Transformations That Affect Fate, Form and Bioavailability of Inorganic Nanoparticles in Aquatic Sediments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Moderate Levels of Glyphosate and Its Formulations Vary in Their Cytotoxicity
3 Biotech (2018) 8:438 https://doi.org/10.1007/s13205-018-1464-z ORIGINAL ARTICLE Moderate levels of glyphosate and its formulations vary in their cytotoxicity and genotoxicity in a whole blood model and in human cell lines with different estrogen receptor status L. K. S. De Almeida1 · B. I. Pletschke1 · C. L. Frost2 Received: 22 December 2017 / Accepted: 26 September 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract In vitro studies were conducted to determine the short-term cytotoxic and genotoxic effects of pure glyphosate and two glyphosate formulations (Roundup ® and Wipeout ®) at concentrations relevant to human exposure using whole blood (cyto- toxicity) and various cancer cell lines (cytotoxicity and genotoxicity). Pure glyphosate (pure glyph) and Roundup® (Ro) showed similar non-monotonic toxicological profiles at low dose exposure (from 10 µg/ml), whereas Wipeout® (Wo) dem- onstrated a monotonic reduction in cell viability from a threshold concentration of 50 µg/ml, when tested in whole blood. We evaluated whether using various cancer cells (the estrogen-E2-responsive HEC1A, MCF7 and the estrogen-insensitive MDA-MB-231) exposed to moderate doses (75–500 µg/ml) would indicate varied toxicity and results indicated significant effects in the HEC1A cancer cells. A non-monotonic reduction in cell viability was observed in HEC1A exposed to pure glyph (75–500 µg/ml) and proliferative effects were observed after exposure to Wo (75, 125 and 250 µg/ml). Genotoxicity assessment (test concentration 500 µg/ml) demonstrated DNA damage in the HEC1A and MDA-MB-231 cells. Adjuvants and/or glyphosate impurities were potential contributing factors of toxicity based on the differential toxicities displayed by Ro and Wo in human whole blood and the HEC1A cells. -
Close Encounters
Environment International 140 (2020) 105792 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Close encounters - microplastic availability to pelagic amphipods in sub- antarctic and antarctic surface waters T ⁎ Kirstie Jones-Williamsa,b, , Tamara Gallowayb, Matthew Colec, Gabriele Stowassera, Claire Waludaa, Clara Mannoa a British Antarctic Survey, High Cross, Madingley Road, Cambridge CB30ET, United Kingdom b University of Exeter, Streatham Campus, Northcote House, Exeter EX4 4QJ, United Kingdom c Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom ARTICLE INFO ABSTRACT Handling Editor: Adrian Covaci This study investigated the distribution of plastic debris from the Atlantic portion of the Sub-Antarctic to the Keywords: Antarctic Peninsula. This region is home to some of the highest concentrations of zooplankton biomass but is also Microplastics threatened by increasing shipping traffic from fishing and the growing tourism market. Samples were collected Mespolastics using a surface-towed neuston net during the Austral summer 2018, aboard the RRS James Clark Ross. Using Encounter Rate Fourier Transform Infrared Spectrometry it was found that 45.6% of the plastic particles isolated from seawater Synthetic Fibres samples were sampling contamination, originating predominantly from the ship. Of the remaining particles, both Amphipods low density (polyethylene, polypropylene) and high-density (phenoxy and epoxy resins) polymers were found in Southern Ocean the surface water suggesting both long-range and local sources of origin. Whilst we found that micro and me- soplastic concentrations in seawater were significantly low (0.013 ± 0.005n/m3) compared to global averages, they were higher along the Antarctic Peninsula than the open ocean (Sub-Antarctic) stations. -
Are We Underestimating Benthic Cyanotoxins? Extensive Sampling Results from Spain
