THE SUPERMOON by Vashaanth Gowri-Kriszyk

Total Page:16

File Type:pdf, Size:1020Kb

THE SUPERMOON by Vashaanth Gowri-Kriszyk THE SUPERMOON By Vashaanth Gowri-Kriszyk © 2016 Vashaanth Gowri-Kriszyk. All Rights Reserved. Last month (December, 2016), an expected, yet rare event called a super-moon occurred. This meant that the moon appeared to be 14% larger and 30% brighter. This is because the moon's elliptical orbit makes the moon closer at some points and further at others. Please see Figure 1. for illustration. Figure 1. The elliptical orbit is the path where the moon orbits the earth. The scientific name for the super-moon is Perigee-syzygy of the Earth, Sun and Moon system which means that the Perigee side of the moon is closest to the Earth. The other side of the moon is called Apogee. The opposite event is called a micro moon, or scientifically it is called Apogee-Syzygy of the Earth, Sun and Moon system. The Apogee side is the furthest side from Earth. A super moon or micro moon is either a full moon or new moon. Please see Figure 2. for illustration. Figure 2. © 2016 Vashaanth Gowri-Kriszyk. All Rights Reserved. The most recent super moon took place on 14th of November 2016, and the last time this happened was around 69 years ago in 1947. On some occasions a super moon occurs at the same time as a total lunar eclipse. It is called a total lunar eclipse when the Sun, Earth and Moon align perfectly with each other. That means that the Sun, Earth and Moon are pretty much in an exact line. Please see Figure 3. for illustration. Figure 3. Not many years ago astronomers (these are space scientists) had never heard of the super moon. So who made the use of the word super moon as we know it today? An astrologist named Richard Nolle defined the super moon in 1979 as a new or full moon at, or near (90%) of, its closest path to Earth. This means that there are 4-6 super moon every year. The orbiting of the moon mixed with rotation of the Earth creates the tides in the ocean. Thus, the super moon affects tidal waves, making the waves bigger than usual. Waves are called tides when the sea levels are high or low, and when the water is further from land or close to land, depending on the position and orbit of the moon. To summerise, when super moons occur moonlight appear brighter. However, what is moonlight exactly? Moonlight is actually light reflecting off the moon's surface from the Sun’s (or Sol`s) surface. Therefore, when we see the moon being lit, the moonlight we see is not light from the moon itself. Instead, it is light that is being reflected from the sun on the other side of Earth onto the moon. © 2016 Vashaanth Gowri-Kriszyk. All Rights Reserved. Finally, many social media sites encouraged people to capture a photo of the super moon. The best picture of the super moon has the International Space Station (ISS) in it several times. Amazingly, this picture (Figure 4.) was planned seven years in advance. Figure 4. Links. For further information on the super-moon please visit: https://eclipse2017.nasa.gov/nasa-scientist-explains-supermoon-eclipse http://www.space.com/34714-supermoon-science-nasa-explains-closest-full-moon.ht ml https://science.nasa.gov/news-articles/2016-ends-with-three-supermoons For further general information about space/ astronomy please visit: https://www.iflscience.com/space/ Finally, this amazing picture, above, was captured from on board the International Space Station by an European Space Agency (ESA) astronaut Thomas Pesquet. So this is how the super moon was when seen from space in December 2016! © 2016 Vashaanth Gowri-Kriszyk. All Rights Reserved. .
Recommended publications
  • April's Super "Pink" Moon Will Be the Brightest Full Moon of 2020
    April’s super "pink" moon will be the brightest full moon of 2020 By Theresa Machemer, Smithsonian.com, adapted by Newsela staff on 04.05.20 Word Count 590 Level MAX Image 1. This supermoon on March 9, 2020, called a Worm Moon, was the first of three supermoons in a row. Here, it rises behind the U.S. Capitol in Washington, D.C. A supermoon occurs when the moon's orbit is closest to Earth. Photo: Joel Kowsky/NASA Avid stargazers and newcomers to the nighttime hobby can look forward to a lunar event in April. A super "pink" moon will rise into the night sky on April 7. It will be the brightest supermoon of 2020. A supermoon occurs when a full moon happens on the same night the moon reaches perigee. Perigee is the closest point to Earth in its orbit. Apogee is its farthest point from Earth in its orbit. In April, the full moon peaks at 10:35 p.m. Eastern Daylight Time. Though the moon is called a "pink" moon, its color won't be any different than normal. It will be golden orange when low in the sky. It will brighten to white as it rises. The name comes from pink wildflowers called creeping phlox that bloom in early spring, under April's full moon, according to Catherine Boeckmann at the "Old Farmer's Almanac." Supermoons are only about 7 percent bigger and 15 percent brighter than the average full moon. The difference between a supermoon and an average moon may not be obvious.
