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTA TTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTG TTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCT GGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTT GCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGG AA

>SM34 [Organism= Phoma sclerotioides ver. sclerotioides] 16S rRNA ITS 4

CTTCCGTAGGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTTCAGCG GTGCTTTTGTGCCAATGATGCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTG TTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAA TGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA AGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTT 122

TGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACC CTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCTTAAAT CAATTGGCAGCCGGCATGTTAGCGGGGAGCGCAGCACATTTTGCGCCCCTTGCTTGATTGA GTT

>SO31 [Organism= Debaryomyces hansenii] 16S rRNA ITS 1

AGAGGTTTACTGAACTAAACTTCAATATTTATATTGAATTGTTATTTATTTAATTGTCAATTTG TTGATTAAATTCAAAAAATCTTCAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATG AAGAACGCAGCGAAATGCGATAAGTAATATGAATTGCAGATTTTCGTGAATCATCGAATCTT TGAACGCACATTGCGCCCTCTGGTATTCCAGAGGGCATGCCTGTTTGAGCGTCATTTCTCTCT CAAACCTTCGGGTTTGGTATTGAGTGATACTCTTAGTTGAACTAGGCGTTTGCTTGAAATGT ATTGGCATGAGTGGTACTGGATAGTGCTATATGACTTTCAATGTATTAGGTTTATCCAACTC GTTGAATAGTTTAATGGTATATTTCTCGGTATTCTAGGCTCGGCCTTACAATATAACAAACAA GTTTGACCTCAAATCAGGTAGGATTACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA

>SO34 [Organism= Debaryomyces hansenii] 16S rRNA ITS 1

GACCTGCGGAAGGATCATTACAGTATTCTTTTTGCCAGCGCTTAATTGCGCGGCGAAAAAAC CTTACACACAGTGTTTTTTGTTATTACAAGAACTTTTGCTTTGGTCTGGACTAGAAATAGTTT GGGCCAGAGGTTTACTGAACTAAACTTCAATATTTATATTGAATTGTTATTTATTTAATTGTC AATTTGTTGATTAAATTCAAAAAATCTTCAAAACTTTCAACAACGGATCTCTTGGTTCTCGCA TCGATGAAGAACGCAGCGAAATGCGATAAGTAATATGAATTGCAGATTTTCGTGAATCATC GAATCTTTGAACGCACATTGCGCCCTCTGGTATTCCAGAGGGCATGCCTGTTTGAGCGTCAT TTCTCTCTCAAACCTTCGGGTTTGGTATTGAGTGATACTCTTAGTTGAACTAGGCGTTTGCTT GAAATGTATTGGCATGAGTGGTACTGGATAGTGCTATATGACTTTCAATGTATTAGGTTTAT C

Appendix 6.3- BLAST comparative sequences including accession numbers

Accession numbers are placed in front i.e. >Accession number, name of organism

>DQ530453.1 Ph. sclerotioides isolate Solem

123

GGTTTTTCAGCGGTGCTTTTGTGCCAATGATGCCCACCTGTTTGACGTTACCCATGCCTTTTT GCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGT ATTTGCAGTCCATGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTC TGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAA TCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGC GTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGA CTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCT TGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGG ATACCCGCTGAACTTAAGCATATCAATAAG

> DQ530452.1 Ph. sclerotioides isolate Holt

GGTTTTTCAGCGGTGCTTTTGTGCCAATGATGCCCACCTGTTTGACGTTACCCATGCCTTTTT GCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGT ATTTGCAGTCCATGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTC TGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAA TCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGC GTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGA CTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCT TGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGG ATACCCGCTGAACTTAAGCATATCAATAAG

>DQ530447.1 Ph. sclerotioides isolate Hallock

GGTTTTTCAGCGGTGCTTTTGTGCCAATGATGCCCACCTGTTTGACGTTACCCATGCCTTTTT GCGTACAGTTTGTTTTCCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGT ATTTGCAGTCCATGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTC TGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAA TCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGC GTCATTTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGA CTCGCCTTAAATCAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCT 124

TGCTTGCTTGTGTTGGCCCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGG ATACCCGCTGAACTTAAGCATATCAATAAG

> FJ179162.1 Ph. sclerotioides isolate PA_2-9cr

ACAGGCGGGTTTCAATTTCGATTGACTCCCACCTGCTTGACGTTACCCATGCCTTTTTGCGTA CAGTTTGTTTTCCCAGCAGGGCTTTACCGCCCCTACGGGATATCAATCCACCCATTGTATTTG CAGTCAATGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCA TCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATC GAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCAT TTGTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGTAAGACTCGC CTTAAATCAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTT GCTTGTGTTGGCCCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGGATAC CCGCTGAACTTAAGCATATCAATAAGCGGAGG

>FJ179160.1 Ph. sclerotioides isolate ME_5-2-5r

ACAGGCGGGTTTCAATTTCGATTGACTCCCACCTGCTTGACGTTACCCATGCCTTTTTGCGTA CAGTTTGTTTTCCCAGCAGGGCTTTACCGCCCCTACGGGATATCAATCCACCCATTGTATTTG AGTCAATGTCTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCAT CGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCG AATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTT GTACCCTCAAGCTTTGCTTGGTGTTGGGTGTTTGTCCCGCGCTCTTTTGCGCAAGACTCGCCT TAAATCAATTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTAC TTGTGTTGGCCCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGGATACCC GCTGAACTTAAGCATATCAATAAGCGGAGG

> EU265670.1 Ph. sclerotioides isolate NM_1(1)5 125

TCCGTAGGTGAACCTGCGGAAGGATCATTACCATTACCTCAACTGGCGGGTTTCAGCGGTG CTTCGGTGCCACTGACGCCCACCTGTTTGACGTTACCCATGCCTTTTTGCGTACAGTTTGTTTT CCCAGCAGGGCGTTACTGCCCCTACGGGATATCAATCCACCCATTGTATTTGCAGTCAATGT CTGAAAAATAATAATAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAG AACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTG AACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTC AAGCTTTGCTTGGTGTTGGGTGTTTGTCCTGCGCTCTTTTGCGCAAGACTCGCCTTAAATCAA TTGGCAGCCGGCATGTTAGCCTGGAGCGCAGCACATTTTGCGCCCCTTGCTTGCTTGTGTTG GCCCCCATCAAGTCCATATATTTGCTCTTGACCTCGGATCAGGTAGGGATA

>U04207.1 L. doliolum IMI 199775

GAATTGAGTGGATCATTACCATTACCTCAACGGGGGGGAGTTCAGCAGTGTATTCGGCTGA ACTCCCGCCTGATTGACGTTACCCATGTCTTTTTGCGTACAGTTTGTTTTCCCAGCAGGGACT TTGTGCCCCTACGGGATATCAATCCACCCTTGAATTTGCAGTCCATAGTCTGAAAAATAATAA TAATTACAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATG CGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCC CCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTTTGCTTGGTG TTGGGTGATTGTCCGCGCTTTTTGCGCAGACTCGCCTTAAATCAATTGGCAGCCGGCATGTT AGCCTGGAGCGCAGCACATTTTGCGCACCTTGCTGGCGGTGTTGGCCCCCATCAAGTCCATA TATTGGCTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAGCATATCAATAAG

>FJ025183.1 Leptosphaeria sp. QLF95

GTCCCCCTCCTTCCAGAGGTTGGACGCAGTGAGTCGGGCTTCGGCCAGGCTCTCTGCCCCTT CCCTTTCTGAATATACCCATGTCTTTTGCGTACTATTTGTTTCCTCGGCGGGCTTGCCTGCCGA TAGGACATCATTAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAAACATAATAATTACAAC TTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTA GTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTAT TCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGTGT TTGTCCCGCCTTTGCGCGTGGACTCGCCTTAAAGCAATTGGCAGCCGGCATATTGGCCTGGA 126

GCGCAGCACAATTTGCGCCTCTTGTCATGATTGTTGGCATCCATCAAGACCATTTTTTGCTCT TGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA

>GQ153183.1 sp. 11242

TACCATATTACGGGGGGCCGGATCCAAGTTTAGGGCTTTTGCTTTATTCTTTGCCCCGCCCCG TCTGAATATACCCATGTTTTTGCGTACTATCTGTTTCCTTGGTGGGCTTGCCTGCCGATAGGA CATTATAAACTCATTTGCAATTGCAGTCAGCGTCAGAAAAACTTAATAATTACAACTTTCAAC AACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAA TKGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGG GGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCAGCTTGGTGTTGGGTGTTTGTCCC GCCTTTTGCGTGTGGACTCGCCTTAAAGCAATTGGCAGCCGGCATATTGGCCTGGAGCGCA GCACAATTTGCGCCTCTTGCCATGAATGTTGGCATCCATCAAGTCCATTTATTTGCTCTTGAC CTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAAAAGAAAC CAACAGGGATTGCCCTAGTAACGGCGAGTGAAGCGGCAACAGCTCAAATTTGAAATCTGGC TCTTTTAGGGTCCGAGTTGTAATTTGCAGAGGGCGCTTTGGCGTTGGCAGCGGTCCAAGTTC CTTGGAACAGGACGTCACAGAGGGTGAGAATCCCGTACGTGGTCGCTGGCCTTCGCCGTGT AAAGCCCCTTCGACGAGTCGAGTTGTTTGGGAATGCAGCTCTAAATGGGAGGTAAATTTCTT CTAAAGCTAAATACTGGCCAGAGACCGATAGCGCACAAGTAGAGTGATCGAAAGATGAAA AGCACTTTGGAAAGAGAGTCAAATAGCACGTGAAATTGTTGAAAGGGAAGCGCTTGCAGCC AGACTTGCCTGTAGTTGCTCATCCGGGCTTTTGCCCGGTGCACTCTTCTGCGGGCAGGCCAG CATCAGTTTGGGCGGTTGGATAAAGGTCTCTGTCATGTACCTCCTTTCGGGGAGGCCTTATA GGGGAGACGACATGCAACCAGCCTGGACTGAGGTCCGCGCATTTG

