Teaching About the Unintended Consequences of Plastics Tamara

Total Page:16

File Type:pdf, Size:1020Kb

Teaching About the Unintended Consequences of Plastics Tamara From Disposable Culture to Disposable People: Teaching About the Unintended Consequences of Plastics Tamara "Sasha" Adkins, MPH Dissertation Committee Dr. Alesia Maltz, Committee Chair Core Faculty, Environmental Studies, Antioch University New England Dr. Abigail Abrash Walton, Teaching Faculty, Environmental Studies, Antioch University New England Dr. Janaki Natarajan Tschannerl, Director, SPARK Teacher Education / Educational Praxis & Director, Bapagrama Educational Center, Bangalore, India From Disposable Culture to Disposable People: Teaching About the Unintended Consequences of Plastics By Tamara "Sasha" Adkins, DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Ph.D. in the Department of Environmental Studies Antioch University New England Keene, New Hampshire November 2017 Copyright 2017 Tamara “Sasha” Adkins All Rights Reserved Dedication Zendaya, To you I dedicate not only this dissertation but all my work to shape a world where no one is disposable. i Acknowledgments Alesia, my adviser and mentor for the past decade, sets a high bar for wisdom, compassion, and kindness. I will always remember you saying, "Oh, sweetie, too many sighs! If you are not having fun (with the dissertation research) then something is wrong." Thank you for not only patiently drawing out my best work, but for making the process a delightful one. Janaki, thank you for all I am learning from you in Spark and through this process. Abi joined my committee officially in my final semester, but had already been giving me encouragement and support for many years. It is much appreciated. I'd like to thank Charles Curtin, who served on my committee for a time, but due to extenuating circumstances, was not able to continue in that role. Don Woodhouse, Director of Antioch's Grants Office, helped me secure a NOAA Sea Grant for my work with methyl mercury and was a loyal and resourceful cheerleader for my project. There are hardly words to describe my reference librarian Jean Amaral. Her dedication and skill knew no bounds. Reference librarian Rachel Sperling also generously gave her time and expertise to help bring this to a close. Thanks go to Amy Janvier, our department's administrative assistant, whose sense of organization and unflappable competence I aspire to emulate. Also at Antioch, I met Steve Chase, whose integrity continues to inspire me. I am grateful to the staff of Brooks Rand Labs in Seattle, Washington who conducted the experiments with methyl mercury for me, and particularly to Michelle Briscoe who took my vague ideas and made a work plan out of them. I would like to thank my cohort: Ann, Anne, Brian, Cheryl (who was with us for too ii short a time), Dan, Dianne, Eric, Karen, Karin, Kate, Kim, Meredith, Rebecca (whose doctoral aspirations were thwarted by an unkindly monkey), and Sam. I credit my Japanese host family, the Kanayamas, with any public speaking prowess that I might at times display. My okasan (mother) entered one of my compositions in a speech contest. This was to be nationally televised (have I mentioned how much I hate being on camera) and involved speaking in Japanese, from memory, for several minutes. I was selected as a finalist. There was no getting out of it. Every morning when I came downstairs, she and otosan (father) cheered for me and made me recite my speech. If I stumbled, I had to step out of the kitchen, come back in to fresh applause, and begin again. When I succeeded, they gave me breakfast. I did not win that speech contest, but I did conquer my fear of public speaking. If okasan and otosan were still alive, I am sure they would have been at my dissertation defense, if only over Skype, and they would have cheered. Pete Myers is my hero. Over nearly a decade of early mornings working with the crew of Environmental Health Sciences, creating Above the Fold and The Daily Climate, I learned more than I had in all my years of institutional education put together. It was Pete who showed me how to explain endocrine disruption to diverse audiences and it is Pete's tireless engagement with the realm of policy and law where I dare not venture that gives me hope for our collective future. I can not thank you enough for bringing me into the Fold. My deep gratitude also to Pauli, Wendy, Laura, Douglas, Marla, Peter, Kara, and the rest of the team for their friendship. Thank you to Susan Nagle, who let me tag along at my first scientific conference when I was feeling quite lost, and to Fred vomSaal. who laughed at my limerick about iii bisphenol-A1. Thank you to Jane Burns and Robin Dodson, who taught me