Structural Trends for Celestite (Srso4), Anglesite (Pbso4), and Barite (Baso4)

Total Page:16

File Type:pdf, Size:1020Kb

Structural Trends for Celestite (Srso4), Anglesite (Pbso4), and Barite (Baso4) American Mineralogist, Volume 97, pages 661–665, 2012 Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): Confirmation of expected variations within the SO4 groups SYTLE M. ANTAO* Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4, Canada ABSTRACT The crystal structures of the isostructural orthorhombic sulfates celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4) were refined by Rietveld methods using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Their structural model was refined in space group Pbnm. The unit-cell 3 parameters are a = 6.87032(3), b = 8.36030(5), c = 5.34732(1) Å, and V = 307.139(3) Å for SrSO4; a 3 = 6.95802(1), b = 8.48024(3), c = 5.39754(1) Å, and V = 318.486(1) Å for PbSO4; and a = 7.15505(1), 3 b = 8.88101(3), c = 5.45447(1) Å, and V = 346.599(1) Å for BaSO4. The average <M-O> [12] dis- tances are 2.827(1), 2.865(1), and 2.953(1) Å for SrSO4, PbSO4, and BaSO4, respectively, and their corresponding average <S-O> [4] distances are 1.480(1), 1.477(3), and 1.471(1) Å. The geometrical features of the SO4 and MO12 polyhedra become more symmetrical from SrSO4 to BaSO4. Across the series, the a, b, and c parameters vary non-linearly with increasing V. The radii of the M2+ cations, rM, <M-O> [12], and <S-O> [4] distances vary linearly with V. These structural trends arise from the 2+ effective size of the M cation (rM: Sr < Pb < Ba) that is coordinated to 12 O atoms. Keywords: Celestite, SrSO4, anglesite, PbSO4, barite, BaSO4, Rietveld refinement, synchrotron high-resolution powder X-ray diffraction (HRPXRD), crystal structure INTRODUCTION using conventional X-ray diffraction because of strong absorption effects and the small relative contribution of the oxygen atoms Celestite (SrSO4) and barite (BaSO4) occur in hydrothermal veins and as secondary minerals in sedimentary environments. to the total scattering. Consequently, Jacobsen et al. (1998) used They are the main commercial sources of strontium and barium. single-crystal and high-intensity rotating anode Mo X-ray source data to refine the structure of these isostructural minerals. They Anglesite (PbSO4), a minor ore of lead, typically occurs in the oxidized portion of hydrothermal lead deposits as an alteration concluded that the average <M-O> [12] distance increases lin- product of galena and also as a primary mineral in some low- early with increasing cell volume, but the SO4 behaves as a rigid temperature oxidized hydrothermal deposits. group with an average <S-O> [4] distance of 1.476 Å, which is The crystal structures of isostructural celestite, anglesite, and constant across the series. Hawthorne and Ferguson (1975) and barite were determined by James and Wood (1925). Sahl (1963) Hill (1977) reported that the SO4 groups in all three minerals refined the structural model for anglesite and barite. The barite display identical geometries, and the M cation is [l2]-coordinated structure was also refined by Colville and Staudhammer (1967). to O atoms because of bond-strength sums. 2+ The structure of celestite was refined by Garske and Peacor Although previous studies indicate that the M cations (1965) and Hawthorne and Ferguson (1975). The structure of have no effect on the shape or size of the SO4 tetrahedron (e.g., 2+ a Ba-rich celestite is also available (Brigatti et al. 1997). The Jacobsen et al. 1998), the M cations have different sizes and structure of all three minerals was refined by Miyake et al. (1978) effective charge, so systematic variation in the geometry of the and Jacobsen et al. (1998) to determine structural trends that are SO4 group is expected. The purpose of this study is to examine expected across the series. The structure refinements were car- the structural trends for SrSO4, PbSO4, and BaSO4. Using high- ried out in