One-Male Harems and Female Social Dynamics in Guinea Baboons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences
2019, 32 Heather M. Hill Editor Peer-reviewed Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences Kelly L. Kraus1, Vivien C. Pellis1, and Sergio M. Pellis1 1 Department of Neuroscience, University of Lethbridge, Canada Play fighting in many species involves partners competing to bite one another while avoiding being bitten. Species can differ in the body targets that are bitten and the tactics used to attack and defend those targets. However, even closely related species that attack and defend the same body target using the same tactics can differ markedly in how much the competitiveness of such interactions is mitigated by cooperation. A degree of cooperation is necessary to ensure that some turn-taking between the roles of attacker and defender occurs, as this is critical in preventing play fighting from escalating into serious fighting. In the present study, the dyadic play fighting of captive troops of 4 closely related species of Old World monkeys, 2 each from 2 genera of Papio and Mandrillus, was analyzed. All 4 species have a comparable social organization, are large bodied with considerable sexual dimorphism, and are mostly terrestrial. In all species, the target of biting is the same – the area encompassing the upper arm, shoulder, and side of the neck – and they have the same tactics of attack and defense. However, the Papio species exhibit more cooperation in their play than do the Mandrillus species, with the former using tactics that make biting easier to attain and that facilitate close bodily contact. -
A Bestiary of the Arts
LA LETTRE ACADEMIE DES BEAUX-ARTS A BESTIARY OF THE ARTS 89 Issue 89 Spring 2019 Editorial • page 2 News: Annual Public Meeting of the Five Academies News: Installations under the Coupole: Adrien Goetz and Jacques Perrin News: Formal Session of the Académie des beaux-arts • pages 3 to 7 Editorial The magnificent Exhibition: “Oriental Visions: Cynocephalus adorning the cover of this edition of From Dreams into Light” La Lettre emanates a feeling of peaceful strength Musée Marmottan Monet true to the personality of its author, Pierre-Yves • pages 8 and 9 File: Trémois, the oldest member of the Académie des Beaux-Arts after being elected to Paul Lemangy’s “A bestiary of the arts” seat on 8 February 1978. • pages 10 to 34 Through the insatiable curiosity and astounding energy that he brings to the table at the age of News: “Concerts for a seat” ninety-eight, Pierre-Yves Trémois shows us Elections: Jean-Michel Othoniel, the extent to which artistic creation can be Marc Barani, Bernard Desmoulin, regenerative, especially when it is not seeking to conform to any passing trend. News: The Cabinet des estampes de la In May 2017 we elected forty-three year-old composer Bruno Mantovani to Jean bibliothèque de l’Institut Prodromidès’ seat. Tribute: Jean Cortot Watching the two passionately converse about art, we realized that the half • pages 35 to 37 century separating them was of no importance. The Académie des Beaux-Arts is known for the immense aesthetic diversity Press release: “Antônio Carlos Jobim, running throughout its different sections. highly-elaborate popular music” This reality is in stark contrast with academicism. -
The Function of Greetings Between Male Guinea Baboons
Ethology 109, 847—859 (2003) Ó 2003 Blackwell Verlag, Berlin ISSN 0179–1613 Primate Rituals: The Function of Greetings between Male Guinea Baboons Jessica C. Whitham & Dario Maestripieri Animal Behavior Research Group, The University of Chicago, Chicago, IL, USA Abstract The bond-testing hypothesis suggests that social animals can obtain honest information about the quality of their dyadic relationships by exchanging costly, high-risksignals (Zahavi & Zahavi 1997). We evaluated this hypothesis by investigating whether adult male baboons use intense greeting interactions to test the quality and strength of their social bonds. Intense greetings involve intimate and risky behaviors such as embracing and the diddling of the penis and/or scrotum. Data were collected on a colony of 40 Guinea baboons (Papio papio)at the Brookfield Zoo in Chicago. Fifteen adult male baboons were focally observed for 30-min sessions over a 6-mo period, resulting in 195 h of observation. We assessed the quality of male–male relationships using measures of affiliation, aggression, and social tolerance. As predicted by the bond-testing hypothesis, dyads with strong social bonds exchanged a higher frequency of intense greetings than did pairs with poor relationships. We found no support for the competing hypotheses, that suggest that greetings have an aggressive or submissive function or are used as a form of post-conflict reconciliatory behavior. Neither dominance relationships nor contextual variables were predictive of intense greeting patterns. We suggest that by imposing on his partner, a male baboon is able to obtain reliable information about this individual’s current willingness to cooperate and invest in the relationship. -
HAMADRYAS BABOON (Papio Hamadryas) CARE MANUAL