something new each semester. I would to express my gratitude to GreenFaith, where the Rev. Fletcher Harper and Rabbi Lawrence Troster and my colleagues in the inaugural fellowship class encouraged and inspired me and nurtured the seeds of these ideas. I met Janisse Ray at a locavore potluck in Vermont. She invited me to collaborate with her on a chapter she was working on, and no matter how clumsy my first attempts at expressing myself were, Janisse always responded, "Keep writing!" Thank you, Janisse. I will! At Algalita Marine Research Foundation, I owe thanks to Captain Charles Moore, who took me to sea, to Nikhil Davé, Patty Warhol, Jeff, Marieta Francis, Gwen Lattin, and others who showed me the ropes. Thank you for an unforgettable summer. Anna Cummins and Marcus Eriksen once lent me Marcus' boat as lodging while he was at sea on the Junk raft. Thank you for our delightful conversations years later in New Orleans and New York. I am in awe of your work in the world. Thank you to Chelsea Rochman, who as a graduate student, collected depth samples for me from the North Pacific gyre. I will never forgive myself for not being able to fund their analysis. I am forever indebted to the late Gordon Cosby, and our spiritual support group at the Festival Center. Dawn Longenecker, my Discipleship Year leader, who believed in me when I was ready to give up on myself, thank you. For my spiritual director, David 1 Paper, plastic, epoxy, and ink / Am I BPA's ultimate sink? / Is there bisphenol-A in my tuna fillet/ And in the water I drink? (Don't worry...I'll stick to prose.) iv Hilfiker, for our long walks together in Rock Creek Park, sometimes in silence and tears, I give thanks. For dinners with David and Marja that nourish and sustain me, I giveve thanks. For the high bar of perseverance and courage set by my students at the Academy of Hope, and for Elizabeth and Audrey and Jessie's unwavering support and sense of humor, I give thanks. I am grateful for morning prayer in Petworth with Franciscan friends and with friends from the Dorothy Day Catholic Worker house. I will never forget confession there. When I had finished unburdening my soul of what I thought were unspeakable crimes, the priest just patted my head and said, "Is that all?" Would that we all experience such grace. Thank you to all my Discipleship Year housemates, especially Barbara. If she and I were still in touch, I would ask her to illustrate this manuscript with her photographs. I met Stephanie Kaza at an Association for Environmental Studies and Sciences conference in the summer of 2013. After our panel, Stephanie asked me casually, "So, what are you doing this fall?" I did not anticipate how profoundly this encounter would change the shape of my career. She brought me back with her to the University of Vermont, where I learned so much from both Stephanie and Adrian Ivakhiv, who took me on as a teaching assistant. They never scolded, even when I lost the notebook that contained our only copy of the students' grades. In the spring, Stephanie arranged for me to solo teach my first college course: a senior capstone entitled "Plastics, Human Health, and the Environment." My students' patience, enthusiasm, willingness to play, and gentle guidance as I grappled with how to present the material was invaluable. A special shout out to Charlotte Frank, who went on to graduate work in plastic marine debris, and whose experiments on mealworms and polystyrene appear later in these v pages. I cannot resist including an anecdote about one of my earliest mentors, Sandra Steingraber, who graciously invited me to assist her with research for The Falling Age of Puberty. She gave the keynote address at a conference in Burlington on women's health. I paused at the door to speak to those who were protesting the conference sponsor, Planned Parenthood. I tried to explain that they belonged inside, collaborating with us, to help create a world where toxic chemicals would no longer pose a threat to healthy conception, pregnancy, and birth. I did not succeed in that endeavor, and when I turned to enter, I was curtly told that my name did not appear on the list. My registration must have been "lost." After much negotiating, I was grudgingly allowed in. After her speech, Sandra came to greet me with tremendous enthusiasm, in front of the woman who had questioned my credentials: "Oh! If they had only told me you were here, I would have introduced you from the podium. I'm so glad to see you. I do hope we can collaborate again?" Thank you, Sandra, for your great kindness, and for your continuing example of scholarly activism and integrity. Thank you to Samantha Macbride who work in discard studies is a source of inspiration and endless fascination for me.
