Downloaded 10/05/21 09:28 AM UTC MAY 2015 T O M I K a W a E T a L

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/05/21 09:28 AM UTC MAY 2015 T O M I K a W a E T a L 1804 MONTHLY WEATHER REVIEW VOLUME 143 Vertical Wind Disturbances during a Strong Wind Event Observed by the PANSY Radar at Syowa Station, Antarctica YOSHIHIRO TOMIKAWA National Institute of Polar Research and The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan MASAHIRO NOMOTO AND HIROAKI MIURA The University of Tokyo, Tokyo, Japan MASAKI TSUTSUMI,KOJI NISHIMURA,TAKUJI NAKAMURA,HISAO YAMAGISHI, AND TAKASHI YAMANOUCHI National Institute of Polar Research and The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan TORU SATO Kyoto University, Kyoto, Japan KAORU SATO The University of Tokyo, Tokyo, Japan (Manuscript received 5 September 2014, in final form 30 January 2015) ABSTRACT 2 Characteristically strong vertical wind disturbances (VWDs) with magnitudes larger than 1 m s 1 were ob- served in the Antarctic troposphere using a new mesosphere–stratosphere–troposphere (MST) radar called the Program of the Antarctic Syowa MST/incoherent scatter (IS) Radar (PANSY) during 15–19 June 2012 at Syowa Station (69.08S, 39.68E). In the same period, two synoptic-scale cyclones approached Syowa Station and caused a strong wind event (SWE) at the surface. The VWDs observed during the SWE at Syowa Station had a nearly standing (i.e., no phase tilt with height) phase structure up to the tropopause and a power spectrum proportional to the 25/3 power of frequency. On the other hand, the observed VWDs were not associated with systematic horizontal momentum fluxes. Meteorological fields around Syowa Station during the SWE were successfully simulated using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). A strong VWD was also simulated at the model grid of 70.08S, 40.08E in NICAM, which had a standing phase structure similar to the observed ones. An analysis based on the Froude number showed that the simulated VWD was likely due to a hydraulic jump leeward of the coastal mountain ridge. The Scorer parameter analysis indicated that the observed VWDs at Syowa Station during 16–17 June 2012 were likely due to the hydraulic jump similar to that in NICAM. On the other hand, a possibility of lee waves was also suggested for the VWD observed on 18 June 2012. 1. Introduction to the Antarctic topography (Parish and Bromwich 1987) and partially by synoptic-scale cyclones arriving The Antarctic coastal region is characterized by from the Southern Ocean storm track (Trenberth 1991). strong surface winds throughout the year. These strong The surface wind induced by the katabatic forcing is winds are primarily induced by the katabatic forcing due called ‘‘katabatic wind’’ and characterized by a nearly constant wind direction (King and Turner 1997). Among them, cases with strong surface winds, which are classi- Corresponding author address: Yoshihiro Tomikawa, National 21 Institute of Polar Research, 10-3, Midori-cho, Tachikawa, Tokyo fied as gale winds (i.e., 17.2–20.7 m s ) or higher classes 190-8518, Japan. in the Beaufort Wind Force Levels are called strong E-mail: [email protected] wind events (SWEs) and have been intensively studied DOI: 10.1175/MWR-D-14-00289.1 Ó 2015 American Meteorological Society Unauthenticated | Downloaded 10/05/21 09:28 AM UTC MAY 2015 T O M I K A W A E T A L . 