>GQ152998.1 Dothideomycetes sp. DC020

GGGGGCCGGATCCAAGTTCAGGGCTTTTGCTTTATTCTTTGCCCCGCCCCGTCTGAATATAC CCATGTTTTTGCGTACTATCTGTTTCCTTGGTGGGCTTGCCTGCCGATAGGACATTATAAACT CTTTTGCAATTGCAGTCAGCGTCAGAAAAACTTAATAATTACAACTTTCAACAACGGATCTCT TGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTC AGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGT TCGAGCGTCATTTGTACCCTCAAGCTCAGCTTGGTGTTGGGTGTTTGTCCCGCCTTTTGCGTG TGGACTCGCCTTAAAGCAATTGGCAGCCGGCATATTGGCCTGGAGCGCAGCACAATTTGCG 127

CCTCTTGCCATGAATGTTGGCATCCATCAAGCCCATTTATTTGCTCTTGACCTCGGATCAGGT AGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAAAAGAAACCAACAGGGATT GCCCTAGTAACGGCGAGTGAAGCGGCAACAGCTCAAATTTGAAATCTGGCTCTTTTAGGGT CCGAGTTGTAATTTGCAGAGGGCGCTTTGGCGTTGGCAGCGGTCCAAGTTCCTTGGAACAG GACGTCACAGAGGGTGAGAATCCCGTACGTGGTCGCTGGCCTTCGCCGTGTAAAGCCCCTT CGACGAGTCGAGTTGTTTGGGAATGCAGCTCTAAATGGGAGGTAAATTTCTTCTAAAGCTA AATACTGGCCAGAGACCGATAGCGCACAAGTAGAGTGATCGAAAGATGAAAAGCACTTTG GAAAGAGAGTCAAATAGCACGTGAAATTGTTGAAAGGGAAGCGCTTGCAGCCAGACTTGC CTGTAGTTGCTCATCCGGGCTTTTGCCCGGTGCACTCTTCTGCGGGCAGGCCAGCATCAGTT TGGGCGGTTGGATAAAGGTCTCTGTCATGTACCTCCTTTCGGGGAGGCCTTATAGGGGAGA CGACATGCAACCAGC

> AB499790.1 Py. gentianicola MAFF 425531 TCATTACCCTTCTCTCAGGGGGATGGACGCAACAGGTTCACGCTTGTTGCTCCGCCCTTTCTG AATATACCCATGTCTTTTGCGTACTATTTGTTTCCTCGGCAGGCTTGCCTGCCGATAGGACAT CATTAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAACATAATAATTACAACTTTCAACAAC GGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTG CAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGC ATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCCCGCCT TGCGCGTGGACTCGCCTTAAAGCAATTGGCAGCCGGCATATTGGCCTGGAGCGCAGCACAT TTTGCGCCTCTTGTCATGAATGTTGGCATCCATCAAGACTATATTTTTGCTCTTGACCTCGGA TCAGGTAGGGATACCCGC

>GQ458041.1 Debaryomyces hansenii 60978

TCGCCATGCATGTCTAAGTATAAGCAATTTATACAGTGAAACTGCGAATGGCTCATTAAATC AGTTATCGTTTATTTGATAGTACCTTTACTACTTGGATAACCGTGGTAATTCTAGAGCTAATA CATGCTAAAAATCCCGACTGTTTGGAAGGGATGTATTTATTAGATAAAAAATCAATGCTTTT CGGAGCTCTTTGATGATTCATAATAACTTTTCGAATCGCATGGCCTTGTGCTGGCGATGGTT CATTCAAATTTCTGCCCTATCAACTTTCGATGGTAGGATAGTGGCCTACCATGGTTTCAACGG GTAACGGGGAATAAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCA AGGAAGGCAGCAGGCGCGCAAATTACCCAATCCCGACACGGGGAGGTAGTGACAATAAAT 128

AACGATACAGGGCCCTTTCGGGTCTTGTAATTGGAATGAGTACAATGTAAATACCTTAACGA GGAACAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTA TATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGAACCTTGGGCTTGGTTGGCCGGTCCGC CTTTTTGGCGAGTACTGGACCCAACCGAGCCTTTCCTTCTGGCTAACCTTTCGCCCTTGTGGT GTTTGGCGAACCAGGACTTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCCTTTGCTCG AATATATTAGCATGGAATAATAGAATAGGACGTTATGGTTCTATTTTGTTGGTTTCTAGGAC CATCGTAATGATTAATAGGGACGGTCGGGGGCATCAGTATTCAGTTGTCAGAGGTGAAATT CTTGGATTACCTGAAGACTAACTACTGCGAAAGCATTTGCCAAGGACGTTTTCATTAATCAA GAACGAAAGTTAGGGGATCGAAGATGATCAGATACCGTCGTAGTCTTAACCATAAACTATG CCGACTAGGGATCGGGTGTTGTTCTTTTTTTGACGCACTCGGCACCTTACGAGAAATCAAAG TCTTTGGGTTCTGGGGGGAGTATGGTCGCAAGGCTGAAACTTAAAGGAATTGACGGAAGG GCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACTCAACACGGGGAAACTCACCAGGTC CAGACACAATAAGGATTGACAGATTGAGAGCTCTTTCTTGATTTTGTGGGTGGTGGTGCATG GCCGTTCTTAGTTGGTGGAGTGATTTGTCTGCTTAATTGCGATAACGAACGAGACCTTAACC TACTAAATAGTGCTGCTAGCTTTTGCTGGTATAGTCACTTCTTAGAGGGACTATCGATTTCAA GTCGATGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGACGTTCTGGGCCGCACG CGCGCTACACTGACGGAGCCAACGAGTATTAACCTTGGCCGAGAGGTCTGGGAAATCTTGT GAAACTCCGTCGTGCTGGGGATAGAGCATTGTAATTATTGCTCTTCAACGAGGAATTCCTAG TAAGCGCAAGTCATCAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCT ACTACCGATTGAATGGCTTAGTGAGGCCTCCGGATTGGTTTAAAGAAGGGGGCAACTCCAT CTTGGAACCGAAAAGCTGGTCAAACTTGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGT TTCCGTAGGTGAACCTGCGGAAGGATCATTACAGTATTCTTTTTGCCAGCGCTTAATTGCGC GGCGAAAAAACCTTACACACAGTGTTTTTTGTTATTACAAGAACTTTTGCTTTGGTCTGGACT AGAAATAGTTTGGGCCAGAGGTTTACTGAACTAAACTTCAATATTTATATTGAATTGTTATTT ATTTAATTGTCAATTTGTTGATTAAATTCAAAAAATCTTCAAAACTTTCAACAACGGATCTCTT GGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATATGAATTGCAGATTTTC GTGAATCATCGAATCTTTGAACGCACATTGCGCCCTCTGGTATTCCAGAGGGCATGCCTGTT TGAGCGTCATTTCTCTCTCAAACCTTCGGGTTTGGTATTGAGTGATACTCTTAGTTGAACTAG GCGTTTGCTTGAAATGTATTGGCATGAGTGGTACTGGATAGTGCTATATGACTTTCAATGTA TTAGGTTTATCCAACTCGTTGAATAGTTTAATGGTATATTTCTCGGTATTCTAGGCTCGGCCT TACAATATAACAAACAAGTTTGACCTCAAATCAGGTAGGATTACCCGCTGAACTTAAGCATA TCAATAAGCGGAGGAAAAGAAACCAACAGGGATTGCCTTAGTAACGGCGAGTGAAGCGGC AAAAGCTCAAATTTGAAATCTGGCACCTTCGGTGTCCGAGTTGTAATTTGAAGAAGGTAACT TTGGAGTTGGCTCTTGTCTATGTTCCTTGGAACAGGACGTCACAGAGGGTGAGAATCCCGT 129

GCGATGAGATGCCCAATTCTATGTAAAGTGCTTTCGAAGAGTCGAGTTGTTTGGGAATGCA GCTCTAAGTGGGTGGTAAATTCCATCTAAAGCTAAATATTGGCGAGAGACCGATAGCGAAC AAGTACAGTGATGGAAAGATGAAAAGAACTTTGAAAAGAGAGTGAAAAAGTACGTGAAAT TGTTGAAAGGGAAGGGCTTGAGATCAGACTTGGTATTTTGCGATCCTTTCCTTCTTGGTTGG GTTCCTCGCAGCTTACTGGGCCAGCATCGGTTTGGATGGTAGGATAATGACTAAGGAATGT GGCTCTACTTCGGTGGAGTGTTATAGCCTTGGTTGATACTGCCTGTCTAGACCGAGGACTGC GTCTTTTGACTAGGATGTTGGCATAATGATCTTAANCCACCCGTCTGAAACACGGACCA

>GQ458019.1 Debaryomyces hansenii MA09-J

TCAAAGATTAAGCCATGCATGTCTAAGTATAAGCAATTTATACAGTGAAACTGCGAATGGCT CATTAAATCAGTTATCGTTTATTTGATAGTACCTTTACTACTTGGATAACCGTGGTAATTCTA GAGCTAATACATGCTAAAAATCCCGACTGTTTGGAAGGGATGTATTTATTAGATAAAAAATC AATGCTTTTCGGAGCTCTTTGATGATTCATAATAACTTTTCGAATCGCATGGCCTTGTGCTGG CGATGGTTCATTCAAATTTCTGCCCTATCAACTTTCGATGGTAGGATAGTGGCCTACCATGGT TTCAACGGGTAACGGGGAATAAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTAC CACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCCGACACGGGGAGGTAGTGA CAATAAATAACGATACAGGGCCCTTTCGGGTCTTGTAATTGGAATGAGTACAATGTAAATAC CTTAANNAGGAACAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCA ATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGAACCTTGGGCTTGGTTGGC CGGTCCGCCTTTTTGGCGAGTACTGGACCCAACCGAGCCTTTCCTTCTGGCTAACCTTTCGCC CTTGTGGTGTTTGGCGAACCAGGACTTTTACTTTGAAAAAATTAGAGTGTTCAAAGCAGGCC TTTGCTCGAATATATTAGCATGGAATAATAGAATAGGACGTTATGGTTCTATTTTGTTGGTTT CTAGGACCATCGTAATGATTAATAGGGACGGTCGGGGGCATCAGTATTCAGTTGTCAGAGG TGAAATTCTTGGATTACCTGAAGACTAACTACTGCGAAAGCATTTGCCAAGGACGTTTTCAT TAATCAAGAACGAAAGTTAGGGGATCGAAGATGATCAGATACCGTCGTAGTCTTAACCATA AACTATGCCGACTAGGGATCGGGTGTTGTTCTTTTTTTGACGCACTCGGCACCTTACGAGAA ATCAAAGTCTTTGGGTTCTGGGGGGAGTATGGTCGCAAGGCTGAAACTTAAAGGAATTGAC GGAAGGGCACCACCAGGAGTGGAGCTGCGGCTTAATTTGACTCAACACGGGGAAACTCAC CAGGTCCAGACACAATAAGGATTGACAGATTGAGAGCTCTTTCTTGATTTTGTGGGTGGTG GTGCATGGCCGTTCTTAGTTGGTGGAGTGATTTGTCTGCTTAATTGCGATAACGAACGAGAC CTTAACCTACTAAATAGTGCTGCTAGCTTTTGCTGGTATAGTCACTTCTTAGAGGGACTATCG ATTTCAAGTCGATGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGACGTTCTGGGC CGCACGCGCGCTACACTGACGGAGCCAACGAGTATTAACCTTGGCCGAGAGGTCTGGGAA ATCTTGTGAAACTCCGTCGTGCTGGGGATAGAGCATTGTAATTATTGCTCTTCAACGAGGAA 130