Recommended publications
  • Recent Advances in Biocatalysts Engineering for Polyethylene Terephthalate Plastic Waste Green Recycling
    Environment International 145 (2020) 106144 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Review article Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling Nadia A. Samak a,b,c,1, Yunpu Jia a,b,1, Moustafa M. Sharshar a,b, Tingzhen Mu a, Maohua Yang a, Sumit Peh a,b, Jianmin Xing a,b,* a CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China b College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China c Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt ARTICLE INFO ABSTRACT Handling Editor: Guo-ping Sheng The massive waste of poly(ethylene terephthalate) (PET) that ends up in the landfills and oceans and needs hundreds of years for degradation has attracted global concern. The poor stability and productivity of the Keywords: available PET biocatalysts hinder their industrial applications. Active PET biocatalysts can provide a promising Plastic waste avenue for PET bioconversion and recycling. Therefore, there is an urgent need to develop new strategies that Poly(ethylene terephthalate) could enhance the stability, catalytic activity, solubility, productivity, and re-usability of these PET biocatalysts Recycling under harsh conditions such as high temperatures, pH, and salinity. This has raised great attention in using Biocatalysts ’ Bioengineering bioengineering strategies to improve PET biocatalysts robustness and catalytic behavior. Herein, historical and forecasting data of plastic production and disposal were critically reviewed.
    [Show full text]
  • Close Encounters
    Environment International 140 (2020) 105792 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Close encounters - microplastic availability to pelagic amphipods in sub- antarctic and antarctic surface waters T ⁎ Kirstie Jones-Williamsa,b, , Tamara Gallowayb, Matthew Colec, Gabriele Stowassera, Claire Waludaa, Clara Mannoa a British Antarctic Survey, High Cross, Madingley Road, Cambridge CB30ET, United Kingdom b University of Exeter, Streatham Campus, Northcote House, Exeter EX4 4QJ, United Kingdom c Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, United Kingdom ARTICLE INFO ABSTRACT Handling Editor: Adrian Covaci This study investigated the distribution of plastic debris from the Atlantic portion of the Sub-Antarctic to the Keywords: Antarctic Peninsula. This region is home to some of the highest concentrations of zooplankton biomass but is also Microplastics threatened by increasing shipping traffic from fishing and the growing tourism market. Samples were collected Mespolastics using a surface-towed neuston net during the Austral summer 2018, aboard the RRS James Clark Ross. Using Encounter Rate Fourier Transform Infrared Spectrometry it was found that 45.6% of the plastic particles isolated from seawater Synthetic Fibres samples were sampling contamination, originating predominantly from the ship. Of the remaining particles, both Amphipods low density (polyethylene, polypropylene) and high-density (phenoxy and epoxy resins) polymers were found in Southern Ocean the surface water suggesting both long-range and local sources of origin. Whilst we found that micro and me- soplastic concentrations in seawater were significantly low (0.013 ± 0.005n/m3) compared to global averages, they were higher along the Antarctic Peninsula than the open ocean (Sub-Antarctic) stations.