space group Pbnm. The main structural features of resolution powder X-ray diffraction (HRPXRD), this study shows that the geometry of the SO4 group varies in a systematic the orthorhombic sulfates, SrSO4, PbSO4, and BaSO4, listed with 2+ and expected manner. increasing size of the M cation, are SO4 and MO12 polyhedra that share edges (Fig. 1). EXPERIMENTAL METHODS Miyake et al. (1978) indicated a possible systematic variation 2+ in the SO4 tetrahedron with field strength of the M cation across Sample characterization the series, but their SO4 geometry was statistically identical The celestite sample is from Saxony, Ngar Majunga, Madagascar (UC15824). (Jacobsen et al. 1998). Heavy M2+ cation makes it difficult to de- The barite sample is from Elk Creek, South Dakota. The synthetic PbSO4 sample termine the atom positions of light elements with high precision was obtained as high-purity (99.995%) reagent grade powder from Aldrich and no impurity phase was observed in the HRPXRD trace. The celestite and barite samples were analyzed using a JEOL JXA-8200 * E-mail: [email protected] electron microprobe and its standard operating program on a Solaris platform. 0003-004X/12/0004–661$05.00/DOI: http://dx.doi.org/10.2138/am.2012.3905 661 662 ANTAO: ORTHORHOMBIC STRUCTURE OF SrSO4, PbSO4, AND BaSO4 TABLE 1. Electron microprobe analyses (EMPA) for celestite and barite Celestite Barite Madagascar South Dakota wt% oxide wt% oxide CaO 0.01(1)† 0.03(4) MgO 0.00(1) 0.03(1) FeO 0.02(1) 0.00(2) SrO 54.83(7) 0.3(1) BaO 0.06(4) 64.9(5) F 0.02(3) 0.00(1) Cl 0.07(3) 0.00(1) SO3 45.06(5) 34.6(4) Total 100.07 99.76 apfu* Ca 0.000(1) 0.001(1) Mg 0.000(1) 0.002(1) Fe 0.001(1) 0.000(1) Sr 0.966(5) 0.007(3) Ba 0.001(1) 0.985(6) F 0.002(3) 0.000(2) Cl 0.004(1) 0.000(1) S 1.027(6) 1.005(7) Notes: Formula for celestite is [Sr0.966Fe0.001Ba0.001]∑0.97(SO4)1.03. Formula for barite is [Ba0.985Sr0.007Mg0.002Ca0.001]∑1.00(SO4)1.01. * The values of atoms per formula unit (apfu) are based on sum of cations and anions (except O) = 2. † The estimated standard deviations in brackets are based on analyses of 10 spots for each sample and are given to the last two decimal places for the oxides and three for the apfu. in the GSAS program. Full-matrix least-squares refinements were carried out by varying the parameters in the following sequence: a scale factor, cell parameters, atom coordinates, and isotropic displacement parameters. Toward the end of the refinement, all the parameters were allowed to vary simultaneously, and the refine- ment proceeded to convergence. The fitted HRPXRD traces are shown in Figure 2. IGURE F 1. Projection of the SrSO4 structure (based on data from The cell parameters and the Rietveld refinement statistics are listed in Table this study). The Sr atom is coordinated to 12 O atoms of six different 2. Atom coordinates and isotropic displacement parameters are given in Table 3. SO4 groups. The SO4 and SrO12 polyhedra share edges. (Color online.) Bond distances and angles are given in Table 4. The wavelength-dispersive operating conditions were 15 kV accelerating voltage, RESULTS AND DISCUSSION 10 nA beam current, a beam diameter of 5 µm, and using various standards [e.g., fluorapatite (CaKα, PKα, FKα), barite (BaKα, SKα), hornblende (FeKα, MgKα), Structure of SrSO4, PbSO4, and BaSO4 scapolite (ClKα), strontianite (SrKα), and rhodonite (MnKα)]. The crystals are homogeneous based on optical observations and electron microprobe analyses of The three isostructural minerals have SO4 and MO12 polyhe- 2+ 10 spots for each sample. Representative chemical compositions of the samples dra that share edges (Fig. 1). The M (=Sr, Pb, or Ba) cation is are given (Table 1). The MSO4 formula was used in the structure refinements as coordinated to 12 O atoms (Hawthorne and Ferguson 1975; Hill the samples are quite pure, as indicated by the chemical analyses. 