    [Show full text]
  • For Creative Minds
    For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities, interactive quizzes, and more are available online. Go to www.ArbordalePublishing.com and click on the book’s cover to explore all the links. Moon Observations The months as we know them (January, February, etc.) are solar, based on how many days it takes the earth to revolve around the sun, roughly divided by twelve. A moon-th, or lunar (moon) month, is based on how long it takes the moon to orbit around the earth. The phases (shapes) of the moon change according to its cycle as it rotates around the earth, and the position of the moon with respect to the rising or setting sun. This cycle lasts about 29 ½ days. A (moon) month starts on “day one” with a new moon. The sun and the moon are in the same position and rise and set together. We can’t see the new moon. New Moon The moon rises and sets roughly 50 minutes later each day. The moon appears to “grow” or it waxes each day from a new moon to a full moon. The waxing moon’s bright side points at the setting Waxing sun and can be seen in the late afternoon on a clear day. Crescent A crescent moon is between new and half (less than half full), and may be waxing or waning. First Quarter The half-moon waxing or first quarter moon occurs about a week after the new moon.
    [Show full text]
  • Moons Phases and Tides
    Moon’s Phases and Tides Moon Phases Half of the Moon is always lit up by the sun. As the Moon orbits the Earth, we see different parts of the lighted area. From Earth, the lit portion we see of the moon waxes (grows) and wanes (shrinks). The revolution of the Moon around the Earth makes the Moon look as if it is changing shape in the sky The Moon passes through four major shapes during a cycle that repeats itself every 29.5 days. The phases always follow one another in the same order: New moon Waxing Crescent First quarter Waxing Gibbous Full moon Waning Gibbous Third (last) Quarter Waning Crescent • IF LIT FROM THE RIGHT, IT IS WAXING OR GROWING • IF DARKENING FROM THE RIGHT, IT IS WANING (SHRINKING) Tides • The Moon's gravitational pull on the Earth cause the seas and oceans to rise and fall in an endless cycle of low and high tides. • Much of the Earth's shoreline life depends on the tides. – Crabs, starfish, mussels, barnacles, etc. – Tides caused by the Moon • The Earth's tides are caused by the gravitational pull of the Moon. • The Earth bulges slightly both toward and away from the Moon. -As the Earth rotates daily, the bulges move across the Earth. • The moon pulls strongly on the water on the side of Earth closest to the moon, causing the water to bulge. • It also pulls less strongly on Earth and on the water on the far side of Earth, which results in tides. What causes tides? • Tides are the rise and fall of ocean water.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Syzygies a Conjunction Or an Opposition of the Sun with the Moon Occurs When the Elongation Between the Two Luminaries Is 0° Or
    CHAPTER THIRTEEN SYZYGIES A conjunction or an opposition of the Sun with the Moon occurs when the elongation between the two luminaries is 0° or 180°, respec- tively. Syzygy is an astronomical term that refers both to conjunction and opposition. At mean syzygy, the double elongation, 2η ̄ = 0°, where ̄ ̄ ̄ ̄ η ̄ = λm – λs, and λm and λs are the mean longitudes of the Moon and the Sun. Analogously, at true syzygy, the double elongation, 2η = 0°, where η = λm – λs, and λm and λs are the true longitudes of the Moon and the Sun. The determination of the time from mean to true syzygy, ∆t, an essential step in the calculation of eclipses, was historically one of the major problems considered in computational astronomy (Chabás and Goldstein 1992 and 1997). Figure 20 represents a mean conjunction of the Sun and the Moon (indicated by the direction of S ̄ and M̄ ) and its corresponding true conjunction (indicated by the direction of S´ and M´). In this case, the ̄ ̄ mean conjunction (when λs = λm), which takes place at time t, comes M S̅ M̅ S S’ M’ λ’ = λ’s O m Aries 0° ̅̅ λλm = s Figure 20: Mean and true syzygies 140 chapter thirteen Table 13.1A: Some historical values of the mean synodic month Mean synodic month 29;31,50,7,37,27,8,25d Parisian Alfonsine Tables 29;31,50,7,54,25,3,32d Levi ben Gerson 29;31,50,8,9,20d al-Ḥajjāj’s Arabic trans. of the Almagest, Copernicus 29;31,50,8,9,24d Ibn Yūnus, al-Bitrūjị̄ 29;31,50,8,14,38d Ibn al-Kammād 29;31,50,8,19,50d al-Battānī 29;31,50,8,20d Almagest, Toledan Tables after the true conjunction λ( s´ = λm´), which occurs at time t´, so that ∆t = t´ – t < 0.