    [Show full text]
  • 2019 Abstracts
    We are delighted EDITORIAL to welcome the worldwide yeast community in Gothenburg for ICYGMB2019! The “International Yeast Conferences” started in the 1960s with a handful of delegates and since then have become THE most important event in yeast research. Now the yeast meeting to returns to Gothenburg. Many yeast researchers still remember the meeting in 2003 with over 1,100 delegates, a truly memorable event. The Life Sciences are changing, and yeast research remains at their forefront. Advancements in genome sequencing and genome editing just make yeast more exciting as model organism in basic cell biological research, genome evolution and as a tool for synthetic biology and biotechnology. One of the most important reasons for the enormous success of yeast research lies in the unique character of the international yeast research community. No other community employs such a free exchange and access to information and research tools. Nor has any other community had the ability to build – even intercontinental – consortia of critical mass to tackle large‐scale projects, such as in sequencing the first eukaryotic genome or the first comprehensive yeast knockout library. Yeast2019 is the meeting of the international yeast research community where the latest, and even unpublished results are exchanged, and new projects, alliances, and collaborations are founded. A do‐not‐miss‐event. We attempt to incorporate the present excitement in yeast research in the programme of yeast2019. We are confident that this conference will contain important news and information for all yeast researchers. Taken together, yeast2019 will provide an up‐ to‐date overview in yeast research and it will set the scene for years to come.
    [Show full text]
  • Final Project Report
    FINAL PROJECT REPORT Direct and indirect ecotoxicological impacts of microplastics on marine organisms Project acronym: PLASTOX Period covered: 01.01.2016 – 30.06.2019 Date of submission: 03.07.2019 Picture: Marco Capolupo (University of Bologna) Coordinating institute: SINTEF Ocean Project coordinator: Dr Andy Booth, Senior Researcher, Environmental Technology Dept., SINTEF Ocean Tel: +47 93089510 E-mail : [email protected] PLASTOX website address: https://www.sintef.no/projectweb/plastox/ CONSORTIUM Names Organisation Country SINTEF Ocean, Environmental Technology Department, Dr Andy Booth Norway Trondheim Dr Kaori Sakaguchi-Söder Technische Universität Darmstadt (TUDA), Darmstadt Germany Prof. Paula Sobral NOVA.ID FCT (NOVA-FCT), Caparica Portugal Prof. Laura Airoldi, Prof. Elena Alma Mater Studiorum - University of Bologna (UNIBO) Italy Fabbri, Prof. Giulio Zanaroli Aix-Marseille Université-Mediterranean Institute of Dr Richard Sempéré France Oceanography (AMU-MIO), Marseille Wageningen Marine Research (Wageningen University and Dr Jan Andries van Franeker Netherlands Research) (WUR), Den Helder Dr Tom Doyle, Dr Liam National University of Ireland Galway (NUIG), Galway Ireland Morrison Norwegian University of Science and Technology (NTNU) Dr Iurgi Salaberria Norway Trondheim Dr Carl van Colen Ghent University (UGhent), Ghent Belgium Dr Dorte Herzke Norwegian Institute of Air Research (NILU), Tromsø Norway Dr Kerstin Magnusson IVL Swedish Environmental Research Institute (IVL), Göteborg Sweden Prof. Geir Gabrielsen The Norwegian
    [Show full text]
  • Studies with PET-Hydrolyzing Enzymes
    MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis „Investigating the properties of PET-hydrolase and PBS- depolymerase“ verfasst von / submitted by Christoph Clemens Hinterberger, BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2018/ Vienna 2018 Studienkennzahl lt. Studienblatt / A 066 830 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Masterstudium Molekulare degree programme as it appears on Mikrobiologie, Mikrobielle Ökologie und the student record sheet: Immunbiologie Betreut von / Supervisor: Univ.-Prof. Dr. Udo Bläsi Declaration I hereby declare that this thesis was composed by myself, that the work contained herein is my own except where explicitly stated otherwise in the text, and that this work has not been submitted for any other degree or processional qualification except as specified. Acknowledgements First and foremost, I have to thank Prof. Uwe T. Bornscheuer, who gave me the opportunity of working on this topic, and Dr. Dominique Böttcher, for supervising my work. My thanks also go out to everyone in Dr. Bornscheuer’s group, who helped me along the way, especially to the ever smiling Lukas. Furthermore I have to thank people in my life which made all of this possible: My parents who support me on every step on the road, my siblings, Paul, Max, Tao Su and everyone else in the hard core, Nils and everyone else from the Pack, Linda and Michelle and finally Julia. You’ve all done more than you think. Table of Contents Declaration .............................................................................................................................................. 2 Acknowledgements ................................................................................................................................