toxins Article Are We Underestimating Benthic Cyanotoxins? Extensive Sampling Results from Spain Enrique A. Cantoral Uriza 1, Antonia D. Asencio 2 and Marina Aboal 3,* 1 Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México, Campus Juriquilla, C.P. Querétaro 76230, Mexico; [email protected] 2 Departamento de Biología Aplicada (Botánica), Facultad de Ciencias Experimentales, Universidad Miguel Hernández, Campus de Elche, E-03202 Alicante, Spain; [email protected] 3 Laboratorio de Algología, Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain * Correspondence: [email protected]; Tel.: +34-868-884-940 Academic Editor: Luis M. Botana Received: 29 August 2017; Accepted: 23 November 2017; Published: 28 November 2017 Abstract: Microcystins (MCs) are potent hepatotoxins, and their presence in water bodies poses a threat to wildlife and human populations. Most of the available information refers to plankton, and much less is known about microcystins in other habitats. To broaden our understanding of the presence and environmental distribution of this group of toxins, we conducted extensive sampling throughout Spain, under a range of conditions and in distinct aquatic and terrestrial habitats. More than half of the tested strains were toxic; concentrations of the hepatotoxin were low compared with planktic communities, and the number of toxic variants identified in each sample of the Spanish strains ranged from 1–3. The presence of microcystins LF and LY (MC-LF and MC-LY) in the tested samples was significant, and ranged from 21.4% to 100% of the total microcystins per strain. -
CONTROL of Bowling Green December 1978
ZINC PHOSPHIDE DEVELOPMENT FOR RODENT CONTROL Kasem Tongtavee A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 1978 14 © 1979 KASEM TONGTAVEE ALL RIGHTS RESERVED ii ABSTRACT Adult lab and wild rats (Rattus norvégiens) were maintained under laboratory conditions for the investigation of the bait shyness phenomena, the evaluation of modified forms of zinc phosphide, and the efficacy testing of various bait formulations. One zinc phosphide formulation was selected for a field trial. Wild rats, but not lab rats, developed bait shyness specific to zinc phosphide following ingestion of sub-lethal doses, but not to the bait material. Some wild, bait-shy rats retained memory for zinc phos phide for at least 60 days. In food preference studies the rats were given the choice of EPA- standard food and a test food. Only red pepper (at 0.16%) increased palatability of EPA-standard food for both lab and wild rats. Bait combinations A (consisting of ground barley and rolled oats), B (consist ing of ground wheat and rolled oats), and E (consisting of ground barley, ground corn, and rolled oats) were preferred to EPA-standard food by lab but not by wild rats. Experimental forms of Zn3P2 were mixed with EPA-standard food at 1% and tested on individual lab and wild rats in choice and non-choice regimens. The addition of buffering substances to Zn3P2 did not signifi cantly improve the toxic bait consumption. Most of the special formula tions provided 100% mortality to lab rats in choice and non-choice feeding situations, but only one formulation gave 100% mortality to wild rats. -
Final Project Report
FINAL PROJECT REPORT Direct and indirect ecotoxicological impacts of microplastics on marine organisms Project acronym: PLASTOX Period covered: 01.01.2016 – 30.06.2019 Date of submission: 03.07.2019 Picture: Marco Capolupo (University of Bologna) Coordinating institute: SINTEF Ocean Project coordinator: Dr Andy Booth, Senior Researcher, Environmental Technology Dept., SINTEF Ocean Tel: +47 93089510 E-mail : [email protected] PLASTOX website address: https://www.sintef.no/projectweb/plastox/ CONSORTIUM Names Organisation Country SINTEF Ocean, Environmental Technology Department, Dr Andy Booth Norway Trondheim Dr Kaori Sakaguchi-Söder Technische Universität Darmstadt (TUDA), Darmstadt Germany Prof. Paula Sobral NOVA.ID FCT (NOVA-FCT), Caparica Portugal Prof. Laura Airoldi, Prof. Elena Alma Mater Studiorum - University of Bologna (UNIBO) Italy Fabbri, Prof. Giulio Zanaroli Aix-Marseille Université-Mediterranean Institute of Dr Richard Sempéré France Oceanography (AMU-MIO), Marseille Wageningen Marine Research (Wageningen University and Dr Jan Andries van Franeker Netherlands Research) (WUR), Den Helder Dr Tom Doyle, Dr Liam National University of Ireland Galway (NUIG), Galway Ireland Morrison Norwegian University of Science and Technology (NTNU) Dr Iurgi Salaberria Norway Trondheim Dr Carl van Colen Ghent University (UGhent), Ghent Belgium Dr Dorte Herzke Norwegian Institute of Air Research (NILU), Tromsø Norway Dr Kerstin Magnusson IVL Swedish Environmental Research Institute (IVL), Göteborg Sweden Prof. Geir Gabrielsen The Norwegian -