    [Show full text]
  • The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
    Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days.
    [Show full text]
  • Bright As the Full Moon: How Much to Light up the Night?
    Bright as The Full Moon: How Much to Light Up The Night? A reprint of the Illinois Coalition for Responsible Outdoor Lighting website page at http://www.illinoislighting.org/moonlight.html We humans are biologically a diurnal species. While all of our other senses function as well at night as during the day (or perhaps sometimes even more sharply), our eyesight is limited in its low-light capabilities. For tens of thousands of years, our ancestors were restricted in their ability to function between evening and morning twilight. The light from the flames of burning materials -- from sticks, to animal and vegetable fats, to natural fossil fuels -- extended their functionality into the night, especially in enclosed areas. Outdoors, another light source was commonly made use of to conduct activity outdoors at night: moonlight. We find references to the use of moonlight for nocturnal activity in many places in both the historic record and in folk wisdom. The moon provides its most substantial illumination of the landscape at the time of full moon (see below); full moons are particularly associated with nocturnal activity. The name "Harvest Moon", for the full moon occurring nearest to the autumnal equinox, refers to the fact that the moonlight at that time is bright enough (and moonrise occurs in conjunction with sunset) to allow harvesters in the northern hemisphere to continue their work in the fields into the night. The same effect gives us the name of the following full moon, the Hunter's Moon. Moonlight gardens, designed to be enjoyed during the night, were enjoyed in the orient for centuries; the 17th Century Taj Mahal in India featured a large garden meant to be visited during the cool of night.
    [Show full text]
  • THIRTEEN MOONS Curriculum
    THIRTEEN MOONS Curriculum OJIBWAY CREE MOHAWK PRACTITIONER GUIDE LBS LEVELS 2 AND 3 13 MOONS – Teacher’s Guide 0 13 MOONS – Teacher’s Guide 1 © Ontario Native Literacy Coalition [2010] Table of Contents Introduction………………………………………………………………………………………………..4 Aboriginal Calendars………………………………………………………………………………..…5 OJIBWE Unit………………………………………………………………………………………………………………….6 Introduction & Pronunciation Guide…………………………………………………….8 Moons …………………………………………………………………………………………………..9 Numbers …………………………………………………………………………………………….12 Days of the Week …………………………………………………………………………….….14 Seasons ……………………………………………………………………………………………...15 CREE Unit…………………………………………………………………………………………………..16 Introduction ……………………………………………………………………………………….18 Moons ………………………………………………………………………………………………...19 Numbers ………………………………………………………………………………………….…20 Seasons and Days of the Week ………………………………………………………..…..22 MOHAWK Unit…………………………………………………………………………………………..24 Vowels………………………………………….………………………………………………..……26 Consonants……………………………………………………………………………………..…..27 Months…………………………………………………………………………………………..……29 Numbers………………………………………………………………………………………..……30 Days………………………………………………………………………………………………..…..32 Seasons…………………………………………………………………………………………..…..33 Cycle of Ceremonies……………………………………………………………………………34 Resources……………………………………………………………………………………………….…36 2011-2012 Calendars ……………………………………………………………………..…37 2011 Moon Phases ………………………………………………………………………..…..38 Sample Calendar Page …………………………………………………………………...….40 Task-Based Activities……………………………………………………………………………………44 Writing Activity
    [Show full text]