    [Show full text]
  • Enzymatic PET Degradation
    GREEN AND SUSTAINABLE CHEMISTRY CHIMIA 2019, 73, No. 9 743 doi:10.2533/chimia.2019.743 Chimia 73 (2019) 743–749 © Swiss Chemical Society Enzymatic PET Degradation Athena Papadopoulou§, Katrin Hecht§, and Rebecca Buller* Abstract: Plastic, in the form of packaging material, disposables, clothing and other articles with a short lifespan, has become an indispensable part of our everyday life. The increased production and use of plastic, however, accelerates the accumulation of plastic waste and poses an increasing burden on the environment with negative effects on biodiversity and human health. PET, a common thermoplastic, is recycled in many countries via ther- mal, mechanical and chemical means. Recently, several enzymes have been identified capable of degrading this recalcitrant plastic, opening possibilities for the biological recycling of the omnipresent material. In this review, we analyze the current knowledge of enzymatic PET degradation and discuss advances in improving the involved enzymes via protein engineering. Looking forward, the use of plastic degrading enzymes may facilitate sustain- able plastic waste management and become an important tool for the realization of a circular plastic economy. Keywords: Biocatalysis · Biodegradation · Enzyme engineering · Plastic recycling · PET Dr. Athena Papadopoulou studied Biology 1. Introduction and received her BSc from the University Plastic has become an omnipresent material in our daily life of Ioannina. She completed her MSc in and, as a consequence, the plastic industry has become the seventh Chemistry with a focus on Chemical and most important industry in Europe, employing more than 1.5 mil- Biochemical Technologies. In 2013 she lion people with a turnover of 355 billion Euros in 2017.[1] Plastic moved to Biotechnology group at the production is cheap and the generated plastic items are durable University of Ioannina to pursue her PhD and versatile.
    [Show full text]
  • Program Bound to Inspire
    A PROGRAM BOUND TO INSPIRE Held in conjunction with Conference Program Feeling lucky? Stop by the ASBMB booth #1421 for your chance to win one of three $250 Amazon gift cards. To participate in the contest, you must update your ASBMB member profile or join the society for the first time. WWW.ASBMB.ORG Table of Contents 2 At-a-glance 10 Sunday oral program 20 Monday oral program 30 Tuesday oral program 39 Poster sessions Program at-a-glance At-a-glance Saturday April 6 Time Location Event Convention Center 8:30 AM – 4:30 PM ASBMB Graduate Student and Postdoctoral Researcher Travel W307ABC Awardee Career Development Event Convention Center 11:30 AM – 12:00 PM ASBMB Annual Meeting Orientation for Undergraduate W306AB Students Convention Center 11:30 AM – 6:00 PM ASBMB Undergraduate Poster Competition Judges' W303ABC Orientation Convention Center 1:00 PM – 4:30 PM W304 ASBMB Undergraduate Student Research Poster Competition Convention Center 1:15 PM – 2:45 PM Career Development Workshop for Grads and Postdocs: W305A Networking Skills Convention Center 1:15 PM – 2:45 PM Career Development Workshop for Grads and Postdocs: W307D Constructing Your Elevator Pitch Convention Center 1:15 PM – 2:45 PM Career Development Workshop for Grads and Postdocs: W305B Practical Tools for Navigating Your Career Path Evolution Convention Center 4:45 PM – 5:45 PM ASBMB Undergraduate Workshop: Exploring Careers Speed W306AB Networking Convention Center 7:00 PM – 8:30 PM Valencia Ballroom EB Welcome Reception with Science Outreach Poster Session ABCD GRANT WRITING WORKSHOP June 13–15 • Washington, D.C.