TTCCTAGTAAGCGCAAGTCATCAGCTTGCGTTGATTACGTCCCTGCCCTTTGTACACACCGCC CGTCGCTACTACCGATTGAATGGCTTAGTGAGGCCTCCGGATTGGTTTAAAGAAGGGGGCA ACTCCATCTTGGAACCGAAAAGCTGGTCAAACTTGGTCATTTAGAGGAAGTAAAAGTCGTA ACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACAGTATTCTTTTTGCCAGCGCTTA ATTGCGCGGCGAAAAAACCTTACACACAGTGTTTTTTGTTATTACAAGAACTTTTGCTTTGGT CTGGACTAGAAATAGTTTGGGCCAGAGGTTTACTGAACTAAACTTCAATATTTATATTGAAT TGTTATTTATTTAATTGTCAATTTGTTGATTAAATTCAAAAAATCTTCAAAACTTTCAACAACG GATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATATGAATTGC AGATTTTCGTGAATCATCGAATCTTTGAACGCACATTGCGCCCTCTGGTATTCCAGAGGGCA TGCCTGTTTGAGCGTCATTTCTCTCTCAAACCTTCGGGTTTGGTATTGAGTGATACTCTTAGT TGAACTAGGCGTTTGCTTGAAATGTATTGGCATGAGTGGTACTGGATAGTGCTATATGACTT TCAATGTATTAGGTTTATCCAACTCGTTGAATAGTTTAATGGTATATTTCTCGGTATTCTAGG CTCGGCCTTACAATATAACAAACAAGTTTGACCTCAAATCAGGTAGGATTACCCGCTGAACT TAAGCATATCAATAAGCGGAGGAAAAGAAACCAACAGGGATTGCCTTAGTAACGGCGAGT GAAGCGGCAAAAGCTCAAATTTGAAATCTGGCACCTTCGGTGTCCGAGTTGTAATTTGAAG AAGGTAACTTTGGAGTTGGCTCTTGTCTATGTTCCTTGGAACAGGACGTCACAGAGGGTGA GAATCCCGTGCGATGAGATGCCCAATTCTATGTAAAGTGCTTTCGAAGAGTCGAGTTGTTTG GGAATGCAGCTCTAAGTGGGTGGTAAATTCCATCTAAAGCTAAATATTGGCGAGAGACCGA TAGCGAACAAGTACAGTGATGGNAAAGATGAAAAGAACTTTGAAAGAGAGTGAAAAAGTA CGTGAAATTGTTGAAAGGGAANGGGCTTGAGATCAGACTTGGTATTTTGCGATCCTTTCCTT CTTGGTTGGGTTCCTCGCAGCTTACTGGGCCAGCATCGGTTTGGATGGTAGGATAATGACTA AGGAATGTGGCTCTACTTCGGTGGAGTGTTATAGCCTTGGTTGATACTGCCTGTCTAGACCG AGGACTGCGTCTTTNGACTAGGATGTTGGCATAANGATCTTAACCACCCGTCTGAAACACG GACCA

>FM178348.1 Debaryomyces castellii 18S rRNA WM 07.72

TGAACCTGCGGAAGGATCATTACAGTATTCTTTTTGCCAGCGCTTAATTGCGCGGCGAAAAA ACCTTACACACAGTGTTTTTTGTTATTACAAGAACTTTTGCTTTGGTCTGGACTAGAAATAGT TTGGGCCAGAGGTTTACTGAACTAAACTTCAATATTTATATTGAATTGTTATTTATTTAATTGT CAATTTGTTGATTAAATTCAAAAAATCTTCAAAACTTTCAACAACGGATCTCTTGGTTCTCGC ATCGATGAAGAACGCAGCGAAATGCGATAAGTAATATGAATTGCAGATTTTCGTGAATCAT CGAATCTTTGAACGCACATTGCGCCCTCTGGTATTCCAGAGGGCATGCCTGTTTGAGCGTCA 131

TTTCTCTCTCAAACCTTCGGGTTTGGTATTGAGTGATACTCTTAGTTGAACTAGGCGTTTGCT TGAAATGTATTGGCATGAGTGGTACTGGATAGTGCTATATGACTTTCAATGTATTAGGTTTA TCCAACTCGTTGAATAGTTTAATGGTATATTTCTCGGTATTCTAGGCTCGGCCTTACAATATA ACAAACAAGTTGACCT

>EF432798.1 Pueraria montana var. lobat Jiangxi

AGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACAGTATTCTTTTTG CCAGCGCTTAATTGCGCGGCGAAAAAACCTTACACACAGTGTTTTTTGTTATTACAAGAACTT TTGCTTTGGTCTGGACTAGAAATAGTTTGGGCCAGAGGTTTACTGAACTAAACTTCAATATTT ATATTGAATTGTTATTTATTTAATTGTCAATTTGTTGATTAAATTCAAAAAATCTTCAAAACTT TCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAAT ATGAATTGCAGATTTTCGTGAATCATCGAATCTTTGAACGCACATTGCGCCCTCTGGTATTCC AGAGGGCATGCCTGTTTGAGCGTCATTTCTCTCTCAAACCTTCGGGTTTGGTATTGAGTGAT ACTCTTAGTCGAACTAGGCGTTTGCTTGAAATGTATTGGCATGAGTGGTACTGGATAGTGCT ATATGACTTTCAATGTATTAGGTTTATCCAACTCGTTGAATAGTTTAATGGTATATTTCTCGGT ATTCTAGGCTCGGCCTTACAATATAACAAACAAGTTTGACCTCAAATCAGGTAGGATTACCC GCTGAACGTAAGCATATCAATAAGCGGAGGA

>FJ235952.1 Fungal sp. AB19

CTGCGGAAGGATCATTACAGTATTCTTTTTGCCAGCGCTTAATTGCGCGGCGAAAAAACCTT ACACACAGTGTTTTTTGTTATTACAAGAACTTTTGCTTTGGTCTGGACTAGAAATAGTTTGGG CCAGAGGTTTACTGAACTAAACTTCAATATTTATATTGAATTGTTATTTATTTAATTGTCAATT TGTTGATTAAATTCAAAAAATCTTCAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGA TGAAGAACGCAGCGAAATGCGATAAGTAATATGAATTGCAGATTTTCGTGAATCATCGAAT CTTTGAACGCACATTGCGCCCTCTGGTATTCCAGAGGGCATGCCTGTTTGAGCGTCATTTCTC TCTCAAACCTTCGGGTTTGGTATTGAGTGATACTCTTAGTCGAACTAGGCGTTTGCTTGAAAT GTATTGGCATGAGTGGTACTGGATAGTGCTATATGACTTTCAATGTATTAGGTTTATCCAACT CGTTGAATAGTTTAATGGTATATTTCTCGGTATTCTAGGCTCGGCCTTACAATATAACAAACA AGTTTGACCTCAAATCAGGTAGGATTACCCGCTGAACTTAAGCATATC

132

>EF432797.1 Pueraria montana var. lobata Jiangxi

AGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACAGTATTCTTTTTG CCAGCGCTTAATTGCGCGGCGAAAAAACCTTATACACAGTGTTTTTTGTTATTACAAGAACTT TTGCTTTGGTCTGGACTAGAAATAGTTTGGGCCAGAGGTTTACTGAACTAAACTTCAATATTT ATATTGAATTGTTATTTATTTAATTGTCAATTTGTTGATTAAATTCAAAAAATCTTCAAAACTT TCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAAT ATGAATTGCAGATTTTCGTGAATCATCGAATCTTTGAACGCACATTGCGCCCTCTGGTATTCC AGAGGGCATGCCTGTTTGAGCGTCATTTCTCTCTCAAACCTTCGGGTTTGGTATTGAGTGAT ACTCTTAGTCGAACTAGGCGTTTGCTTGAAATGTATTGGCATGAGTGGTACTGGATAGTGCT ATATGACTTTCAATGTATTAGGTTTATCCAACTCGTTGAATAGTTTAATGGTATATTTCTCGGT ATTCTAGGCTCGGCCTTACAATATAACAAACAAGTTTGACCTCAAATCAGGTAGGATTACCC GCTGAACTTAAGCATATCAATAAGCGGAGGA

>GU931771.1 Uncult Saccharomycetales s_H06_16.ab1

GGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATC ATTACAGTATTCTTTTTGCCAGCGCTTAATTGCGCGGCGAAAAAACCTTACACACAGTGTTTT TTGTTATTACAAGAACTTTTGCTTTGGTCTGGACTAGAAATAGTTTGGGCCAGAGGTTACTG AACTAAACTTCAATATTTATATTGAATTGTTATTTATTTAATTGTCAATTTGTTGATTAAATTC AAAAAATCTTCAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGC GAAATGCGATAAGTAATATGAATTGCAGATTTTCGTGAATCATCGAATCTTTGAACGCACAT TGCGCCCTCTGGTATTCCAGAGGGCATGCCTGTTTGAGCGTCATTTCTCTCTCAAACCTTCGG GTTTGGTATTGAGTGATACTCTTAGTCGAACTAGGCGTTTGCTTGAAATGTATTGGCATGAG TGGTACTGGATAGTGCTATATGACTTTCAATGTATTAGGTTTATCCAACTCGTTGAATAGTTT AATGGTATATTTCTCGGTGGNCNAGGCTCGGCCTTACAATATAACAAACAAGTTTGACCTCA AATCAGGTAGGACGGGGGACGCTGAACTTAAGCATCNCAATAAGCGAGNGGAAA