1977; Jacobsen et al. 1998; Brigatti et al. 1997). However, there are ranges of various M-O distances, so the nearest O atoms can Synchrotron high-resolution powder X-ray diffraction be grouped into 8, 10, or 12 distances (Table 4). (HRPXRD) The samples were studied by HRPXRD experiments that were performed at Structural trends beamline 11-BM, Advanced Photon Source (APS), Argonne National Laboratory 2+ (ANL). Each sample was crushed to a fine powder using an agate mortar and The radii, rM, of the 12-coordinated M cations (Shannon pestle. The crushed samples were loaded into Kapton capillaries (0.8 mm internal 1976) and the a, b, c unit-cell parameters are plotted against the diameter) and rotated during the experiment at a rate of 90 rotations per second. The data were collected at 23 °C to a maximum 2θ of about 43° with a step size of 0.001° and a step time of 0.1 s per step. The HRPXRD traces were collected TABLE 2. Cell parameters and Rietveld refinement statistics for the with 12 silicon (111) crystal analyzers that increase detector efficiency, reduce orthorhombic sulfates the angular range to be scanned, and allow rapid acquisition of data. A silicon Celestite Anglesite Barite (NIST 640c) and alumina (NIST 676a) standard (ratio of ⅓ Si: ⅔ Al2O3) was used SrSO4 PbSO4 BaSO4 to calibrate the instrument and refine the wavelength used in the experiment (see Madagascar synthetic South Dakota Table 2). Additional details of the experimental setup are given elsewhere (Antao a (Å) 6.87032(3) 6.95802(1) 7.15505(1) et al.
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Minerals of the San Luis Valley and Adjacent Areas of Colorado Charles F
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/22 Minerals of the San Luis Valley and adjacent areas of Colorado Charles F. Bauer, 1971, pp. 231-234 in: San Luis Basin (Colorado), James, H. L.; [ed.], New Mexico Geological Society 22nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 1971 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Barite (Barium)
    Barite (Barium) Chapter D of Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply Professional Paper 1802–D U.S. Department of the Interior U.S. Geological Survey Periodic Table of Elements 1A 8A 1 2 hydrogen helium 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 lithium beryllium boron carbon nitrogen oxygen fluorine neon 6.94 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 13 14 15 16 17 18 sodium magnesium aluminum silicon phosphorus sulfur chlorine argon 22.99 24.31 3B 4B 5B 6B 7B 8B 11B 12B 26.98 28.09 30.97 32.06 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.64 74.92 78.96 79.90 83.79 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon 85.47 87.62 88.91 91.22 92.91 95.96 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 cesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon 132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.5 204.4 207.2 209.0 (209) (210)(222) 87 88 104 105 106 107 108 109 110 111 112 113 114 115 116
    [Show full text]
  • 2012 Bmc Auction Specimens
    A SAMPLER OF SELECTED 2017 BMC AUCTION SPECIMENS (2017 Auction Date is Saturday, 21 January) Volume 3 3+ Hematite [Fe 2O3] & Quartz [SiO2] Locality Cleator Moor Iron Mines Cleator Moor West Cumberland Iron Field Cumbria, England, UK Size 13.5 x 9.5 x 7.0 cm 1498 g Donated by Stonetrust Hematite Crystal System: Trigonal Photograph by Mike Haritos Physical Properties Transparency: Subtranslucent to opaque Mohs hardness: 6.5 Density: approx 5.3 gm/cm3 Streak: Red Luster: Metalic Vanadinite [Pb5(VO4)3Cl] var. Endlichite Locality Erupción Mine (Ahumada Mine) Los Lamentos Mountains (Sierra de Los Lamentos) Mun. de Ahumada Chihuahua, Mexico Size 12.0 x 9.5 x 7.0 cm 1134 g Donated by Stonetrust Crystal System: Hexagonal Physical Properties Transparency: Subtranslucent to opaque Mohs hardness: 3.5-4 Photograph by Mike Haritos Density: 6.8 to 7.1 gm/cm3 Streak: Brownish yellow Endlichite, Pb5([V, As]O4)3Cl, is the arsenic rich Luster: Adamantine variety of vanadinite with arsenic atoms (As) substituting for some of the