Teaching About the Unintended Consequences of Plastics Tamara
From Disposable Culture to Disposable People: Teaching About the Unintended Consequences of Plastics Tamara "Sasha" Adkins, MPH Dissertation Committee Dr. Alesia Maltz, Committee Chair Core Faculty, Environmental Studies, Antioch University New England Dr. Abigail Abrash Walton, Teaching Faculty, Environmental Studies, Antioch University New England Dr. Janaki Natarajan Tschannerl, Director, SPARK Teacher Education / Educational Praxis & Director, Bapagrama Educational Center, Bangalore, India From Disposable Culture to Disposable People: Teaching About the Unintended Consequences of Plastics By Tamara "Sasha" Adkins, DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Ph.D. in the Department of Environmental Studies Antioch University New England Keene, New Hampshire November 2017 Copyright 2017 Tamara “Sasha” Adkins All Rights Reserved Dedication Zendaya, To you I dedicate not only this dissertation but all my work to shape a world where no one is disposable. i Acknowledgments Alesia, my adviser and mentor for the past decade, sets a high bar for wisdom, compassion, and kindness. I will always remember you saying, "Oh, sweetie, too many sighs! If you are not having fun (with the dissertation research) then something is wrong." Thank you for not only patiently drawing out my best work, but for making the process a delightful one. Janaki, thank you for all I am learning from you in Spark and through this process. Abi joined my committee officially in my final semester, but had already been giving me encouragement and support for many years. It is much appreciated. I'd like to thank Charles Curtin, who served on my committee for a time, but due to extenuating circumstances, was not able to continue in that role. -
National Implementation Plan (Nip) 2010 – 2025
NATIONAL IMPLEMENTATION PLAN OF THE STOCKHOLM CONVENTION ON PERSISTENT ORGANIC POLLUTANTS. GUATEMALA 2009. NATIONAL IMPLEMENTATION PLAN (NIP) 2010 – 2025 MINISTRY OF ENVIRONMENT AND NATURAL RESOURCES OFFICE OF ENVIRONMENT AND NATURAL RESOURCES VICE OFFICE OF ENVIRONMENT ENVIRONMENTALLY SOUND MANAGEMENT OF CHEMICALS AND HAZARDOUS WASTES COORDINATION UNIT [i] NATIONAL IMPLEMENTATION PLAN OF THE STOCKHOLM CONVENTION ON PERSISTENT ORGANIC POLLUTANTS. GUATEMALA 2009. NATIONAL IMPLEMENTATION PLAN (NIP) ON PERSISTENT ORGANIC POLLUTANTS 2010-2025 PROJECT No. GF/GUA/02/015 “TRAINING ACTIVITIES TO FACILITATE THE IMPLENTATION OF THE STOCKHOLM CONVENTION ON PERSISTENT ORGANIC POLLUTANTS” NATIONAL AUTHORITIES Ministry of Environment and Natural Resources - MARN Minister Dr. Luis Alberto Ferraté Felice Ministry of Foreign Affairs – MINEX - Minister Dr. Roger Haroldo Rodas Melgar Ministry of Public Health and Social Assistance – MSPAS Minister Dr. Ludwig Werner Ovalle Cabrera Ministry of Agriculture, Livestock and Food – MAGA Minister Ing. Juan Alfonso de León Ministry of Energy and Mines – MEM Minister Ing. Alfredo Américo Pokus Yaquián Ministry of National Defense - MINDEF Minister General of Division Abraham Valenzuela González Ministry of Education – MINEDUC Minister Lic. Denis Alonso Mazariegos Ministry of Economy - MINECO Minister Lic. Erick Haroldo Coyoy Echeverría Ministry of Labour and Social Security - MINTRAB Minister Lic. Mario Roberto Illescas Aguirre Ministry of Public Finances – MINFIN Minister Lic. Alfredo Rolando del Cid Pinillos Ministry of Communication, Infraestructure and Housing - MICIVI Minister Lic. Jesús Insua Ramazzinni [ii] NATIONAL IMPLEMENTATION PLAN OF THE STOCKHOLM CONVENTION ON PERSISTENT ORGANIC POLLUTANTS. GUATEMALA 2009. NATIONAL PROJECT COORDINATOR Ing. Agr. Ana Dolores Arévalo Morales NATIONAL COORDINATION UNIT CONSULTING TEAM Ing. Ruth Portillo, Ing. Wendy Pineda Dra. Olga Pinto, Msc. -
Toxicity of Metal Containing Micro- and Nanoparticles