1805 FIG. 1. (a) Antarctic topography with contour intervals of 500 m. (b) Inset of (a) showing the coastal region around Syowa Station with contour intervals of 100 m. (Turner et al. 2009). Turner et al. (2001) examined an the troposphere and lower stratosphere at Finnish/ extreme wind event at Casey Station (66.278S, 110.538E) Swedish Aboa/Wasa Station (73.08S, 13.48W) with the and concluded that key factors forcing the extreme wind Moveable Atmospheric Radar for Antarctica (MARA). were a synoptic-scale strong pressure gradient, entrain- They simulated the VWDs with the Weather Research ment of radiatively cooled air, topographically induced and Forecasting (WRF) Model and demonstrated that downslope wind, and sources of negative buoyancy. the VWDs were induced by topographically forced Steinhoff et al. (2008) examined a severe wind event at gravity waves (i.e., mountain waves). It is also shown McMurdo Station (77.858S, 166.678E) and demonstrated that those gravity waves propagated up to the lower that a barrier effect due to the Transantarctic Mountains stratosphere under a condition of weak zonal wind played a significant role in forcing the strong surface shear. However, these observations of mesoscale phe- wind in addition to the factors proposed by Turner et al. nomena in the Antarctic troposphere and lower strato- (2001). sphere are still limited. These strong surface winds during SWEs cause sev- Syowa Station (69.08S, 39.68E) is a primary station of eral kinds of mesoscale phenomena such as hydraulic the Japanese Antarctic activity and located on East On- jumps, downslope windstorms, and lee waves by inter- gul Island in the Antarctic coastal region (Fig. 1). Japa- acting with local topography in the Antarctic coastal nese Antarctic Research Expeditions (JAREs) have region. Adams (2004) simulated an extreme wind event been performing operational meteorological observa- at Casey Station and suggested an occurrence of a tions at Syowa Station since 1957 (e.g., Sato and Hirasawa hydraulic jump on the upslope from Casey Station. 2007). In addition, the first mesosphere–stratosphere– Steinhoff et al. (2008) indicated that a downslope troposphere (MST)/incoherent scatter (IS) radar in the windstorm also contributed to the enhancement of Antarctic has been installed at Syowa Station (Sato et al. surface winds at McMurdo Station in the severe wind 2014), which is called the Program of the Antarctic Syowa event. On the other hand, it is difficult to directly ob- MST/IS Radar (PANSY). The PANSY radar has the serve these mesoscale phenomena in the Antarctic be- ability to make continuous measurements of vertical pro- cause meteorological observations in the Antarctic are files of zonal, meridional, and vertical winds with fine sparse compared to other areas. vertical and temporal resolutions regardless of the weather Valkonen et al. (2010) and Arnault and Kirkwood conditions. The radar has started its continuous observa- (2012) observed vertical wind disturbances (VWDs) in tion of the troposphere and stratosphere on 30 April 2012. Unauthenticated | Downloaded 10/05/21 09:28 AM UTC 1806 MONTHLY WEATHER REVIEW VOLUME 143 In June 2012 when an SWE occurred at Syowa Station, Retrospective Analysis for Research and Applications intense vertical wind disturbances in the troposphere (MERRA; Rienecker et al. 2011) are used. AVHRR were observed by the PANSY radar. data were received at Syowa Station and provided by the The primary purpose of this study is to examine what National Institute of Polar Research (NIPR). Cyclone mechanism caused the observed VWDs using observa- tracks are determined as series of the locations of sea tional data and performing a model simulation. Data level pressure (SLP) minima. and model settings used in this study are given in section 2. b. Numerical simulation Synoptic-scale meteorological fields during the SWE around Syowa Station are shown in section 3.The We carried out a numerical simulation to examine the characteristics of the VWDs observed by the PANSY atmospheric fields around Syowa Station during the radar are described in section 4. Simulated VWDs and SWE. The Nonhydrostatic Icosahedral Atmospheric their characteristics are compared with observed ones Model (NICAM; Satoh et al. 2008) was used to simulate in section 5. A mechanism causing the simulated and the synoptic-scale cyclones over the ocean and strong observed VWDs is examined in section 6.Thesum- VWDs in the Antarctic coastal region. mary and conclusions are given in section 7. This model employs nonhydrostatic