>HM051067.1 Hypocrea viridescens wxm100

TTCCGTAGGGTGAACCTGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCAATGTGA ACCATACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCA GGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTA 133

CAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGC ATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCAT CGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCA TTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCGGGAACCCCTAAGACGGGA TCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACAA CTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCAACTTCTGAAATGTGACCT GGATCAGGTAGCATGCCAACCCT

>HM037934.1 Hypocrea koningii wxm11

ATTTCCGTAGGGTGACCTGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCAATGTG AACCATACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACC AGGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTT ACAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGG CATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCA TCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTC ATTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCGGGAACCCCTAAGACGGG ATCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACA ACTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCAACTTCTGAAATGTGACC TCGGATCAGGTAGAAAGCCCGC

>AF218790.1 Trichoderma koningii

AACCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAA GTATAAGCAATTATACCGCGAAACTGCGAATGGCTCATTATATAAGTTATCGTTTATTTGATA ATACTTTACTACTTGGATAACCGTGGTAATTCTAGAGCTAATACATGCTAAAAATCCCGACTT CGGAAGGGTTGTATTTATTAGATTAAAAACCAATGCCCCTCGGGGCTCTCTGGTGAATCATG ATAACTAGTCGAATCGACAGGCCTTGTGCCGGCGATGGCTCATTCAAATTTCTTCCCTATCAA CTTTCGATGTTTGGGTCTTGTCCAAACATGGTGGCAACGGGTAACGAGGTTAGGGCTCGAC CCCGGAGAAGGAACCTGAGAAACGGCTACTACATCCAAGGAACGCAGCACGCGCGCAAAT TACCCAATCCCGACACGGGGAGGTAGTGACAATAAATACTGATACAGAGCTCTTTTGGGTCT TGTAATCGGAATGAGTACAATTTAAATCCCTTAACGAGGAACAATTGGAGGGCAAGTCTGG TGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGTGGTTAAAAAG CTCGTAGTTGAACCTTGGGCCTGGCTGGCCGGTCCGCCTCACCGCGTGCACTGGTCCGGCC 134

GGGCCTTTCCCTCTGCGGAACCCCATGCCCTTCACTGGGTGTGGCGGGGAAACAGGACTTTT ACTTTGAAAAAATTAGAGTGCTCAAGGCAGGCCTATGCTCGAATACATTAGCATGGAATAAT AGAATAGGACGTGTGGTTCTATTTTGTTGGTTTCTAGGACCGCCGTAATGATTAATAGGGAC AGTCGGGGGCATCAGTATTCAATTGTCAGAGGTGAAATTCTTGGATTTATTGAAGACTAACT ACTGCGAAAGCATTTGCCAAGGATGTTTTCATTAATCAGGAACGAAAGTTAGGGGATCGAA GACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTAGGGATCGGACGATGT ATCATTTTTGACGCGTTCGGCACCTTACGAGAAATCAAAGTGCTTGGGCTCCAGGGGGAGT ATGGTCGCAAGGCTGAAACTTAAAGAAATTGACGGAAGGGCACCACCAGGGGTGGAGCCT GCGGCTTAATTTGACTCAACACGGGGAAACTCACCAGGTCCAGACACAATGAGGATTGACA GATTGAGAGCTCTTTCTTGATTTTGTGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGT GATTTGTCTGCTTAATTGCGATAACGAACGAGACCTTAACCTGCTAAATAGCCCGTATTGCTT TGGCAGTACGCCGGCTTCTTAGAGGGGCTATCGGCTCAAGCCGATGGAAGTTTGAGGCAAT AACAGTTCTGTGATGCCCTTAGGTGTTTTGGGCCGCACGCGCGTAACACTGACGGAGCCAG CGAGTACTCCCTTGGCCGGAAGGCCTGGGTAATCTTGTTAAACTCCGTCGTGCTGGGGATA GAGCATTGCAATTATTGCTCTTCAACGAGGAATCCCTAGTAAGCGCAAGTCATCAGCTTGCG TTGATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTACCGATTGAATGGCTCAGTG AGGCGTCCGGACTGGCCCAGAGAGGTGGGCAACTACCACTCAGGGCCGGAAAGCTCTCCA AACTCGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTCTCCGTAGGTGAACCTGCRGAG GGATCATTACCGAGTTTACAACTCCCAAACCCAATGTGAACCATACCAAACTGTTGCCTCGG CGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCAGGCGCCCGCCGGAGGGACCAAC CAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTACAGCTCTGAGCAAAAATTCAAAA TGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAAT GCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGC CCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGG GGTCCGGCGTTGGGGATCGGGAACCCCTAAGACGGGATCCCGGCCCCGAAATACAGTGGC GGTCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACAACTCGCACCGGGAGCGCGGCGCG TCCACGTCCGTAAAACACCCAACTTCTGAAATGTTGACCTCGGATCAGGTAGGAATACCCGC TGAACTTAAGCATATCAATAAGCGGAGGA

> AJ279459.1Trichoderma sp. A11 isolate A11

TTCCGTAGGTGAACCTGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCAATGTGAA CCATACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCAG 135

GCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTAC AGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCA TCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATC GAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCAT TTCAACCCTCGAACCCCTCCGGGGGGTCGGCGTTGGGGATCGGGAACCCCTAAGACGGGAT CCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACAAC TCGCACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCAACTTCTGAAATGTTGACCTC GGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA

>HQ115671.1 Trichoderma atroviride NG_13

TACACACCGCCCGTCGCTACTACCGATTGAATGGCTCAGTGAGGCGTCCGGACTGGCCCAG AGAGGTGGGCAACTACCATTCAGGGCCGGAAAGCTCTCCAAACTCGGTCATTTAGAGGAAG TAAAAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACCGAGTTTACAA CTCCCAAACCCAATGTGAACCATACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGC GTCGCAGCCCCGGAACCAGGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCC TCGCGGACGTTATTTCTTACAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAAC GGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTG CAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGC ATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCG GAACCCCTAAGACGGGATCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCAT GCGCAGTAGTTTGCACAACTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCA ACTTCTGAAATGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAA GCGGAGGAAAAGAAACCAACAGGGATTGCCCCAGTAACGGCGAGTGAAGCGGCAACAGCT CAAATTTGAAATCTGGCCCCTAGGGTCCGAGTTGTAATTTGTAGAGGATGCTTTTGGTGAGG TGCCGCCCGAGTTCCCTGGAACGGGACGCCGCAGAGGGTGAGAGCCCCGTCTGGCTGGCC ACCGAGCCTCTGTAAAGCTCCTTCGACGAGTCGAGTAGTTTGGGAATGCTGCTCAAAATGG GAGGTATATGTCTTCTAAAGCTAAATATTGGCCAGAGACCGATAGCGCACAAGTAGAGTGA TCGAAAGATGAAAAGCACCTTGAAAAGAGGGTTAAACAGTACGTGAAATTGTTGAAAGGG AAGCGCTTGTGACCAGACTTGGGCGCGGCGGATCATCCGGGGTTCTCCCCGGTGCACTTCG CCGCGTTCAGGCCAGCATCAGTTCGGCGCGGGGGAAAAAGGCTTCGGGAACGTGGCTCCT CCGGGAGTGTTATAGCCCGTTGCATAATACCCTGCGCTGGACTGAGGACCGCTCATCTGCAA GGATGCTGGCGTAATGG 136

>FN812819.2 Uncult fungus genomic clone 3-69

CTTGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGG ATCATTACCGAGTTTACAACTCCCAAACCCAATGTGAACCATACCAAACTGTTGCCTCGGCG GGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCAGGCGCCCGCCGGAGGGACCAACCA AACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTACAGCTCTGAGCAAAAATTCAAAATG AATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGC GATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCC GCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGG TCCGGCGTTGGGGATCGGGAACCCCTAAGACGGGATCCCGGCCCCGAAATACAGTGGCGG TCTCGCCGCAGCCTCTCATGCGCAGTAGTTTGCACAACTCGCACCGGGAGCGCGGCGCGTC CACGTCCGTAAAACACCCAACTTCTGAAATGTTGACCTCGGATCAGGTAGGAATACCCGCTG AACTTAAGCATATCAATAAGCGGAGGA

>GU062209.1 Trichoderma sp. I69

GAGGAAGTAAAAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACCGA GTTTACAACTCCCAAACCCAATGTGAACCATACCAAACTGTTGCCTCGGCGGGGTCACGCCC CGGGTGCGTCGCAGCCCCGGAACCAGGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGT AGTCCCCTCGCGGACGTTATTTCTTACAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTT CAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATG TGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCT GGCGGGCATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTG GGGATCGGGAACCCCTAAGACGGGATCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCA GCCTCTCATGCGCAGTAGTTTGCACAACTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTA AAACACCC

>X93987.1 H.rufa GJS 89-142

TAGAAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACCGAGTTTACAA CTCCCAAACCCAATGTGAACCATACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGC GTCGCAGCCCCGGAACCAGGCGCCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCC 137

TCGCGGACGTTATTTTTACAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAAC GGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTG CAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGC ATGCCTGTCCGAGCGTCATTTCAACCCTCGAACCCCTCCGGGGGTCCGGCGTTGGGGATCG GGAACCCCTAAGACGGGATCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCA TGCGCAGTAGTTTGCACAACTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCC AACTTCTGAAATGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATA AGCG

>HM051076.1 Rhizopus stolonifer wxm171

TTCCGTAGGTGAACCTGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCAATGTGAA CCATACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCAG GCGCCCGCCGGAGGGACCAACCAAACTCTTTTCTGAAGTCCCCTCGCGGACGTTATTTCTTA CAGCTCTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGC ATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCAT CGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCA TTTCAACCCTCGAACCCCTCCGGGGGGTCGGCGTTGGGGATCGGGAACCCCTAAGACGGGA TCCCGGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCCTGCGCAGTAGTTTGCACAA CTCGCACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCAACGTGTGGAATATCGAAT AAGCGGAGAATATGTATATCCCG