vanadium (V) 2+ Dolomite [CaMg(CO3)2] & Chalcopyrite [CuFe S2] Locality Picher Field Tri-State District Ottawa Co. Oklahoma, USA Size 19.0 x 14.5 x 6.0 cm 1892 g Consigned with Reserve by Stonetrust Dolomite Crystal System: Trigonal Physical Properties Photograph by Mike Haritos Transparency: Transparent, Translucent, Opaque Mohs hardness: 3.5 to 4 Density: 2.8 to 2.9 gm/cm3 Streak: White Luster: Vitreous Calcite [CaCO3] Locality Mexico Size 15.5 x 12.8 x 6.2 cm 1074 g Donated by Stonetrust Calcite Crystal System: Trigonal Physical Properties Transparency: Transparent, Translucent Mohs hardness: 3 Density: 2.71 gm/cm3 Streak: White Luster: Vitreous, Sub-Vitreous, Photograph by Mike Haritos Resinous, Waxy, Pearly Quartz [SiO2], var.
    [Show full text]
  • Barite Baso4 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
    Barite BaSO4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Commonly in well-formed crystals, to 85 cm, with over 70 forms noted. Thin to thick tabular {001}, {210}, {101}, {011}; also prismatic along [001], [100], or [010], equant. As crested to rosettelike aggregates of tabular individuals, concretionary, fibrous, nodular, stalactitic, may be banded; granular, earthy, massive. Physical Properties: Cleavage: {001}, perfect; {210}, less perfect; {010}, imperfect. Fracture: Uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = 4.50 D(calc.) = 4.47 May be thermoluminescent, may fluoresce and phosphoresce cream to spectral colors under UV. Optical Properties: Transparent to translucent. Color: Colorless, white, yellow, brown, gray, pale shades of red, green, blue, may be zoned, or change color on exposure to light; colorless or faintly tinted in transmitted light. Streak: White. Luster: Vitreous to resinous, may be pearly. Optical Class: Biaxial (+). Pleochroism: Weak. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,weak. Absorption: Z > Y > X. α = 1.636 β = 1.637 γ = 1.648 2V(meas.) = 36◦–40◦ Cell Data: Space Group: P nma. a = 8.884(2) b = 5.457(3) c = 7.157(2) Z = 4 X-ray Powder Pattern: Synthetic. 3.445 (100), 3.103 (95), 2.121 (80), 2.106 (75), 3.319 (70), 3.899 (50), 2.836 (50) Chemistry: (1) (2) SO3 34.21 34.30 CaO 0.05 BaO 65.35 65.70 Total 99.61 100.00 (1) Sv´arov, Czech Republic. (2) BaSO4. Polymorphism & Series: Forms a series with celestine.
    [Show full text]
  • Anglesite Pbso4 C 2001-2005 Mineral Data Publishing, Version 1
    Anglesite PbSO4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are typically elongated with rhomboidal cross-section, prismatic with large {210}, vertically striated, or large {011} with {101} and {102}; tabular on {001} or {100}; equant {111} and {211}, may exhibit 20 other minor forms, to 0.5 m. Also nodular, stalactitic, granular, massive, banded around a core of galena. Physical Properties: Cleavage: {001}, good; {210}, distinct; {010}, less distinct. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 2.5–3 D(meas.) = 6.38 D(calc.) = 6.36 May fluoresce yellow under UV. Optical Properties: Transparent to opaque. Color: Colorless to white, commonly tinted gray; orange, yellow, green, blue, rarely violet; colorless in transmitted light. Streak: White. Luster: Adamantine, resinous to vitreous. Optical Class: Biaxial (+). Orientation: X = c; Y = b; Z = a. Dispersion: r< v,strong. α = 1.877 β = 1.883 γ = 1.894 2V(meas.) = 68◦–75◦ Cell Data: Space Group: P nma. a = 8.482(2) b = 5.398(2) c = 6.959(2) Z = 4 X-ray Powder Pattern: Synthetic. 3.001 (100), 4.26 (87), 3.333 (86), 2.067 (76), 3.220 (71), 3.813 (57), 2.028 (48) Chemistry: (1) Modern analyses are lacking; identification depends on coincidence of X-ray and optical properties with those of the synthetic compound. Mineral Group: Barite group. Occurrence: Common in the oxidized zone of lead deposits, where it may constitute an important ore. Association: Cerussite, leadhillite, lanarkite, caledonite, linarite, brochantite, malachite, mimetite, pyromorphite, wulfenite, massicot, gypsum, sulfur, galena.