HAMADRYAS BABOON (Papio hamadryas) CARE MANUAL CREATED BY THE AZA Hamadryas Baboon Species Survival Plan® Program IN ASSOCIATION WITH THE AZA Old World Monkey Taxon Advisory Group Hamadryas Baboon (Papio hamadryas) Care Manual Hamadryas Baboon (Papio hamadryas) Care Manual Published by the Association of Zoos and Aquariums in collaboration with the AZA Animal Welfare Committee Formal Citation: AZA Baboon Species Survival Plan®. (2020). Hamadryas Baboon Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: July 2020 Authors and Significant Contributors: Jodi Neely Wiley, AZA Hamadryas Baboon SSP Coordinator and Studbook Keeper, North Carolina Zoo Margaret Rousser, Oakland Zoo Terry Webb, Toledo Zoo Ryan Devoe, Disney Animal Kingdom Katie Delk, North Carolina Zoo Michael Maslanka, Smithsonian National Zoological Park and Conservation Biology Institute Reviewers: Joe Knobbe, San Francisco Zoological Gardens, former Old World Monkey TAG Chair, SSP Vice Coordinator Hamadryas Baboon AZA Staff Editors: Felicia Spector, Animal Care Manual Editor Consultant Candice Dorsey, PhD, Senior Vice President, Conservation, Management, & Welfare Sciences Rebecca Greenberg, Animal Programs Director Emily Wagner, Conservation Science & Education Intern Raven Spencer, Conservation, Management, & Welfare Sciences Intern Hana Johnstone, Conservation, Management, & Welfare Sciences Intern Cover Photo Credits: Jodi Neely Wiley, North Carolina Zoo Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management. The manual assembles basic requirements, best practices, and animal care recommendations to maximize capacity for excellence in animal care and welfare. The manual should be considered a work in progress, since practices continue to evolve through advances in scientific knowledge. -
(CCAC) Guide to the Care and Use of Experimental Animals Volume
Canadian Council on Animal Care Conseil canadien de protection des animaux Guide to the Care and Use of Experimental Animals Volume 1, 2nd Edition Sections of this document that have been revised are replaced by links to the relevant documents. The remaining sections are undergoing revision; however, they will continue to be used for CCAC assessments until revised guidelines are published. Editors Dr E.D. Olfert Dr B.M. Cross Mrs A.A. McWilliam Director Asssistant Director Information Officer Animal Resources Centre Animal Resources Centre Canadian Council on Animal Care University of Saskatchewan University of Saskatchewan 1000-151 Slater Street Saskatoon, Saskatchewan Saskatoon, Saskatchewan Ottawa, Ontario K1P 5H3 S7N 0W0 S7N 0W0 In keeping with the CCAC policy of revising statements and guidelines as needed, users of this Guide are encouraged to forward any comments to the Secretariat. Citing certain devices or manufacturers is not to be perceived as the endorsement of the Canadian Council on Animal Care (CCAC) of one particular product over another. Publication Date: 1993 Revision Date: April 2020 © Canadian Council on Animal Care, 1993 ISBN: 0-919087-18-3 Canadian Council on Animal Care 190 O’Connor St., Suite 800 Ottawa, Ontario, K2P 2R3 http://www.ccac.ca Table of Contents TABLE OF CONTENTS DEDICATION ...................................................................................................................1 PREFACE.........................................................................................................................2 -
Integrating Behaviour Into Wildlife Conservation: the Multiple Ways That Behaviour Can Reduce Ne Laura L
Biological Conservation 95 (2000) 303±315 www.elsevier.com/locate/biocon Integrating behaviour into wildlife conservation: the multiple ways that behaviour can reduce Ne Laura L. Anthony a, Daniel T. Blumstein a,b,c,* aDepartment of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia bDepartment of Psychology, Macquarie University, Sydney, NSW 2109, Australia cThe Cooperative Research Centre for the Conservation and Management of Marsupials, Macquarie University, Sydney, NSW 2109, Australia Received 10 June 1999; received in revised form 19 August 1999; accepted 16 October 1999 Abstract There has been a recent interest in integrating an understanding of behaviour into conservation biology. Unfortunately, there has been no paradigm for such a process. Without a clear framework for integration, conservation biologists may have diculties recognising how behavioural knowledge can help solve real-world conservation problems. Eective population size (Ne) is a key demographic parameter used to understand population viability. A variety of behaviours and behavioural traits impact Ne, yet their importance for conservation is under-appreciated. We suggest that identifying behavioural traits that aect Ne provides a paradigm for integrating behavioural biology into conservation biology. Behaviour can aect Ne through at least three dierent mechanisms: reducing N Ð the population size; reducing r Ð the population growth rate, and/or by increasing reproductive skew. We discuss how nine common behavioural traits can reduce Ne, and suggest how an understanding of these traits may inform management of both free-living and captive animals. # 2000 Elsevier Science Ltd. All rights reserved. Keywords: Behaviour and conservation; Eective population size; Population viability 1. Introduction knowledge of animal behaviour to conservation pro- blems, there is no clear framework to help conservation Conservation biology is a crisis discipline aimed at biologists identify the speci®c cases when they should be saving biodiversity (Soule , 1986). -