dynamical cores as the governing equations, and icosahedral grids over the sphere. The finite-volume method is used for nu- 2. Observation and model configuration merical discretization to conserve total mass, momentum, and energy over the domain. Horizontal resolutions are a. Observational data represented by ‘‘glevel-n’’ (grid division level n). Glevel- The PANSY radar is a VHF clear-air Doppler radar 0 means the original icosahedron. By recursively dividing operating at its central frequency of 47.0 MHz. The each triangle into four small triangles, we obtain one- PANSY radar measurements were made by using five level higher resolution. Moreover, NICAM can define beams pointing vertically and to the north, east, south, grids that are finer in the target region by using the grid and west with a zenith angle of 108 in the troposphere and transformation method proposed by Tomita (2008a).The lower stratosphere. Line-of-sight wind velocities are es- stretching factor b represents the ratio between maxi- timated from Doppler frequency shifts in the echoes with mum and minimum grid intervals. Stretched grids involve 2 a high accuracy of 0.1 m s 1. The radar has an advantage less computational cost than quasi-uniform grids for re- in directly being able to measure vertical winds, which are gional climates or weather studies. Note that this model important to examine secondary circulations of weather does not have lateral boundaries and, hence, it is free systems and vertical fluxes of horizontal momentum. The from the artificial wave reflection from the boundaries vertical resolution is 150 m for the troposphere and unlike regional models. stratosphere. A continuous observation using a reduced Most previous studies using NICAM have focused on radar system composed of 228 crossed Yagi antennas has atmospheric phenomena in the tropics. Miura et al. (2007) started on 30 April 2012. The time resolution is 1 min simulated the Madden–Julian oscillation (MJO) with before 25 June 2012 and 2 min after that. See Sato et al. glevel-11 (Dx 5 3.5 km) on the Earth Simulator. Fudeyasu (2014) for details of the PANSY radar system.
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Management Plan for Antarctic Specially Protected Area No
    Measure 5 (2014) Annex Management Plan for Antarctic Specially Protected Area No. 136 CLARK PENINSULA, BUDD COAST, WILKES LAND, EAST ANTARCTICA Introduction Antarctic Specially Protected Area (ASPA) No. 136 is located on Clark Peninsula, Wilkes Land at 66°15'S, 110°36'E (see Map A). The Clark Peninsula was originally designated as Site of Special Scientific Interest (SSSI) No. 17 under Recommendation XIII-8 (1985). A revised management plan for SSSI 17 was adopted under Measure 1 (2000). The area was redesignated and renumbered as ASPA 136 under Decision 1 (2002). Revised ASPA management plans were adopted under Measure 1 (2006) and Measure 7 (2009). ASPA 136 is primarily designated to protect the Clark Peninsula’s largely undisturbed terrestrial ecosystem. This ecosystem possesses one of the most extensive Antarctic flora communities outside of the Antarctic Peninsula and significant breeding populations of Adélie penguins (Pygoscelis adeliae) and south polar skuas (Catharacta maccormicki). ASPA 136 is approximately 9.4 km2 and is located approximately 5km north-west of Casey station. Scientific research within the Area has focused on plant communities and long term population studies of Adélie penguin colonies. The protection of this flora and fauna within the Area allows for valuable comparison with similar plant communities and penguin colonies closer to Casey station which are subject to greater levels of human disturbance. 1. Description of values to be protected ASPA 136 is primarily designated to protect Clark Peninsula’s largely undisturbed terrestrial ecosystem. Clark Peninsula’s ecosystem possesses one of the most extensive Antarctic flora communities outside of the Antarctic Peninsula.