From THE DEPARTMENT OF BIOSCIENCES AND NUTRITION Karolinska Institutet, Stockholm, Sweden TOXICITY OF METAL CONTAINING MICRO- AND NANOPARTICLES - Studies from an inhalation perspective Johanna Kain Stockholm 2013 All previously published papers were reproduced with permission from the publisher. Cover photo: SEM picture of stainless steel particles 316L (investigated in study IV), taken by the colleagues at the Division for Surface and Corrosion Science at the Royal Institute of Technology (KTH) in Stockholm, Sweden. Published by Karolinska Institutet. © Johanna Kain, 2013 ISBN 978-91-7549-240-7 Printed by 2013 Gårdsvägen 4, 169 70 Solna To those who are closest to my heart; To my lovely family and dearest friends Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less. /Marie Curie* * Marie Curie (1867 – 1934), Scientist and the first woman to be awarded a Nobel Prize (1903, in Physics). She was also the first person ever to get the award a second time (1911, in Chemistry). ABSTRACT Particles in urban environments have for a long time been associated with different health problems and diseases, such as worsening of asthma and chronic obstructive pulmonary disease as well as cancer and cardiovascular diseases. In addition, metal containing particles present in occupational settings and industries, particularly particles produced during welding, have been linked to several adverse health effects. In recent years it has also become obvious that humans get exposed to metal containing particles in subway systems although possible health effects of such exposure is unknown. Furthermore, engineered nanoparticles (often containing metals) are increasingly being used within various applications including consumer products, thus constituting a risk for human exposure. -
Microfiber Pollution
By Jerilyn Ritzman, WSU Extension Island County Shore Stewards Program Coordinator. Spring 2020 Microfiber Pollution Figure 1: They may seem small, but the microfibers we shed from our clothing may have significant impacts on natural ecosystems. Image Credit: G.A. Wetherbee, A.K. Baldwin, and J.F. Ranville / Public Domain. USGS Report 2019-1048 (link). Introduction When you think of microplastic pollution, what typically comes to mind? A small fragment with jagged edges? Bits of styrofoam? The tiny beads commonly found in cosmetics or hand soaps? These are all common types of microplastics (fragments of plastic smaller than 5mm), but scientists are now discovering that the most abundant type of microplastic in our environment is actually microfibers from clothing and other synthetic textiles. As scientists refine their collection methods and use smaller mesh for collection, the estimated number of microfibers in the environment increases dramatically. Microfibers are being found not just in our freshwater and marine environments, but in the sedimentary record and in the atmosphere as well. While textiles in general present a massive source of pollution from production, transportation, and disposal (did you know the average person throws away 80+ pounds of textiles per year?), this newsletter will specifically address microfiber pollution in the natural environment. It will cover which fabrics are the worst culprits, how microfibers are released into the environment, the environmental impacts, and what Shore Stewards can do to help reduce the number of loose microfibers generated in our homes. The fabrics We don’t typically devote much thought to what happens to the fibers shed from our clothing. -
Elasmobranch (Sharks and Rays) Interaction with Plastic Pollution
Elasmobranch (sharks and rays) interaction with plastic pollution from global and local perspectives, via entanglement within anthropogenic debris and synthetic fibre ingestion. Submitted by Kristian Parton, to the University of Exeter as a thesis for the degree of Masters by Research in Biological Sciences, December 2019. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that any material that has previously been submitted and approved for the award of a degree by this or any other University has been acknowledged. K.J Parton (Signature)………………………………………………………… 1 Abstract Plastic pollution is a known threat to a host of marine organisms across the world. Research in recent years has exposed numerous negative impacts on some of the world’s most threatened marine species, including turtles, cetaceans and pinnipeds. The impact of plastic pollution on elasmobranchs, however, has been relatively understudied. Sharks and rays are widely accepted to be two of the most threatened marine species in the oceans, most notably due to anthropogenic impacts including direct fisheries and bycatch. Their relationship with plastic pollution is only now being investigated in further detail. Previous studies have alluded to damaging effects on sharks and rays as a result of plastic pollution but have lacked in wide synthesis of existing information and empirical evidence. In this thesis, the impact of entanglement within and ingestion of plastic is highlighted for sharks and rays both globally and locally in the North-East Atlantic. -
Environmental and Biological Consequences of Microplastic Within Marine Habitats
ENVIRONMENTAL AND BIOLOGICAL CONSEQUENCES OF MICROPLASTIC WITHIN MARINE HABITATS by MARK ANTHONY BROWNE A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Biological Sciences October 2007 Frontispiece. Plastic debris on a beach in Looe, Cornwall, UK. Copyright Statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived fr om it may be published without the author's prior consent. f:D . Item No loo Sl0 8ýka b ý..ý ý'rZwrk "(klýSlS363,73441301" Mark Anthony Browne October 2007 ii Environmental and biological consequences of microscopic plastic within marine habitats Mark Anthony Browne Abstract Large pieces of plastic greater than a millimetre in diameter contaminate marine habitats worldwide and the associated environmental problems are well documented. In addition tiny fragments of plastic debris less than a millimetre in size have recently been reported. This thesis examines the distribution and environmental consequences of microscopic particles of plastic within marine habitats. To quantify the relative influence of wind and depositional environment on the accumulation of plastic debris, a mensurative experiment was conducted in a macrotidal Estuary. The overall trend was that material accumulated in down-wind sites. However, the relative importance of wind as a transport agent depended on the size and density of the plastic. Natural sediments are transported according to their size; but the extent to which models of sediment dynamics could be applied to the transport of plastic debris remains untested. -
Transgenerational Effects on Development Following Microplastic Exposure in Drosophila Melanogaster
Transgenerational effects on development following microplastic exposure in Drosophila melanogaster Eva Jimenez-Guri1,2, Katherine E. Roberts1, Francisca C. García1, Maximiliano Tourmente3,4, Ben Longdon1 and Brendan J. Godley1 1 Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Cornwall Campus, University of Exeter, Penryn, Cornwall, United Kingdom 2 Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dhorn, Naples, Italy 3 Institute for Biological and Technological Research (IIByT), National Scientific and Technical Research Council (CONICET), Córdoba, Argentina 4 Centre for Cell and Molecular Biology. Faculty of Exact, Physical, and Natural Sciences, University of Córdoba, Córdoba, Argentina ABSTRACT Background. Plastic pollution affects all ecosystems, and detrimental effects to animals have been reported in a growing number of studies. However, there is a paucity of evidence for effects on terrestrial animals in comparison to those in the marine realm. Methods. We used the fly Drosophila melanogaster to study the effects that exposure to plastics may have on life history traits and immune response. We reared flies in four conditions: In media containing 1% virgin polyethylene, with no chemical additives; in media supplemented with 1% or 4% polyvinyl chloride, known to have a high content of added chemicals; and control flies in non-supplemented media. Plastic particle size ranged from 23–500 mm. We studied fly survival to viral infection, the length of the larval and pupal stage, sex ratios, fertility and the size of the resultant adult flies. We then performed crossings of F1 flies in non-supplemented media and looked at the life history traits of the F2.