    [Show full text]
  • Microfiber Pollution
    By Jerilyn Ritzman, WSU Extension Island County Shore Stewards Program Coordinator. Spring 2020 Microfiber Pollution Figure 1: They may seem small, but the microfibers we shed from our clothing may have significant impacts on natural ecosystems. Image Credit: G.A. Wetherbee, A.K. Baldwin, and J.F. Ranville / Public Domain. USGS Report 2019-1048 (link). Introduction When you think of microplastic pollution, what typically comes to mind? A small fragment with jagged edges? Bits of styrofoam? The tiny beads commonly found in cosmetics or hand soaps? These are all common types of microplastics (fragments of plastic smaller than 5mm), but scientists are now discovering that the most abundant type of microplastic in our environment is actually microfibers from clothing and other synthetic textiles. As scientists refine their collection methods and use smaller mesh for collection, the estimated number of microfibers in the environment increases dramatically. Microfibers are being found not just in our freshwater and marine environments, but in the sedimentary record and in the atmosphere as well. While textiles in general present a massive source of pollution from production, transportation, and disposal (did you know the average person throws away 80+ pounds of textiles per year?), this newsletter will specifically address microfiber pollution in the natural environment. It will cover which fabrics are the worst culprits, how microfibers are released into the environment, the environmental impacts, and what Shore Stewards can do to help reduce the number of loose microfibers generated in our homes. The fabrics We don’t typically devote much thought to what happens to the fibers shed from our clothing.
    [Show full text]
  • Elasmobranch (Sharks and Rays) Interaction with Plastic Pollution
    Elasmobranch (sharks and rays) interaction with plastic pollution from global and local perspectives, via entanglement within anthropogenic debris and synthetic fibre ingestion. Submitted by Kristian Parton, to the University of Exeter as a thesis for the degree of Masters by Research in Biological Sciences, December 2019. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that any material that has previously been submitted and approved for the award of a degree by this or any other University has been acknowledged. K.J Parton (Signature)………………………………………………………… 1 Abstract Plastic pollution is a known threat to a host of marine organisms across the world. Research in recent years has exposed numerous negative impacts on some of the world’s most threatened marine species, including turtles, cetaceans and pinnipeds. The impact of plastic pollution on elasmobranchs, however, has been relatively understudied. Sharks and rays are widely accepted to be two of the most threatened marine species in the oceans, most notably due to anthropogenic impacts including direct fisheries and bycatch. Their relationship with plastic pollution is only now being investigated in further detail. Previous studies have alluded to damaging effects on sharks and rays as a result of plastic pollution but have lacked in wide synthesis of existing information and empirical evidence. In this thesis, the impact of entanglement within and ingestion of plastic is highlighted for sharks and rays both globally and locally in the North-East Atlantic.
    [Show full text]
  • Crystallography in the News
    Crystallography Newsletter Volume 11, No. 04, April 2019 Crystallography in the News In this issue: April 2, 2019. Researchers led by Kelly Manthei, a Postdoctoral Fellow at the University of Michigan Life Sciences Institute, found the structure of activated lecithin:cholesterol Crystallography in the News acyltransferase (LCAT) enzyme and how it helps to return excess cholesterol to the liver. Visit with Us Using X-ray crystallography, the scientists determined the mechanism of the enzyme and its reaction in association with a drug-like chemical. Join ROD on LinkedIn Product Spotlights April 3, 2019. New work from the D. E. Shaw research team covers fragment binding, HSA SAXS Standard Kit and even if you don't do fragment-based drug discovery, it's worth a read. That's because CSHL X-Ray Methods in Structural Biology the mechanisms by which fragments bind to proteins are most likely the fundamental ones by which larger molecules bind as well; this is the reductionist look at small Rigaku X-ray Forum molecule-protein interactions. Lab in the Spotlight Survey of the Month April 8, 2019. As a gifted young graduate student in physics at Cambridge in the late 1940s, June Broomhead mapped out the crystal structures of two components critical to Last Month's Survey DNA — adenine and guanine — using X-ray crystallography and painstaking calculations. Useful Link In an era of rapid scientific discovery, that research for her PhD thesis was significant. Video of the Month Recent Crystallographic Papers April 10, 2019. Based on true events, Anna Ziegler's one-act drama, Photograph 51, is a riveting and amazing story told in superior style in the curent production impeccably Book Review directed by Ellie Schwetye at West End Players Guild.