>FJ442614.1 Trichoderma ovalisporum GJS 04-113

GTTGGTGAACCAGCGGAGGGATCATTACCGAGTTTACAACTCCCAAACCCAATGTGAACCA TACCAAACTGTTGCCTCGGCGGGGTCACGCCCCGGGTGCGTCGCAGCCCCGGAACCAGGCG CCCGCCGGAGGGACCAACCAAACTCTTTCTGTAGTCCCCTCGCGGACGTTATTTCTTACAGCT CTGAGCAAAAATTCAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGA TGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAAT CTTTGAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTCA ACCCTCGAACCCCTCCGGGGGGTCGGCGTTGGGGATCGGGAACCCCTAAGACGGGATCCC GGCCCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCCTGCGCAGTAGTTTGCACAACTCG 138

CACCGGGAGCGCGGCGCGTCCACGTCCGTAAAACACCCAACTTCTGAAATGTTGACCTCGG ATCAGGTAGGAATACCCGC

>AB520265.1 Uncult fungus IU-FSC Fun04_FuC138

TCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGCGGGCTTTGCCTGCTATCTCT TACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAA ACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTCAACAACGGATC TCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAA TTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCT GTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGT GTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGC GCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGT AGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAAAAGAAACCAACAGGGATT GCCCTAGTAACGGCGAGTGAAGCGGCAACAGCTCAAATTTGAAATCTGGCGTCTTTGGCGT CCGAGTTGTAATTTGCAGAGGGCGCTTTGGCATTGGCAGCGGTCCAAGTTCCTTGGAACAG GACGTCACAGAGGGTGAGAATCCCGTACGTGGTCGCTAGCCTTTACCGTGTAAAGCCCCTTC GACGAGTCGAGTTGTTTGGGAATGCAGCTCTAAATGGGAGGTAAATTTCTTCTAAAGCTAA ATACTGGCCAGAGACCGATAGCGCACAAGTAGAGTGATCGAAAGATGAAAAGCACTTTGG AAAGAGAGTTAAAAAGCACGTGAAATTGTTGAAAGGGAAACGCTTGAAGT

> EU715683.1 Phoma herbarum SGLMf29

GTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGCGGGCTTTGCCTGCTATC TCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATT TAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTCAACAACG GATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGC AGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCA TGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTT TGCGTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACA TCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTTACACTCTTGACCTCGGA 139

TCAGGTAGGGATACCCGCTGAACTTACAACAGGGATTGCCCTAGTAACGGCGAGTGAAGCG GCAACAGCTCAAATTTGAAATCTGGCGTCTTTGGCGTCCGAGTTGTAATTTGCAGAGGGCGC TTTGGCATTGGCAGCGGTCCAAGTTCCTTGGAACAGGACGTCACAGAGGGTGAGAATCCCG TACGTGGTCGCTAGCCTTTACCGTGTAAAGCCCCTTCGACGAGTCGAGTTGTTTGGGAATGC AGCTCTAAATGGGAGGTAAATTTCTTCTAAAGCTAAATACTGGCCAGAGACCGATAGCGCA CAAGTAGAGTGATCGAAAGATGAAAAGCACTTTGGAAAGAGAGTTAAAAAGCACGTGAAA TTGTTGAAAGGGAAGCGCTTGCAGCCAGACTTGCCTGTAGTTGCTCATCCGGGTTTTTACCC GGTGCACTCTTCTATAGGCAGGCCAGCATCAGTTTGGGCGGTTGGATAAAGGTCTCTGTCAT GTACCTCTCTTCGGGGAGAACTTATAGGGGAGACGACATGCAACCAGCCTGGACTGAGGTC CGCGCATCTGCTAGGATGCTGGCGTAATGGCTGTAAGCGG

>FJ914697.1 Scytalidium lignicola HSAUP063138

TCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGCGGGCTTTGCCTGCTATCTCT TACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAA ACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTCAACAACGGATC TCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAA TTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCT GTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGT GTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGC GCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGT AGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGA

> AJ890436.1 Phoma eupyrena CBS 118524

TAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGC GGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGC CCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAAT TACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGAT AAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTT 140

GGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTG GGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGAT TTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTT ACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGC

> EU754895.1 Uncult Phoma clone B2_j_ITS1F

GGTTCGTAGGTGACCTGCGGAGGATCATTACCTAGAGTTTGCGGGCTTTGCCTGCTATCTCT TACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAA ACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAAATTAATAATTACAACTTTCAACAACGGATC TCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAA TTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCT GTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGT GTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGC GCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGT AGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGA

>FN868459.1 Phoma herbarum BLE15

CTTGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGG ATCATTACCTAGAGTTTGTGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTACG TTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTC TGAAAAACATAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAA CGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAA CGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAA GCTTTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTTAAAACAATTGGC AGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTC CAAAAGTACATTTTTTACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGC ATATCAATAAGCGGAGGA

>FJ427000.1 Phoma eupyrena CBS 527.66 18S 141

ATCATTACCTAGAGTTTGCGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTACG TTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTC TGAAAAAAATTAATAATTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGA ACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGA ACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCA AGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTCAAAACAATTG GCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACG TCCAAAAGTACATTTTTACACTCTTGACCTCGGATCAGGTAGGGATACC

>HM036611.1 Phoma macrostoma

TCTTGGTCCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAA GGATCATTACCTAGAGTTGTGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTA CGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGC GTCTGAAAAACATAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCT TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTTAAAACAAT TGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGA CGTCCAAAAGTACTTTTTTACACTCTGACCTCGGATCAGTAG

> EU817829.1 Atradidymella muscivora UAMH 10911

ACTGGCTCGGAGAGGTTGGCAACGACCACTCCGAGCCGGAAAGTTCGTCAAACTCGGTCAT TTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACC TAGAGTTTGTGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGG TGGGTTCGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAC ATAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGA AATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTG CGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCATTGCTT GGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTTAAAACAATTGGCAGCCGGCG TATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTA CATTTTAACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAA

>AB470840.1 Phyllosticta caprifolii TS08-37-1 142

TCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGTGGGCTTTGCCTGCTATCTCT TACCCATGTCTTTTGAGTACTTACGTTTCCTCGGCGGGTCCGCCCGCCGATTGGACAAAATTA AACCCTTTGCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGAT CTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGA ATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGC CTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGC GTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTC GCGCTTTGCACTCATAACGACGACGTCCAAAAAGTACATTTTTACACTCTTGACCTCGGATCA GGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGA

>AY345351.1 Podospora sp. T489/9a-R

TCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGTGGGCTTTGCCTGCTATCTCT TACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAA ACCCTTTGCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGATC TCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAA TTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCT GTTCGAGCGTCATTTGTACCTTCAAGCATTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGT GTAGACTCGCCTTAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGC GCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTTAACACTCTTGACCTCGGATCAGG TAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGA

>AB470835.1 Dothiorella gregaria TS08-57-2

TCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGTTTGTGGGCTTTGCCTGCTATCTCT TACCCATGTCTTTTGAGTACTTACGTTTCCTCGGCGGGTCCGCCCGCCGATTGGACAAAATTA AACCCTTTGCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGAT CTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGA ATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGC CTGTTCGAGCGTCATTTGTACCTTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGC GTGTAGACTCGCCTCAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTC GCGCTTTGCACTCATAACGACGACGTCCAAAAAGTACATTTTTACACTCTTGACCTCGGATCA GGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGA 143

>EU686521.1 Monodictys arctica UAMH 10720

GCTCGGGGAGGTTGGCAACGACCACCCCGAGCCGGAAAGTTCGTCAAACTCGGTCATTTAG AGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTAAACATC ATCGGGGAGTTGGATCCAGATTGTGGGGCTTCGGTCTCGCTTTCTGCCCTTCTCTTACTGATT ATACCCATGTCTTTTGCGTACTATTTGTTTCCTTGGTGGGCTTGCCTGCCGATAGGACATCAT TAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAACATAATAATTACAACTTTCAACAACGG ATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCA GAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCAT GCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCCCGCTTTT CGCGTGGACTCGCCTTAAAACAATTGGCAGCCGGCATATTGGCCTGGAGCGCAGCACATTT TGCGCCTCTTGTCATGATTGTTGGCATCCATCAAGACTATTTT

>EF485231.1 Leptosphaeria sp. K94-019

CATTAAACATCATCGGGGAGTTGGATCCAGATTGTAGGGCTTCGGTCTCACTTTCTGCCCTTC TCTTACTGATTATACCCATGTCTTTTGCGTACTATTTGTTTCCTTGGTGGGCTTGCCCGCCGAT AGGACATCATTAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAACATAATAATTACAACTTT CAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTG TGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCA TGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGTGTTTGT CCCGCTTTTCGCGTGGACTCGCCTTAAAACAATTGGCAGCCGGCATATTGGCCTGGAGCGCA GCACATTTTGCGCCTCTTGTCATGATTGTTGGCATCCATCAAGACTATTTTTA

>FJ427066.1 Phoma schachtii CBS 502.84 ATCATTAAACATCATCGGGGAGTTGGATCCAGATTGTGGGGCTTCGGTCTCGCTTTTTGCCC TTCTCTTACTGATTATACCCATGTCTTTTGCGTACTATTTGTTTCCTTGGTGGGCTTGCCTGCC GATAGGACATCATTAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAAACATAATAATTACA ACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAG TAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGT 144

ATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGT GTTTGTCCCGCTCTTCGCGTGGACTCGCCTTAAAACAATTGGCAGCCGGCATATTGGCCTGG AGCGCAGCACATTTTGCGCCTCTTGTCATGATTGTTGGCATCCATCAAGACTATTTTTAACTC TTGACCTCGGATCAGGTAGGGATACC

>Calluna vulgaris agrAP169

CATTAAACATCATCGGGGAGTTGGATCCAGATGGTAGGGCTTCGGTCTTGCTTTCTGCCCTT CTCTTACTGATTATACCCATGTCTTTTGCGTACTATTTGTTTCCTTGGTGGGCTTGCCTGCCGA TAGGACATCATTAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAACATAATAATTACAACTT TCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGT GTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTC CATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGTGTTT GTCCCGCTTTTCGCGTGGACTCGCCTTAAAACAATTGGCAGCCGGCAGATTGGCCTGGAGC GACA