    [Show full text]
  • Magazine Issue 32 2017
    AUSTRALIAN ANTARCTIC MAGAZINE ISSUE 32 2017 ANTARCTICA valued, protected and understood www.antarctica.gov.au The Australian Antarctic Division, a Division of the Department of the Environment and Energy, leads Australia’s Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having ‘Antarctica valued, protected and understood’. It does this by managing Australian government activity in Antarctica, providing transport and logistic support to Australia’s Antarctic research program, maintaining four permanent Australian research stations, and conducting scientific research programs both on land and in the Southern Ocean. Australia’s Antarctic national interests are to: • Preserve our sovereignty over the Australian Antarctic Territory, including our sovereign rights over the adjacent From the OPERATIONS offshore areas. 5 A taste for shipping • Take advantage of the special opportunities Antarctica offers for scientific research. Director SCIENCE • Protect the Antarctic environment, having regard to its special qualities and effects on our region. 19 ‘Whale cams’ reveal secret • Maintain Antarctica’s freedom from strategic and/or life of ocean giants political confrontation. As this magazine went to press, entries for the “Name our Icebreaker” • Be informed about and able to influence developments in a competition were flooding in from schools around Australia. The region geographically proximate to Australia. competition is a unique and exciting opportunity for Australian • Derive any reasonable economic benefits from living and students in grades 5 to 8 to play a role in Australia’s Antarctic history non-living resources of the Antarctic (excluding deriving such benefits from mining and oil drilling). and to learn more about the Australian Antarctic Program through associated classroom materials aligned with the curriculum.
    [Show full text]
  • Australian Antarctic Magazine
    AusTRALIAN MAGAZINE ISSUE 23 2012 7317 AusTRALIAN ANTARCTIC ISSUE 2012 MAGAZINE 23 The Australian Antarctic Division, a Division of the Department for Sustainability, Environment, Water, Population and Communities, leads Australia’s CONTENTS Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having PROFILE ‘Antarctica valued, protected and understood’. It does Charting the seas of science 1 this by managing Australian government activity in Antarctica, providing transport and logistic support to SEA ICE VOYAGE Australia’s Antarctic research program, maintaining four Antarctic science in the spring sea ice zone 4 permanent Australian research stations, and conducting scientific research programs both on land and in the Sea ice sky-lab 5 Southern Ocean. Search for sea ice algae reveals hidden Antarctic icescape 6 Australia’s four Antarctic goals are: Twenty metres under the sea ice 8 • To maintain the Antarctic Treaty System and enhance Australia’s influence in it; Pumping krill into research 9 • To protect the Antarctic environment; Rhythm of Antarctic life 10 • To understand the role of Antarctica in the global SCIENCE climate system; and A brave new world as Macquarie Island moves towards recovery 12 • To undertake scientific work of practical, economic and national significance. Listening to the blues 14 Australian Antarctic Magazine seeks to inform the Bugs, soils and rocks in the Prince Charles Mountains 16 Australian and international Antarctic community Antarctic bottom water disappearing 18 about the activities of the Australian Antarctic Antarctic bioregions enhance conservation planning 19 program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent the position of Antarctic ice clouds 20 the Australian Government.
    [Show full text]
  • The Kerguelen Plateau: Marine Ecosystem + Fisheries
    THE KERGUELEN PLATEAU: MARINE ECOSYSTEM + FISHERIES Proceedings of the Second Symposium Kerguelen plateau Marine Ecosystems & Fisheries • SYMPOSIUM 2017 heardisland.antarctica.gov.au/research/kerguelen-plateau-symposium Long-term monitoring of coastal benthic habitats in the Kerguelen Islands: a legacy of decades of marine biology research J.-P. Féral1, E. Poulin2, C.A. González-Wevar3, N. Améziane4, C. Guillaumot5, E. Develay5 and T. Saucède5 1 Aix Marseille Université/CNRS/IRD/UAPV, IMBE-Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale, UMR 7263, Station Marine d’Endoume, Chemin de la Batterie des Lions, 13007 Marseille, France 2 LEM-Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, CP 7800003, Ñuñoa, Santiago, Chile 3 CENTRO FONDAP IDEAL, Instituto de Ciencias Marinas y Limnológicas (ICML), Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile 4 MNHN/CNRS/UPMC/EPHE, ISYEB – Institut de Systématique Evolution Biodiversité, Station de Biologie Marine, BP 225, 29182 Concarneau Cedex, France 5 Université Bourgogne Franche-Comté, CNRS, Biogéosciences, UMR 6282, 6 boulevard Gabriel, 21000 Dijon, France Corresponding author: [email protected] Abstract In the current context of climate change, sea-surface temperature variation, sea level rise and latitudinal shifts of currents and hydrological fronts are expected to affect marine biodiversity of the sub-Antarctic Islands, particularly in coastal waters. Characterising the impacts of climate change on marine communities requires recording environmental modifications through the establishment of long-term monitoring. PROTEKER aims at the establishment of a submarine observatory consisting of multi-disciplinary research: oceanography, habitat mapping and species inventories, genetic, eco-physiological and trophic analyses.