  • Phases of the Moon
    TA Guide for Notes Phases of the Moon Description In this activity, students stand around a bright light bulb in an otherwise dark room, holding a styrofoam ball at arm’s length. As they turn around, they watch the changing pattern of light and dark on the styrofoam ball which reproduces the phases of the Moon. Then, using a second ball as the Earth, students explore the geometry of the Sun-Earth-Moon system to predict the rise and set times of different phases of the Moon. The students “accidentally” stumble onto the alignment of the Sun, Earth and Moon during lunar and solar eclipses. Learning Goals After this tutorial, together with lecture materials, students should be able to • use the geometry of the Sun, Earth and Moon to illustrate the phases of the Moon and to predict the Moon’s rise and set times • illustrate the geometry of the Sun, Earth and Moon during lunar and solar eclipses, and explain why there are not eclipses every month Set-up 20 minutes The students will work together in groups of 3. In order to fit enough groups of students, you may need to use 2 light sources (shown at right). Set up one in the center of the lab and, if necessary, one in the center of the reading room (push the tables to the inside around the light. This will stop the students from getting too close to the light and messing up the geometry.) When both lights are needed, both TAs will be “A” TAs that lead the activity to their own groups of students.
    [Show full text]
  • Moon Phases Calendar 2021
    jpl.nasa.gov/edu F F F F F M F E E M E E F E E M A B B B F B A E B M B A J R E M 2 B R 2 A A 2 1 R J B 1 8 M 0 1 7 9 A 5 N R A 2 5 6 - J 1 - M R A - 1 4 2 N - - A M 2 1 1 1 1 6 3 R J 9 8 A M 2 N 0 4 2 A A 2 R - - 1 J A 2 2 N 8 R F A 2 R A 2 0 2 1 E P - J N 4 2 8 2 2 - A A 2 B R 0 9 7 P J N 1 7 4 - 3 R A 3 A A - N 1 1 P 5 J P 2 R 9 - A A R 1 7 P 0 N 1 - 3 R J 1 1 A 1 A 6 1 N P 2 Education R - 1 1 A 1 - 8 2 P 2021 5 9 02 R A 1 2 0 P - R 2 5 D 2 E A 6 C P R D 2 2 7- 7 E M 3 - C M 1 A Y 2 A 6 Y 3 D E 2 C M A 1 Y 9 - 4 - D 2 1 E 5 0 C M A 18 Y 1 D E 1 C M A 11 Y MOON PHASES- 1 1 2 7 - 1 D E C 8 M 1 A 0 Y 1 D E C 9 4 M -9 A Y 2 0 - 2 D E C 3 5 M A Y 2 6 N O V 28 - DEC 2 1 N U J - 7 2 Y A M N O V 27 2 N U 20-26 J V 9 - O 3 N N U 19 J V 0 1 N O N U 18 J - 6 2 1 1 - 1 V 1 O N N U 11 J 7 V 1 O N N 0 3 1 U 2 - J 5 - 8 V 1 O N 3 N U 4 V J 4 O 2 V N O 0 - N 3 N - 9 U 5 2 J 2 T C 8 N O 2 7 U J 2 1 T - C 1 L 8 2 - O U 2 J T 0 C 2 9 L 1 6 U O - 9 1 T J 3 - L C 1 0 1 O U T 2 5 J 2 1 1 7 C L T 2 1 1 - - U O T C 8 7 J L C 1 O 0 T U O 6 3 - 3 J L - C 2 9 T 7 4 O 2 5 U 2 8 2 L J C 1 - 2 7 9 P - U P 1 3 L O 4 1 1 1 E 2 0 E J - 1 9 P U 2 L 8 2 - S 2 4 S - 2 J E 5 9 - P 3 1 G 1 - U 6 - 1 S 2 1 3 0 E G P J 1 U 7 1 2 2 3 6 P G S E U 3 A P G E U S P G A P G E G G S G U A E U S E U U A U U S A S A A A A Education jpl.nasa.gov/edu Education jpl.nasa.gov/edu MOON PHASES MOON PHASES O V E R H E A D J J J J D J J F D J I N S P A J W F A C E A J A A D I E A J A V F E E A A J D E E A N J N F N A N N E O N E E A N C W R B N J T A I E H D J N V B C A F E E N N C B A J D
    [Show full text]
  • Who We Are… Syz-Y-Gy [Siz-Ehh-Jee] – N. a Perfect Astronomical Alignment of Three Objects Such As the Sun the Earth And