>AF439461.1 Leptosphaeria dryadis CBS 743.86

CATTAACCTTCATCGGGGGGCTGGATCCAGACTGTAGAGCTTCGGCCCTGCTTTCTGCCCTA CCCTTTCTGATTACACCCATGTCTTTTGCGTACTATTTGTTTCCTTGGTGGGCTTGCCTGCCGA TAGGACATTATTAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAACATAATAATTACAACTT TCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGT GTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTC CATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGTGTTT GTCCCGTTTCTCGCGTGGACTCACCTTAAAGCAATTGGCAGCCGGCATATTGGCTTGGAGCG CAGCACATTTTGCGCCTCTTGTCATGATTGTTGGCATCCATCAAGACTATTTTTTGCTCTTGAC CTCGGATCAGG

>FJ427083.1 Phoma violicola CBS 306.68

ATCATTACCCTTCTATCAGAGGGTTGGACGCAGCGTGCAGGGCTTCGGTCTCGCGCTCTGCC CCGCCCTTTCTGATTCTACCCATGTCTTTTGCGTACTATTTGTTTCCTCGGCGGGCTTGCCTGC CGATCGGACATTATTCAACCCTTTGTAATTGCAGTCAGCGTCAGAAAAACATAATAATTACA ACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAG 145

TAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGT ATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGT GTTTGTCCCGCCTTGCGCGTGGACTCGCCTTAAAGCAATTGGCAGCCGGCATATTGGCCTGG AGCGCAGCACATTTTGCGCCTCTTGTCAGGATTGTTGGCATCCATCAAGACTCTTTTGCTCTG ACCTCGGATCAGGTAGGGATACC

>AB499790.1 Pyrenochaeta gentianicola MAFF 425531

TCATTACCCTTCTCTCAGGGGGATGGACGCAACAGGTTCACGCTTGTTGCTCCGCCCTTTCTG AATATACCCATGTCTTTTGCGTACTATTTGTTTCCTCGGCAGGCTTGCCTGCCGATAGGACAT CATTAAACCTTTTGTAATTGCAGTCAGCGTCAGAAAAACATAATAATTACAACTTTCAACAAC GGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTG CAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGC ATGCCTGTTCGAGCGTCATTTGTACCCTCAAGCTCTGCTTGGTGTTGGGTGTTTGTCCCGCCT TGCGCGTGGACTCGCCTTAAAGCAATTGGCAGCCGGCATATTGGCCTGGAGCGCAGCACAT TTTGCGCCTCTTGTCATGAATGTTGGCATCCATCAAGACTATATTTTTGCTCTTGACCTCGGA TCAGGTAGGGATACCCGC

>DQ681336.1 Penicillium lanosum 929

TTGGAAGTAAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGA GTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCC CGCCTTAACTGGCCGCCGGGGGGCTCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTC GAACTCTGTCTGAAGATTGTAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACG GATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGC AAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCAT GCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGAT CCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGG GCTTTGTCACCCGCTCTGTAGGCCCGGCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAG GTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGGCGGAGGAA

>DQ778917.1 Penicillium crustosum IBL 03127 146

GTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCCTCTGGG TCCAACCTCCCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGC CGGGGGGCTTACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGA TTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGC ATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATC GAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCAT TGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCCCCGATCTCCGGGGGACGGGCC CGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCT GTAGGCCCGGCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAGGTTGACCTCGGATCAGG TAGGGATACCCGCT

>AY373932.1 Penicillium solitum FRR 937

TCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCC ACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGCTC ACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCTG AGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAA GAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTG AACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCT CAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATTTCCGGGGGACGGGCCCGAAAGGCA GCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCCG GCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAGGTTGACCTCGGATCAGGTAGGGATAC CCGCTGAACTTAAGCATATCAATAAGCGGAGGAAAAGAAACCAACAGGGATTGCCCC

>EF491160.1 Penicillium expansum BS30

ACTTGTACTGTGAAACTGCGAATGGCTCATTAAATCAGTTATCGTTTATTTGATAGTACCTTA CTACATGGATACCTGTGGTAATTCTAGAGCTAATACATGCTAAAAACCCCGACTTCAGGAAG GGGTGTATTTATTAGATAAAAAACCAACGCCCTTCGGGGCTCCTTGGTGAATCATAATAACT TAACGAATCGCATGGCCTTGCGCCGGCGATGGTTCATTCAAATTTCTGCCCTATCAACTTTCG ATGGTAGGATAGTGGCCTACCATGGTGGCAACGGGTAACGGGGAATTAGGGTTCGATTCC GGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTAC CCAATCCCGATACGGGGAGGTAGTGACAATAAATACTGATACGGGGCTCTTTTGGGTCTCG 147

TAATTGGAATGAGAACAATTTAAATCCCTTAACGAGGAACAATTGGAGGGCAAGTCTGGTG CCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCT CGTAGTTGAACCTTGGGTCTGGCTGGCCGGTCCGCCTCACCGCGAGTACTGGTCCGGCTGG ACCTTTCCTTCTGGGGAACCTCATGGCCTTCACTGGCTGTGGGGGGAACCACGACTTTTACT GTGAAAAAATTAGAGTGTTCAAAGCAGGCCTTTGCTCGAATACATTAGCATGGAATAATAG AATAGGACGTGTGGTTCTATTTTGTTGGTTTCTAGGACCGCCGTAATGATTAATAGGGATAG TCGGGGGCGTCAGTATTCAGCTGTCAGAGGTGAAATTCTTGGATTTGCTGAAGACTAACTAC TGCGAAAGCATTCGCCAAGGATGTTTTCATTAATCAGGGAACGAAAGTTAGGGGATCGAAG ACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTAGGGATCGGACGGGATT CTATAATGACCCGTTCGGCACCTTACGAGAAATCAAAGTTTTTGGGTTCTGGGGGGAGTATG GTCGCAAGGCTGAAACTTAAAGAAATTGACGGAAGGGCACCACAAGGCGTGGAGCCTGCG GCTTAATTTGACTCAACACGGGGAAACTCACCAGGTCCAGACAAAATAAGGATTGACAGAT TGAGAGCTCTTTCTTGATCTTTTGGATGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGTGAT TTGTCTGCTTAATTGCGATAACGAACGAGACCTCGGCCCTTAAATAGCCCGGTCCGCATTTG CGGGCCGCTGGCTTCTTAAGGGGACTATCGGCTCAAGCCGATGGAAGTGCGCGGCAATAAC AGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACACTGACAGGGCCAGCGA GTACATCACCTTAACCGAGAGGTTTGGGTAATCTTGTTAAACCCTGTCGTGCTGGGGATAGA GCATTGCAATTATTGCTCTTCAACGAGGAATGCCTAGTAGGCACGAGTCATCAGCTCGTGCC GATTACGTCCCTGCCCTTTGTACACACCGCCCGTCGCTACTACCGATTGAATGGCTCAGTGA GGCCTTGGGATTGGCTTAGGAGGGTTGGCAACGACCCCCCAGAGCCGAAAACTTGGTCAAA CTCGGTCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGG ATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTTTATTTTACCTTGTTGC TTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGCTCACGCCCCCGGGCCCGCGCCCGCCG AAGACACCCTCGAACTCTGTTTGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAAC TTTCAACAACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGTA ATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATT CCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCC CCGTCCTCCGATCTCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTC GAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCCGGCCGGCGCTTGCCGATCAACCCAA ATTTTTTTCCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATA AGCGGAGGAAAAGAAACCAACAGGGATTGCCCCAGTAACGGCGAGTGAAGCGGCAAGAG CTCAAATTTGAAAGCTGGCTCCTTCGGGGTCCGCATTGTAATTTGCAGAGGATGCTTCGGGA GCGGTCCCCATCTAAGTGCCCTGGAACGGGACGTCATAGAGGGTGAGAATCCCGTATGGG ATGGGGTGTCCGCGCCCGTGTGAAGCTCCTTCGACGAGTCGAGTTGTTTGGGAATGCAGCT 148

CTAAATGGGTGGTAAATTTCATCTAAAGCTAAATATTGGCCGGAGACCGATAGCGCACAAG TAGAGTGATCGAAAGATGAAAAGCACTTTGAAAAGAGAGTTAAAAAGCACGTGAAATTGTT GAAAGGGAAGCGCTTGCGACCAGACTCGCTCGCGGGGTTCAGCCGGCATTCGTGCCGGTG TATTTCCCCGCGGGCGGGCCAGCGTCGGTTTGGGCGGTC

>EU128595.1 Penicillium echinulatum 26P

TTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTC CCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGC TCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCT GAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGA AGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTT GAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCC TCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATTTCCGGGGGACGGGCCCGAAAGGC AGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCC GGCCGGCGCTTGCCGATCAACCCAAATTTTTTATCCAGGTTGACCTCGGATCAGGATAGGGA TACCCGCTGAACTTAAGCATATCAATAAGCGGAGGAA

>AY280956.1 Penicillium aurantiogriseum 37

AAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCC TCTGGGTCCAACCTCCCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACT GGCCGCCGGGGGGCTCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTC TGAAGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGG TTCCGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTG AATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGA GCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATCTCCGGGGGA CGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCAC CCGCTCTGTAGGCCCGGCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAGGTTGACCTCG GATCAGGTAGGGATACCCGCTGAA

149

>DQ426517.1 Penicillium sp. YNLF-28 18S

TTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCC CACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGCCGCCGGGGGGCT CACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGAAGATTGAAGTCT GAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCCGGCATCGATGA AGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATCATCGAGTCTTT GAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCC TCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATCTCCGGGGGACGGGCCCGAAAGGC AGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGTAGGCCC GGCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAGGTTGACCTCGGATCAGGTAG

>EU664481.1 Penicillium camemberti strain 095827

GTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGAGGGCCCTCT GGGTCCAACCTCCCACCCGTGTTTATTTTACCTTGTTGCTTCGGCGGGCCCGCCTTAACTGGC CGCCGGGGGGCTCACGCCCCCGGGCCCGCGCCCGCCGAAGACACCCTCGAACTCTGTCTGA AGATTGAAGTCTGAGTGAAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTTGGTTCC GGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAAATTCAGTGAATC ATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGT CATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCCGTCCTCCGATCTCCGGGGGACGG GCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGGGCTTTGTCACCCGC TCTGTAGGCCCGGCCGGCGCTTGCCGATCAACCCAAATTTTTATCCAGGTTGACCTCGGATC GGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGGAGGACGCGTCCGGTCCTCGAG CGT