    [Show full text]
  • Characterizing Atmospheric Transport Pathways to Antarctica and the Remote Southern Ocean Using Radon-222
    feart-06-00190 November 7, 2018 Time: 16:29 # 1 ORIGINAL RESEARCH published: 08 November 2018 doi: 10.3389/feart.2018.00190 Characterizing Atmospheric Transport Pathways to Antarctica and the Remote Southern Ocean Using Radon-222 Scott D. Chambers1*, Susanne Preunkert2, Rolf Weller3, Sang-Bum Hong4, Ruhi S. Humphries5,6, Laura Tositti7, Hélène Angot8, Michel Legrand2, Alastair G. Williams1, Alan D. Griffiths1, Jagoda Crawford1, Jack Simmons6, Taejin J. Choi4, Paul B. Krummel5, Suzie Molloy5, Zoë Loh5, Ian Galbally5, Stephen Wilson6, Olivier Magand2, Francesca Sprovieri9, Nicola Pirrone9 and Aurélien Dommergue2 Edited by: 1 Environmental Research, ANSTO, Sydney, NSW, Australia, 2 CNRS, IRD, IGE, University Grenoble Alpes, Grenoble, France, Pavla Dagsson-Waldhauserova, 3 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, 4 Korea Polar Research Institute, Incheon, Agricultural University of Iceland, South Korea, 5 Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC, Australia, 6 Centre for Iceland Atmospheric Chemistry, University of Wollongong, Wollongong, NSW, Australia, 7 Environmental Chemistry and Radioactivity Reviewed by: Lab, University of Bologna, Bologna, Italy, 8 Institute for Data, Systems and Society, Massachusetts Institute of Technology, Stephen Schery, Cambridge, MA, United States, 9 CNR-Institute of Atmospheric Pollution Research, Monterotondo, Italy New Mexico Institute of Mining and Technology, United States Bijoy Vengasseril Thampi, We discuss remote terrestrial influences on boundary layer air over the Southern Science Systems and Applications, Ocean and Antarctica, and the mechanisms by which they arise, using atmospheric United States radon observations as a proxy. Our primary motivation was to enhance the scientific *Correspondence: Scott D. Chambers community’s ability to understand and quantify the potential effects of pollution, nutrient [email protected] or pollen transport from distant land masses to these remote, sparsely instrumented regions.