    Who we are… Solving the toughest information awareness challenges for those in harm’s way Syzygy prides ourselves on leaning forward to support those that protect the homeland. From supporting hurricane response to providing technology to secure our borders Syzygy always delivers. TAK Development Capabilities General Capabilities • Syzygy develops code across all TAK • Software development: Linux, Windows, iOS, platforms: ATAK, plugins, iTAK, TAK Server, Android, DevOps/Cloud WinTAK, WebTAK • AWS, GovCloud, Azure, and FirstNet • Full DevOps team for auto-deployment for Developers on-prem TAK Infrastructure solutions • Custom geospatial applications • TAK Integration / Plugin development for • Integration expertise: sUAS, CUAS, EO/IR, communications (MANET/SATCOM), sensors radar, communications (camera/radar/sUAS/CUAS) • Mobile Ad-Hoc Network (MANET) subject • Full training capabilities – End User, Admin, matter experts: design, deployment, Train the Trainer integration, sustainment • Full sustainment capabilities – • Security experts: DISA STIG software/infrastructure maintenance, implementation/automation helpdesk • Cloud automation • Field support for operational training/deployment • Training Development & Delivery • General TAK operational subject matter • Hardware Development expertise • Full system development, deployment, and sustainment syz-y-gy [siz-ehh-jee] – n. A perfect astronomical alignment of three objects such as the sun the earth and the moon For More Information Contact: [email protected] | www.syzygyintegration.com Equipment described herein is subject to US export regulations and may require a license prior to export. Diversion contrary to US law is prohibited. Imagery for illustration purposes only. Specifications are subject to change without notice. SNAP is a registered trademark of Syzygy Integration LLC. ©2020 Syzygy Integration LLC Simple Network Access Point Enterprise services ... at the operational edge SNAP-E (Edge) pushes enterprise services to the operational edge.
    [Show full text]
  • Original File Was Main.Tex
    Originally published as: Kyba, C., Conrad, J., Shatwell, T. (2020): Lunar illuminated fraction is a poor proxy for moonlight exposure. - Nature Ecology & Evolution, 4, 318-319. https://doi.org/10.1038/s41559-020-1096-7 Lunar illuminated fraction is a poor proxy for moonlight exposure Christopher C.M. Kyba 1,2,* , Jeff Conrad 3 , and Tom Shatwell 4 1 Deutsches GeoForschungsZentrum Potsdam, Remote Sensing & Geoinformatics, Potsdam, 14473, Germany 2 Leibniz Institute of Freshwater Ecology and Inland Fisheries, Ecohydrology, Berlin, 12587, Germany 3 No institutional affiliation, California, USA 4 Helmholtz-Zentrum für Umweltforschung—UFZ, Seenforschung, Magdeburg, 39114, Germany * [email protected] Introduction San-Jose et al. recently demonstrated that the colouration of barn owls impacts their hunting success under moonlit conditions, and therefore affects their reproductive success[1]. They found that near full moon conditions, the youngest nestlings with white fathers were fed more and were likelier to survive than those with redder fathers. While the study is interesting, the percentage of the moon that is illuminated (lunar illuminated fraction) is unfortunately a poor proxy for moonlight exposure. We suggest lunar illluminated fraction should in general never be used in biological studies, as alternative variables such as horizontal illuminance better represent moonlight exposure, and therefore offer a greater chance of detecting effects of moonlight. Here, we provide a brief explanation of how moonlight varies with season and time of night, and stress the need for greater collaboration between biologists and astronomers or physicists in such studies in the future. Due to the moon’s rotation around the Earth, it rises later each night than it did the night before.
    [Show full text]