    [Show full text]
  • Barite–Celestine Geochemistry and Environments of Formation Jeffrey S
    Barite–Celestine Geochemistry and Environments of Formation Jeffrey S. Hanor Department of Geology and Geophysics Louisiana State University Baton Rouge, Louisiana 70803 INTRODUCTION Minerals in the barite (BaSO4)–celestine (SrSO4) solid solution series, (Ba,Sr)SO4, occur in a remarkably diverse range of sedimentary, metamorphic, and igneous geological environments which span geological time from the Early Archean (~3.5 Ga) to the present. The purpose of this chapter is to review: (1) the controls on the chemical and isotopic composition of barite and celestine and (2) the geological environments in which these minerals form. Some health risks are associated with barite, and these are discussed near the end of this chapter. Although complete solid solution exists between BaSO4 and SrSO4 most representa- tives of the series are either distinctly Ba-rich or Sr-rich. Hence, it is convenient to use the term barite to refer to not only the stochiometric BaSO4 endmember but also to those (Ba,Sr)SO4 solid solutions dominated by Ba. Similarly, the term celestine will refer here not only to the stoichiometric SrSO4 endmember but to solid solutions dominated by Sr. Such usage is in accord with standard mineral nomenclature. The Committee on Mineral Names and Nomenclature of the International Mineralogical Association recognizes “celestine” as the official name for SrSO4. However, the name “celestite” is still commonly used in the literature. Geological significance of barite and celestine Most of the barite which exists in the Earth’s crust has formed through the mixing of fluids, one containing Ba leached from silicate minerals, and the other an oxidized shallow fluid, such as seawater, which contains sulfate.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Glossary of Obsolete Mineral Names
    L.120 = clay, Robertson 22 (1954). laavenite = låvenite, Dana 6th, 375 (1892). labite = palygorskite, AM 22, 811 (1937). laboentsowiet = labuntsovite-Mn, Council for Geoscience 765 (1996). laboita = vesuvianite, de Fourestier 191 (1999). laboundsovite = labuntsovite-Mn, Kipfer 181 (1974). labountsovite = labuntsovite-Mn, MM 35, 1141 (1966). Labrador (Frankenheim) = meionite, Egleston 118 (1892). labrador (Rose) = Na-rich anorthite, MM 20, 354 (1925). Labrador-Bytownit = Na-rich anorthite, Hintze II, 1513 (1896). labradore-stone = Na-rich anorthite, Kipfer 181 (1974). Labrador feldspar = Na-rich anorthite, Dana 6th, 334 (1892). Labrador-Feldspat = Na-rich anorthite, Kipfer 107 (1974). Labrador-Feldspath = Na-rich anorthite, Clark 383 (1993). labrador-felspar = Na-rich anorthite, Clark 383 (1993). Labrador hornblende = Fe-rich enstatite or Mg-rich ferrosilite, AM 63, 1051 (1978). labradorische Hornblende = Fe-rich enstatite or Mg-rich ferrosilite, Dana 6th, 348 (1892). Labradoriserende Feltspat = Na-rich anorthite, Zirlin 71 (1981). labradorite (intermediate) = Na-rich anorthite, Dana 6th, 334 (1892). labradorite-felsite = Na-rich anorthite, Dana 6th, 334 (1892). labradorite-moonstone = gem Na-rich anorthite, Schumann 164 (1977). Labradorit-Mondstein = gem Na-rich anorthite, Chudoba EIV, 48 (1974). labradorkő = Na-rich anorthite, László 155 (1995). labrador moonstone = gem Na-rich anorthite, Read 131 (1988). Labrador oder schillerenden rauten förmigen Feldspath = chrysotile ± lizardite or talc or anthophyllite, Clark 620 (1993). labrador schiller spar = Fe-rich enstatite or Mg-rich ferrosilite, Egleston 162 (1892). labrador spar = gem Na-rich anorthite, Read 131 (1988). Labradorstein = Na-rich anorthite, Dana 6th, 334 (1892). labrador stone = Na-rich anorthite, Chester 149 (1896). labradownite = Na-rich anorthite, Kipfer 181 (1974). labratownite = Na-rich anorthite, AM 11, 138 (1926).