The Consequences of Habitat Loss and Fragmentation on the Distribution, Population Size, Habitat Preferences, Feeding and Rangin
The consequences of habitat loss and fragmentation on the distribution, population size, habitat preferences, feeding and ranging Ecology of grivet monkey (Cercopithecus aethiopes aethiops) on the human dominated habitats of north Shoa, Amhara, Ethiopia: A Study of human-grivet monkey conflict 1 Table of contents Page 1. Introduction 1 1.1. Background And Justifications 3 1.2. Statement Of The Problem 6 1.3. Objectives 7 1.3.1. General Objective 7 1.3.2. Specific Objectives 8 1.4. Research Hypotheses Under Investigation 8 2. Description Of The Study Area 8 3. Methodology 11 3.1. Habitat Stratification, Vegetation Mapping And Land Use Cover 11 Change 3.2. Distribution Pattern And Population Estimate Of Grivet Monkey 11 3.3. Behavioral Data 12 3.4. Human Grivet Monkey Conflict 15 3.5. Habitat Loss And Fragmentation 15 4. Expected Output 16 5. Challenges Of The Project 16 6. References 17 i 1. Introduction World mammals status analysis on global scale shows that primates are the most threatened mammals (Schipper et al., 2008) making them indicators for investigating vulnerability to threats. Habitat loss and destruction are often considered to be the most serious threat to many tropical primate populations because of agricultural expansion, livestock grazing, logging, and human settlement (Cowlishaw and Dunbar, 2000). Deforestation and forest fragmentation have marched together with the expansion of agricultural frontiers, resulting in both habitat loss and subdivision of the remaining habitat (Michalski and Peres, 2005). This forest degradation results in reduction in size or fragmentation of the original forest habitat (Fahrig, 2003). Habitat fragmentation is often defined as a process during which “a large expanse of habitat is transformed into a number of smaller patches of smaller total area, isolated from each other by a matrix of habitats unlike the original”. -
COMMUNICATION in TERRESTRIAL MAMMALS Karen Mccomb & David
COMMUNICATION IN TERRESTRIAL MAMMALS Karen McComb & David Reby Department of Psychology, University of Sussex, BRIGHTON BN1 9QH, UK. Introduction Research on vocal communication in terrestrial mammals had until recently lagged behind work on birds and anurans (frogs and toads), perhaps because of the greater difficulty of recording, analyzing and playing back acoustically more complex signals to animals who are usually free-ranging and difficult to confine for experimental purposes. One exception is the non-human primates, which have received intense scrutiny because of their shared ancestry with humans. Although primates can be classified as terrestrial mammals, we will not attempt to comprehensively cover research on this group here (much of this is presented in other chapters of the encyclopedia) but rather focus on the other terrestrial mammals, where advances in research techniques (enabled by the revolution in digital technology) are now beginning to yield interesting results. Research on these mammals integrates study at several levels of investigation, including the functional anatomy of the vocal apparatus, the acoustic structure of the calls, the context of their emission and their relationship and co-evolution with the social structures and reproductive strategies of the animals that give them. As a consequence, research in this area now uses a range of methods and tools, including anatomical investigation, sound analyses and re-synthesis and playback experiments. While mammalian vocal communication is qualitatively different from human speech, humans are also mammals and our mechanisms of vocal production are largely shared. This means that a common framework for understanding the structure and evolution of mammal vocalizations already exists, the source- filter theory of voice production. -
Papio Hamadryas Hamadryas) Melissa C
Bucknell University Bucknell Digital Commons Master’s Theses Student Theses Spring 2018 Social Relationships and Self-Directed Behavior in Hamadryas Baboons (Papio hamadryas hamadryas) Melissa C. Painter Bucknell University, [email protected] Follow this and additional works at: https://digitalcommons.bucknell.edu/masters_theses Part of the Animal Studies Commons, and the Comparative Psychology Commons Recommended Citation Painter, Melissa C., "Social Relationships and Self-Directed Behavior in Hamadryas Baboons (Papio hamadryas hamadryas)" (2018). Master’s Theses. 200. https://digitalcommons.bucknell.edu/masters_theses/200 This Masters Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in Master’s Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. I, Melissa Painter, do grant permission for my thesis to be copied. ii Acknowledgments I would like to thank my committee members, Dr. Z Morgan Benowitz-Fredericks and Dr. Regina Gazes, for their time, advice and support throughout the planning and execution of this project. I would also like to thank Meredith Lutz and Corinne Leard, both recent B.S. graduates from the Animal Behavior Program, for their assistance in navigating R to standardize my data and calculate the baboons’ dominance hierarchy. Thank you also to the caretakers at Bucknell’s Animal Behavior Laboratory, Mary Gavitt, Amber Hackenberg and Gretchen Long, for taking such great care of my study group and for being so accommodating when I asked to spend hours of undisturbed time with the baboons. Of course, I must also thank my fellow graduate students for enduring my multiple proposal and defense presentation rehearsals. -