> HM036611.1 Phoma macrostoma

TCTTGGTCCATTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAA GGATCATTACCTAGAGTTGTGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTA 150

CGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGC GTCTGAAAAACATAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAA GAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCT TCAAGCTTTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTTAAAACAAT TGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGA CGTCCAAAAGTACTTTTTTACACTCTGACCTCGGATCAGTAG

>EU817829.1 Atradidymella muscivora UAMH 10911 ACTGGCTCGGAGAGGTTGGCAACGACCACTCCGAGCCGGAAAGTTCGTCAAACTCGGTCAT TTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACC TAGAGTTTGTGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGG TGGGTTCGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAAC ATAATAGTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGA AATGCGATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTG CGCCCCTTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCATTGCTT GGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTTAAAACAATTGGCAGCCGGCG TATTGATTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTA CATTTTAACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAA

>AY337712.1 Phoma herbarum

GTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGTATAAGCAATTATACCGT GAAACTGCGAATGGCTCATTAAATCAGTTATCGTTTATTTGATAGTACCTTACTACTTGGATA ACCGTGGTAATTCTAGAGCTAATACATGCTGAAAACCCCAACTTCGGGAGGGGTGTATTTAT TAGATAAAAAACCAACGCCCTTCGGGGCTTCTTGGTGATTCATGATAACTTCACGGATCGCA TGGCCTTGCGCCGGCGACGGTTCATTCAAATTTCTGCCCTATCAACTTTCGATGGTAAGGTAT TGGCTTACCATGGTTTCAACGGGTAACGGGGAATTAGGGTTCGATTCCGGAGAGGGAGCCT GAGAAACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCCGACAC 151

GGGGAGGTAGTGACAATAAATACTGATACAGGGCTCTTTTGGGTCTTGTAATTGGAATGAG TACAATTTAAACCTCTTAACGAGGAACAATTGGAGGGCAAGTCTGGTGCCAGCAGCCGCGG TAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTTGAAACTT GGGCCTGGCTGGCAGGTCCGCCTCACCGCGTGTACTTGTCCGGCCGGGCCTTTCCTTCTGGA GAACCTCATGCCCTTCACTGGGTGTGTTGGGGAACCAGGACTTTTACTTTGAAAAAATTAGA GTGTTCAAAGCAGGCCTTTGCTCGAATACGTTAGCATGGAATAATAGAATAGGACGTGCGG TCCTATTTTGTTGGTTTCTAGGACCGCCGTAATGATTAATAGGGACAGTCGGGGGCATCAGT ATTCAATTGTCAGAGGTGAAATTCTTGGATTTATTGAAGACTAACTACTGCGAAAGCATTTG CCAAGGATGTTTTCATTAATCAGTGAACGAAAGTTAGGGGATCGAAGACGATCAGATACCG TCGTAGTCTTAACCGTAAACTATGCCGACTAGGGATCGGGCGATGTTCTTTTTCTGACTCGCT CGGCACCTTACGAGAAATCAAAGTTTTTGGGTTCTGGGGGGAGTATGGTCGCAAGGCTGAA ACTTAAAGAAATTGACGGAAGGGCACCACCAGGCGTGGAGCCTGCGGCTTAATTTGACTCA ACACGGGGAAACTCACCAGGTCCAGATGAAATAAGGATTGACAGATTGAGAGCTCTTTCTT GATTTTTCAGGTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGTGATTTGTCTGCTTAATTG CGATAACGAACGAGACCTTAACCTGCTAAATAGCCAGGCTAGCTTTGGCTGGTCGCCGGCTT CTTAGAGGGACTATCGGCTCAAGCCGATGGAAGTTTGAGGCAATAACAGGTCTGTGATGCC CTTAGATGTTCTGGGCCGCACGCGCGCTACACTGACAGAGCCAACGAGTTATTCACCTTGGC CGGAAGGTCTGGGTAATCTTGTTAAACTCTGTCGTGCTGGGGATAGAGCATTGCAATTATTG CTCTTCAACGAGGAATGCCTAGTAAGCGCATGTCATCAGCATGCGTTGATTACGTCCCTGCC CTTTGTACACACCGCCCGTCGCTACTACCGATTGAATGGCTCAGTGAGGCCTTCGGACTGGC TCGGAGAGGTTGGCAACGACCACTCCGAGCCGGAAAGTTCGTCAAACTCGGTCATTTAGAG GAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCTAGAGT TTGTGGGCTTTGCCTGCTATCTCTTACCCATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTT CGCCCGCCGATTGGACAATTTAAACCCTTTGCAGTTGCAATCAGCGTCTGAAAAACATAATA GTTACAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCG ATAAGTAGTGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCC TTGGTATTCCATGGGGCATGCCTGTTCGAGCGTCATTTGTACCTTCAAGCATTGCTTGGTGTT GGGTGTTTGTCTCGCCTTTGCGTGTAGACTCGCCTTAAAACAATTGGCAGCCGGCGTATTGA TTTCGGAGCGCAGTACATCTCGCGCTTTGCACTCATAACGACGACGTCCAAAAGTACATTTT AACACTCTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAAGCGG AGGA

152

>AF443853.1 Podospora minuta f. tetraspora

TTGGTGAACCAGCGGAGGGATCATTACCTAGAGTTTGTGGGCTTTGCCTGCTATCTCTTACC CATGTCTTTTGAGTACTTACGTTTCCTCGGTGGGTTCGCCCGCCGATTGGACAATTTAAACCC TTTGCAGTTGCAATCAGCGTCTGAAAAACATAATAGTTACAACTTTCAACAACGGATCTCTTG GTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAGTGTGAATTGCAGAATTCAG TGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCATGGGGCATGCCTGTTC GAGCGTCATTTGTACCTTCAAGCATTGCTTGGTGTTGGGTGTTTGTCTCGCCTTTGCGTGTAG ACTCGCCTTAAAACAATTGGCAGCCGGCGTATTGATTTCGGAGCGCAGTACATCTCGCGCTT TGCACTCATAACGACGACGTCCAAAAGTACATTTTAACACTCTTGACCTCGGATCAGGTAGG GATACCCGCTGAACTTAAGCATATCAATAAGCGG

>FJ237211.1 Uncult fungus clone MBS12-5

CTTACCATTGTTGCCTCGGCAGAACCTACCCGGTACCTACCCTGTAACGACCTACCCTGTAGC GAGTTACCCGGGAACGGCTATCGTGTAACGTTTCGCCGATGGACATCTAAACTATTGTTATT TTACAGTAATCTGAGCGTCTTATTTTAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTC TGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAATTGCAGAATTCAGTGAA TCATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGC GTCATTTCAACCCTTAAGCCTAGCTTAGTGTTGGCTATCTACTGTATTGTAGTGGCCTAAATA CAACGGCGGATCTGTGGTATCCTCTGAGCGTAGTAATTTTTTTCTCGCTTTTGTTAGGTGCTG CAGCCCTCGGCCGCTAAACCCCCCAATTTTTAATGGTTGACCTCGGATCAGGTAGGGATACC CGCTGAACTTAAGCATATCAATAAGCGGAGGAAAAGAAACCAACAGGGATTGCCCTAGTAA CGGCGAGTGAAGCGGCAACAGCTCAAATTTGAAATCTGGCCCTTGGGTCCGAATTGTAATT TGTAGAGGATGTTTTTGGTGCGGTATCTTCCGAGTTCCTTGGAACAGGACGCCTTAGAGGG TGAGAGCCCCGTACGGTTGAATGCCTAGCCTTTGTAAAACTCCTTCGACGAGTCGAGTAGTT TGGGAATGCTGCTCTAAATGGGAGGTAAATTTCTTCTAAAGCTAAATACTGGCCA

> GU244511.1 Discostroma fuscellum

AGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACAGAGTTATCTAACTC CCAAACCCATGTGAACTTACCATTGTTGCCTCGGCAGAACCTACCCGGTACCTACCCTGTAAC GACCTACCCTGTAGCGAGTTACCTGGGAACGGCTTACCCTGTAGTGCGCTGCCGGCGGACC 153

TCTTAACTCTTGTTATTTTATAGTAATCTGAGCGTCTTATTTTAATAAGTCAAAACTTTCAACA ACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAAT TGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGG GCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTTAGTGTTGGGAGCCTACTGTAT TGTAGCTCCCCAAATCCAACGGCGGATCTGTGGTATCCTCTGAGCGTAGTAATTTTTATCTCG CTTTTGTTAGGTGCCGCAGCTCTCAGCCGCTAAACCCCCCAATTTTTTAATGGTTGACCTCGG ATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAAG

> GQ152993.1 Sordariomycetes sp. DC003

GATCATTAAGAGTTATCTAACTCCCAACCCATGTGAACTTACCATTGTTGCCTCGGCAGAACC TACCCGGTACCTACCCTGTAACGACCTACCCTGTAGCGAGTTACCCGGGAACGGCTTACCCT GTAGTGCGCTGCCGGTGGACCTCTTAACTCTTGTTATTTTACAGTAATCTGAGCGTCTTATTT TAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGA AATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTG CGCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTT AGTGTTGGGAGCCTGCTGTATTGCAGCTCCCCAAATCCAACGGCGGATCTGTGGTATCCTCT GAGCGTAGTAATTTTTATCTCGCTTTTGTTAGGTGCTGCAGCTCTCAGCCGCTAAACCCCCCA ATTTTTAATGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAAG CGGAGGAAAAGAAACCAACAGGGATTGCCCTAGTAACGGCGAGTGAAGCGGCAACAGCTC AAATTTGAAATCTGGCCCTTGGGTCCGAGTTGTAATTTGTAGAGGATGTTTTTGGTGCGGTA TCTTCCGAGTTCCTTGGAACAGGACGCCTTAGAGGGTGAGAGCCCCGTACGGTTGAATGCC TAGCCTTTGTAAAACTCCTTCGACGAGTCGAGTAGTTTGGGAATGCTGCTCTAAATGGGAGG TAAATTTCTTCTAAAGCTAAATACCGGCCAGAGACCGATAGCGCACAAGTAGAGTGATCGA AAGATGAAAAGCACTTTGAAAAGAGGGTTAAATAGCACGTGAAATTGTTGAAAGGGAAGG ATTTATGACCAGACTTTTTCTAGGCGAATCATCCGGTGTTCTCACCGGTGCACTTCGTTTAGT TTAGGCCAGCATCGATTTTCGGGGCGGGATAAAAGCTTTAGGAATGTGGCTCCCTCGGGAG TGTTATAACCTATTGTATAATACCGCTCTGGGGATCGAGGTACGCGC