    [Show full text]
  • Quaternary Celestine and Gypsum Extensional Veins in a Folded Hypersaline Lake Infill: the Qaidam Basin, Wes- Tern China
    © Österreichische Geologische Gesellschaft/Austria; download unter www.geol-ges.at/ und www.biologiezentrum.at Austrian Journal of Earth Sciences Volume 103/2 Vienna 2010 Quaternary celestine and gypsum extensional veins in a folded hypersaline lake infill: the Qaidam basin, wes- tern China Franz NEUBAUER1)*), Yongjiang LIU2), Johann GENSER1), Andrea Brigitte RIESER1)3), Gertrude FRIEDL1), Xiaohong GE2) & Martin THÖNI4) 1) Dept. Geography and Geology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria; KEYWORDS 2) Faculty of Earth Sciences, Jilin University, 130061 Changchun, China; Sr isotopic stratigraphy 3) present address: Nagra, Hardstrasse 73, 5430 Wettingen, Switzerland; extensional vein 4) Dept. of Lithospheric Research, Vienna University, Althanstr. 14, A-1090 Vienna, Austria; Qaidam basin celestine *) Corresponding author, [email protected] brine Abstract The nonmarine, at present hypersaline Qaidam basin of Western China comprises a ca. 8–17 km thick sedimentary fill, which is dominated by Eocene to Recent clastic rocks. These successions were folded due to ongoing India-Eurasia convergence from late Miocene onwards until today. Shortening also resulted in enhanced fluid flow and precipitation of sulphate minerals in subvertical tension gashes, which are mainly filled by celestine and fibrous gypsum. The orientation of subvertical veins is similar over most parts of the western Qaidam basin and indicates NNE-SSW to N-S shortening (present-day coordinates) dissimilar to the NE-motion direction deduced from recent geodetic (GPS) data. In deeper stratigraphic levels of anticlinal cores, tension gashes composed of fibrous gypsum subparallel to bedding demonstrate fluid overpressure during their formation at a shallow structural level, below the conversion temperature of gypsum to anhydrite.
    [Show full text]
  • EB Dacortr, Richf'eld
    WHERRYITE, A NEW MINERAL FROM THE MAMMOTH MINE, ARIZONAT Richf'eld, Josern J. Fannv, tI . S. GeologicalSurvey; E. B. Dacortr, [Jtah; lNo S.cMunr.G. Gonnow, The Academy oJ l{atural Sciences oJ PhiladelPhia. Aesrnacl A new mineral from the Mammoth Mine, Arizona, having the formula Pbcos'2Pbsor .Pb(cl, oH)z.cuo is named in honor of Dr. Edgar Theodore wherry. The indices of re- fraction are a:1.942, P:2.01O and 1:2.924, and 2V:50' (calculated)' The specific gravity is 6.45. Wherryite was found in a vug just above the 760-foot level associated with chrysocolla, diabol6ite, and paralaurionite' IurnolucrroN In May of 1943 one of the authors, E. B. Daggett, then mining en- gineer at the Mammoth Mine, discovered a small vug of leadhillite crystals associatedwith cerussite, anglesite, phosgenite, paralaurionite, hydrocerussite, diabol6ite, bol6ite, matlockite' and quartz. Within the cavity was some friable chalcocite with a relict structure of the galena which it has replaced. The massive wall of the vug consisted ol a light-green fine granular mineral enclosing some bluish chrysocolla, and at the cavity some blue diabol6ite and greenishparalaurionite. This green matrix was up to five cm. in thickness and extended to the silicified wall of the vein-an altered qrartz monzonite. The minerals of this remarkable vug, and the crystallography of the leadhillite will be d.escribedin a later paper; some observations on the paragenesiswill be given here in order to describe the occurrenceoi the green matrix which has proven to be a new mineral. The name wherryite is given to this new mineral in honor of Dr' Edgar Theodore wherry, first editor of the American Minerologist, formerly curator of mineralogy at the U.