ANTH 42 Lect 15 Quiz Clock
Quiz clock! Minutes remaining:! ONE! ANTH 42" 30 sec …! Lect 15" 5! 4! Guenons, SIV, 3! conservation, and 2! macaques & baboons (yes, we’re behind)! A fast overview of HIV/SIV! SIV --> HIV: Viral clades “cut hunter”! correlated with primate clades. Note colobus (top) and talapoin (upper right); rest guenons.! If natural process, why never in millennia, then >10 times in <50 years? But not Emerging viruses: So requires “why now” perfectly. adaptive radiation term; multiple theories, Mandrill! into new hosts (us). check my publications SARS, Ebola?, page if interested.! HIV…! The bushmeat trade/crisis! Wildlife (including apes) is traditionally eaten in Central Africa. Killing and butchery creates ample potential for blood-blood contact.! Traditional use! Globalization! The bushmeat trade/crisis! GI parasites at Kibale - less dramatic but ubiquitous! New & Significant # Taï recombinant chimpanzees died viruses... ?! of respiratory illness acquired from researchers.! The crisis: commercialization. ! Primate conservation and primatology as global health issue! Macaques & baboons! Macaques & baboons! Macaques (esp. rhesus) are “the Baboons (esp. monkey” in olive) are “the biomedical work.! monkey” to early behavioral studies (recall DeVore & aggressive baboons, Jay and peaceful langurs)! Macaques! Macaques! Commensal monkeys! Toque macaques (M. sinica), olive baboons (P. anubis), gelada (T. gelada). Good presentation of coping with ecological and social complexity.! Life of Mammals: Social Climbers! 18m! Hamadryas (Papio hamadryas)! Only Asian baboon; hybrid zone with P. anubis - herding behavior by males.! Mandrill (Mandrillus sphinx)! The baboons (Africa)! Gelada (Theropithecus gelada) (last survivor of Theropithecus, used to be widespread, # species, & some big)! Just about everyplace, Pay attention to how baboon life is presented a baboon…! from “Murder in the Troop”! (cf. -
Factors That Affect Harem Stability in a Feral Horse (Equus Caballus) Population on Shackleford Banks Island, NC
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-4-2011 Factors That Affect Harem Stability in a Feral Horse (Equus caballus) Population on Shackleford Banks island, NC Jessa Madosky University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Population Biology Commons, and the Zoology Commons Recommended Citation Madosky, Jessa, "Factors That Affect Harem Stability in a Feral Horse (Equus caballus) Population on Shackleford Banks island, NC" (2011). University of New Orleans Theses and Dissertations. 450. https://scholarworks.uno.edu/td/450 This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Factors That Affect Harem Stability in a Feral Horse (Equus caballus) Population on Shackleford Banks island, NC A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Conservation Biology by Jessa Madosky B.S. -
Female Reproductive Strategies and the Ovarian Cycle in Hamadryas
Femalereproductivestrategiesandtheovarian cycleinhamadryasbaboons AthesissubmittedinpartialrequirementoftheMaster’sDegreeof ScienceinConservationBiologyatVictoriaUniversityofWellington by R.E.Tobler ABSTRACT: Thisthesisexaminestherelationshipbetweensexualbehaviourandthe ovarian cycle in a group-living primate, Papio h. hamadryas . Of particular interest is whetherfemalesmodifytheirovariancycleinamannerthatisexpectedincreasetheir reproductivesuccess.Thestudywasconductedonacaptivecolonywheretheresident males (RM) had been vasectomised prior to start of the study resulting in all mature femalesundergoingrepeatedovariancyclingthroughoutthestudyperiod.Thismadethe analysisofsexualbehaviourrelativetofinescalechangesintheovariancyclepossible. One year of ovarian cycle data and 280 hours of behavioural data was collected via observationalsamplingduringthestudy.RMvasectomisationdidnotalterthearchetypal one male unit social structure nor the typical socio-spatial organisation of wild hamadryas populations. Females were found to be more promiscuous than in wild populations, however, presumably because of the confounding effect that the high number of simultaneously cycling females had on RM herding (Chapter 1). RMs dominatedcopulationsovertheoptimalconceptiveperiodoftheovariancycle,whilethe majorityofextra-OMUcopulationsoccurredoutsidethisperiodandwererarelysolicited by females. This pattern supports a dual paternity concentration/paternity confusion strategy,andnotfemalechoiceorfertilityinsurancestrategies(Chapter2).Femaleswere not found to synchronise