>AF405303.1 Discosia sp. HKUCC 6626

AGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACAGAGTTATCTAACTC CCAAACCCATGTGAACTTACCATTTGTTGCCTCGGCAGAACCTACCCGGTACCTACCCTGGA 154

GCGGCTACCCTGTAGCTACCCTGGAGCGGGCTACCCTGTAACGTCCTGCCGGTGGACTTCTA AACTCTTGTTATTTTATAGTAATCTGAGCGTCTTATTTTAATAAGTCAAAACTTTCAACAACG GATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGTTAAGTAATGTGAATTGC AGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGGGCA TGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTTAGTGTTGGGAATCTACTGTATTGT AGTTCCTGAAATATAACGGCGGATCTGTAATATCCTCTGAGCGTAGTAATTTTTTTCTCGCTT TGGTTAGGTGTTGCAGCTCTCAGCCGCTAAACCCCCCAATTTTAATGGTTGACCTCGGATCA GGTAGT

> EF600970.1 Seimatosporium discosioides KACC 42491

AGGGATCATTACAGAGTTATCTAACTCCCAAACCCATGTGAACTTACCATTGTTGCCTCGGC AGAACCTACCCGGTACCTACCCTGTAACAACCTACCCTGTAGCGAGTTACCCGGGAACGGCC TACCCTGTAGTGCGCTGCCGGTGGACTTCTAAACTATTGTTATTTATTGTAATCTGAGCGTCT TATTTTAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGC AGCGAAATGCGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGC ACATTGCGCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCC TAGCTTAGTGTTGGGAATCTACCGAGCAATCGGTAGTTCCCCAAATTCAACGGCGGATCTGT GGTATCCTCTGAGCGTAGTAATTTTTATCTCGCTTTTGTTAGGTGCTGCAGCTCCCAGCCGCT AAACCCCCCAAATTTTTTAATGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAA

>AY546067.1 Fungal endophyte EMS68

CAGAGTTATCTAACTCCCAAACCCATGTGAACTTACCATTGTTGCCTCGGCAGAACCTACCCG GTACCTACCCTGTAACAACCTACCCTGTAGCGAGTTACCCGGGAACGGCCTACCCTGTAGTG CGCTGCCGGTGGACTTCTAAACTATTGTTATTTATTGTAATCTGAGCGTCTTATTTTAATAAG TCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCG ATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCA TTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTTAGTGTT GGGAATCTACCGAGCAATCGGTAGTTCCCCAAATTCAACGGCGGATCTGTGGTATCCTCTGA GCGTAGTAATTTTTATCTCGCTTTTGTTAGGTGCTGCAGCTCCCAGCCGCTAAACCCCCCAAA TTTTTTAATGG 155

>FJ825373.1 Robillarda sessilis strain BCC13393

TCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTATAGAGTTTTCTAAACTCCC AAACCCATGTGAACTTACCATTGTTGCCTCGGCAGAGCCTACCCGGTACCTACCCTGGAACG AGCTACCCTGTAGCTACCCAGGAACGGGCTACCCTGTAACGTCCTGCCGGTGGACTTCTAAA CTCTTGTTATTTGAATAGTAATCTGAGCGTCTTATTTTAATAAGTCAAAACTTTCAACAACGG ATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCA GAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCTAGTGGGCAT GCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTTAGTGTTGGGAATCTGCTGTATTGCA GTTCCTCAAATACAACGGCGGATCTGTAACATCCTCTGAGCGTAGTAAATTCTTATCTCGCTT TTGTCAGGTGTTGCAGCTCTCAGCCGCTAAACCCCCAATTTTTGTGGTTGACCTCGGATCAG GTAGGAATACCCGCTGAACTTAAGCATATCAATAAGGCGG

> EU030327.1 Discostroma tricellulare

TGGAAGTAAAGTCGTAACAAGGTCTCCGTTGGTGAACCAGCGGAGGGATCATTACAGAGTT ATCTAACTCCCAAACCCATGTGAACTTACCATTTGTTGCCTCGGCAGAGGCTACCCGGTACCT ACCCTGGAGCAGCTACCCTGTAGCTACCCTGGAACGGCCTACCCTGTAGCGCATCCTGCCGG TGGACCTTTAAACTCTTGTTATTTTAAAGTAATCTGAGCGTCTTATTTTAATAAGTCAAAACTT TCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAAT GTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCATTAGTATTCT AGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTTAGTGTTGGGAATCTA CTGTATTGTAGTTCCTGAAATATAACGGCGGATCTGTAATGTCCTCTGAGCGTAGTAATTTTT TTCCTCGCTTTGGTTAGGTGTTGCAGCTCTCAGCCGCTAAACCCCCCAATTTTAATGGTTGAC CTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATA

>HM067840.1 Seimatosporium botan

GTGGCTCGTGTACTACTCCCAAACCCATGTGAACTTACCATTGTTGCCTCGGCAGAACCTACC CGGTACCTACCCTGTAACGACCTACCCTGTAGTGAGTTACCCGGGAACGGCCTACCCTGTAG TGCGCTGCCGGTGGACTTCTAAACTCTTGTTAATAATTGTAATCTGAGCGTCTTATTTTAATA AGTCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATG 156

CGATACGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCC CATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTCAACCCTTAAGCCTAGCTTAGTG TTGGGAGTCTACTGAGCAATCGGTAGTTCCCCAAATTCAACGGCGGATCTGTGGTATCCTCT GAGCGTAGTAATTTTTATCTCGCTTTTGTTAGGTGCTGCAGCTCCCAGCCGCTAAACCCCCCA ATTTTAAATGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAGC CGGAGGAAA

>EU781677.1 Fimetariella rabenhorstii A20

TCCGTAGGTGAACCTGCGGAGGGATCATTACAGAGTTCTAAAAGACTCCCAAAACCATTGT GAACGTACCCGTCAGCGTTGCCTCGGCGGGCGGCCCCTCCCTGGGGCCGCTGCCTCCCTCG GGGGGTGCCCGCCGGCGTACCAAAACTCTTTTGTATTTTAGTGGCCTCTCTGAGAAAACAAG CAAATAAGTTAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCG AAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATT GCGCCCGCCAGTACTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCCCTGC TTGGTGTTGGGGTCCTACGGCTGCCGTAGGCCCTGAAAGCTAGTGGCGGGCTCGCTATAAC TCCGAGCGTAGTAGTAAAATATCTCGCTAGGGAGGTGTCGCGGGTTCCGGCCGTGAAAGCC CATCTTTTACACAAGGTGACCTCGGATCAGTAGATG

>EU977203.1 Fungal endophyte sp. P753B

CTGCGGAGGGATCATTACAGAGTTCTAAAAGACTCCCAAAACCATTGTGAACGTACCCGTCA GCGTTGCCTCGGCGGGCGGCCCCTCCCTGGGGCCGCTGCCTCCCTCGGGGGGTGCCCGCCG GCGTACCAAAACTCTTTTGTATTTTAGTGGCCTCTCTGAGAAAACAAGCAAATAAGTTAAAA CTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGT AATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTA CTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCCCCGCTTGGTGTTGGGGT CCTACGGCTGCCGTAGGCCCTGAAAGCTAGTGGCGGGCTCGCTATAACTCCGAGCGTAGTA GTAAAATATCTCGCTAGGGAGGTGTCGCGGGTTCCGGCCGTGAAAGCCCATCTTTTACACA AGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCA

157

>GQ922522.1 Coniochaeta savoryi CBS 415.73

GCGGAGGGATCATTACAGAGTTCTAAAAAGACTCCCAAAACCATTGTGAACGCACCGTTAG ACGTTGCCTCGGCGGGCGGCCCCTCCCTGGGGCCGCTGCCTCCCTCGCGGGGGGTGCCCGC CGGCGTACCAAAACTCTTTTGTATTTTAGTGGCCTCTCTGAGAAAACAAGCAAATAAGTTAA AACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAA GTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAG TACTCTGGCGGGCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCCCCGCTTGGTGTTGGG GTCCTACGGCTGCCGTAGGCCCTGAAAGCTAGTGGCGGGCTCGCTATAACTCCGAGCGTAG TAGTAAAATATCTCGCTAGGGAGGTGTCGCGGGTTCCGGCCGTGAAAGCCCCATCTTTTACA CAAGGTTGACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCAATAAGCGGAG GA

> FM177897.1 Saccharomyces cerevisiae CAV21

AAGAAATTTAATAATTTTGAAAATGGATTTTTTTTTGTTTTGGCAAGAGCATGAGAGCTTTTA CTGGGCAAGAAGACAAGAGATGGAGAGTCCAGCCGGGCCTGCGCTTAAGTGCGCGGTCTT GCTAGGCTTGTAAGTTTCTTTCTTGCTATTCCAAACGGTGAGAGATTTCTGTGCTTTTGTTAT AGGACAATTAAAACCGTTTCAATACAACACACTGTGGAGTTTTCATATCTTTGCAACTTTTTC TTTGGGCATTCGAGCAATCGGGGCCCAGAGGTAACAAACACAAACAATTTTATCTATTCATT AAATTTTTGTCAAAAACAAGAATTTTCGTAACTGGAAATTTTAAAATATTAAAAACTTTCAAC AACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCAGCGAAATGCGATACGTAATGTGAA TTGCAGAATTCCCTGAATCATCGAATCTTTGAACGCACATTGCGCCCCTTGGTATTCCAGGG GGCATGCCTGTTTGAGCGTCATTTCCTTCTCAAACATTCTGTTTGGTAGTGAGTGATACTCTT TGGAGTTAACTTGAAATTGCTGGCCTTTTCATTGGATGTTTTTTTTTTCCAAAGAGAGGTTTC TCTGCGTGCTTGAGGTATAATGCAAGTACGGTCGTTTTAGGTTTTACCAACTGCGGCTAATC TTTTTTATACTGAGCGTATTGGAACGTTATCGATAAGAAGAGAGCGTCTAGGCGAACAATGT TCTTAAA