    [Show full text]
  • Environmental and Biological Consequences of Microplastic Within Marine Habitats
    ENVIRONMENTAL AND BIOLOGICAL CONSEQUENCES OF MICROPLASTIC WITHIN MARINE HABITATS by MARK ANTHONY BROWNE A thesis submitted to the University of Plymouth in partial fulfilment for the degree of DOCTOR OF PHILOSOPHY School of Biological Sciences October 2007 Frontispiece. Plastic debris on a beach in Looe, Cornwall, UK. Copyright Statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived fr om it may be published without the author's prior consent. f:D . Item No loo Sl0 8ýka b ý..ý ý'rZwrk "(klýSlS363,73441301" Mark Anthony Browne October 2007 ii Environmental and biological consequences of microscopic plastic within marine habitats Mark Anthony Browne Abstract Large pieces of plastic greater than a millimetre in diameter contaminate marine habitats worldwide and the associated environmental problems are well documented. In addition tiny fragments of plastic debris less than a millimetre in size have recently been reported. This thesis examines the distribution and environmental consequences of microscopic particles of plastic within marine habitats. To quantify the relative influence of wind and depositional environment on the accumulation of plastic debris, a mensurative experiment was conducted in a macrotidal Estuary. The overall trend was that material accumulated in down-wind sites. However, the relative importance of wind as a transport agent depended on the size and density of the plastic. Natural sediments are transported according to their size; but the extent to which models of sediment dynamics could be applied to the transport of plastic debris remains untested.
    [Show full text]
  • Transgenerational Effects on Development Following Microplastic Exposure in Drosophila Melanogaster
    Transgenerational effects on development following microplastic exposure in Drosophila melanogaster Eva Jimenez-Guri1,2, Katherine E. Roberts1, Francisca C. García1, Maximiliano Tourmente3,4, Ben Longdon1 and Brendan J. Godley1 1 Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Cornwall Campus, University of Exeter, Penryn, Cornwall, United Kingdom 2 Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dhorn, Naples, Italy 3 Institute for Biological and Technological Research (IIByT), National Scientific and Technical Research Council (CONICET), Córdoba, Argentina 4 Centre for Cell and Molecular Biology. Faculty of Exact, Physical, and Natural Sciences, University of Córdoba, Córdoba, Argentina ABSTRACT Background. Plastic pollution affects all ecosystems, and detrimental effects to animals have been reported in a growing number of studies. However, there is a paucity of evidence for effects on terrestrial animals in comparison to those in the marine realm. Methods. We used the fly Drosophila melanogaster to study the effects that exposure to plastics may have on life history traits and immune response. We reared flies in four conditions: In media containing 1% virgin polyethylene, with no chemical additives; in media supplemented with 1% or 4% polyvinyl chloride, known to have a high content of added chemicals; and control flies in non-supplemented media. Plastic particle size ranged from 23–500 mm. We studied fly survival to viral infection, the length of the larval and pupal stage, sex ratios, fertility and the size of the resultant adult flies. We then performed crossings of F1 flies in non-supplemented media and looked at the life history traits of the F2.
    [Show full text]