    [Show full text]
  • A SAMPLER of SELECTED 2018 BMC AUCTION SPECIMENS Auction Date: Saturday, January 20, 2018 Snow Date: June 9, 2018 Volume 004 Bismuth(Bi) Xls
    A SAMPLER OF SELECTED 2018 BMC AUCTION SPECIMENS Auction Date: Saturday, January 20, 2018 Snow date: June 9, 2018 Volume 004 Bismuth(Bi) xls. (Lab. Grown) Unusually large size l 9.0 x 8.6 x 8.2 cm l 360 g l Germany l Donated by l Mike Haritos Photograph by Mike Haritos Albite NaAlSi3 O8, Sodium aluminum silicate l 22 x 15.5 x 8.0 cm l 2,243 g l Hohe Tauern, Carinthia, Austria l BMC purchase Photograph by Mike Haritos Gypsum var. Selenite CaSO4 · 2H2O Hydrated Calcium Sulfate, Calcite CaCO3, Calcium Carbonate & Quartz SiO2 Silicon dioxide l 19.3 x 16.0 x 11.1 cm l 2,146 g l Cavnic Mine (Kapnikbánya), Cavnic (Kapnic; Kapnik), Maramures Co., Romania. l BMC Purchase Photograph by Mike Haritos Rhodochrosite (slab) MnO3 Manganese Carbonate l 19.0 x 11.1 x.3.0 cm l 1,130 g l Capillitas Mine, Andalgalá Department, Catamarca, Argentina l BMC Purchase Photograph by Mike Haritos Celestine (Celestite) SrSO4, Strontium Sulfate l 12.4 x 10.5 x 6.7 cm l 879 g l Madagascar l BMC Purchase Photograph by Mike Haritos Quartz var. Chalcedony SiO2 Silicon Dioxide l 12.4 x 10.5 x 6.7 cm l 879 g l Idar Oberstein, Hunsrück, Rhineland-Palatinate, Germany l BMC Purchase Photograph by Mike Haritos Rhodochrosite MnCO3 Manganese Carbonate with minor Pyrite FeS2 Iron Sulfide l 12.5 x 8.0 x 6.8 cm l 818 g l Huanzala Mine, Huallanca, Huallanca District, Bolognesi Province, Ancash Department, Peru l BMC Purchase Photograph by Mike Haritos Wulfenite PbMoO4, Lead Molybdate l 8.0 x 6.0 x 3.5 cm l 177 g l Bleiberg District, Gailtaler Alpen & Karnische Alpen, Carinthia, Austria (Type Locality) l BMC Purchase Photograph by Mike Haritos Uvarovite Ca3Cr2(SiO4)3, Calcium Chromium Silicate l 10.0 x 8.5 x 5.4 cm l 809 g l Outokumpu Cu-Co- Zn-Ni-Ag-Au ore field, Eastern Finland Region, Finland l BMC Purchase Photograph by Mike Haritos Copper Cu, Elemental Copper & CaCO3, Calcium Carbonate l 7.1 x 5.0 x 2.5 cm l 106 g l Tsumeb Mine (Tsumcorp Mine), Tsumeb, Otjikoto Region (Oshikoto), Namibia l BMC Purchase Photograph by Mike Haritos Quartz var.
    [Show full text]