    [Show full text]
  • Brominated Flame Retardants in Antarctic Air in the Vicinity of Two All-Year Research Stations
    atmosphere Article Brominated Flame Retardants in Antarctic Air in the Vicinity of Two All-Year Research Stations Susan Maria Bengtson Nash 1,*, Seanan Wild 1, Sara Broomhall 2 and Pernilla Bohlin-Nizzetto 3 1 The Southern Ocean Persistent Organic Pollutants Program (SOPOPP), Centre for Planetary Health and Food Security, Griffith University, Nathan 4111, Australia; [email protected] 2 Australian Government Department of Agriculture, Water and the Environment, Emerging Contaminants Section, Canberra 2601, Australia; [email protected] 3 Norwegian Institute for Air Research, NO-2027 Kjeller, Norway; [email protected] * Correspondence: s.bengtsonnash@griffith.edu.au Abstract: Continuous atmospheric sampling was conducted between 2010–2015 at Casey station in Wilkes Land, Antarctica, and throughout 2013 at Troll Station in Dronning Maud Land, Antarctica. Sample extracts were analyzed for polybrominated diphenyl ethers (PBDEs), and the naturally converted brominated compound, 2,4,6-Tribromoanisole, to explore regional profiles. This represents the first report of seasonal resolution of PBDEs in the Antarctic atmosphere, and we describe con- spicuous differences in the ambient atmospheric concentrations of brominated compounds observed between the two stations. Notably, levels of BDE-47 detected at Troll station were higher than those previously detected in the Antarctic or Southern Ocean region, with a maximum concentration of 7800 fg/m3. Elevated levels of penta-formulation PBDE congeners at Troll coincided with local building activities and subsided in the months following completion of activities. The latter provides important information for managers of National Antarctic Programs for preventing the release of persistent, bioaccumulative, and toxic substances in Antarctica. Citation: Bengtson Nash, S.M.; Wild, S.; Broomhall, S.; Bohlin-Nizzetto, P.
    [Show full text]
  • Management Plan for Antarctic Specially Protected Area No
    Measure 9 (2011) Annex Management Plan for Antarctic Specially Protected Area No. 167 Hawker Island, Princess Elizabeth Land Introduction Hawker Island (68°38’S, 77°51’E, Map A) is located 7 km south-west from Davis station off the Vestfold Hills on the Ingrid Christensen Coast, Princess Elizabeth Land, East Antarctica. The island was designated as Antarctic Specially Protected Area (ASPA) No. 167 under Measure 1 (2006), following a proposal by Australia, primarily to protect the southernmost breeding colony of southern giant petrels (Macronectes giganteus) (Map B). The Area is one of only four known breeding locations for southern giant petrels on the coast of East Antarctica, all of which have been designated as ASPAs: ASPA 102, Rookery Islands, Holme Bay, Mac.Robertson Land (67º36’S, 62º53’E) – near Mawson Station; ASPA 160, Frazier Islands, Wilkes Land (66°13’S, 110°11’E) – near Casey station; and ASPA 120, Pointe Géologie, Terre Adélie (66º40’S, 140º01’E) – near Dumont d’Urville. Hawker Island also supports breeding colonies of Adélie penguins (Pygocelis adeliae), south polar skuas (Catharacta maccormicki), Cape petrels (Daption capense) and occasionally Weddell seals (Leptonychotes weddellii). 1. Description of values to be protected The total population of southern giant petrels in East Antarctica represents less than 1% of the global breeding population. It is currently estimated at approximately 300 pairs, comprising approximately 45 pairs on Hawker Island (2010), 2-4 pairs on Giganteus Island (Rookery Islands group) (2007), approximately 250 pairs on the Frazier Islands (2001) and 8-9 pairs at Pointe Géologie (2005). Southern giant petrels also breed on other islands in the southern Indian and Atlantic Oceans and at the Antarctic Peninsula.
    [Show full text]
  • Australian Antarctic Magazine — Issue 11: Spring 2006
    AUStraLian ANTARCTIC MAGAZinE SPRING 2006 11 ANTARCTICA valued, protected and understood AUSTRALIA ON THE WORLD STAGE www.aad.gov.au AUStraLian ANTARCTIC SPRING 2006 11 MAGAZinE Contents The Australian Government Antarctic Division Australia on the world stage 1 (AGAD), a Division of the Department of the Environment and Heritage, leads Australia’s Antarctic Bringing Antarctic interests together 2 programme and seeks to advance Australia’s SCAR makes its mark in Antarctic science 3 Antarctic interests in pursuit of its vision of having ‘Antarctica valued, protected and understood’. It Looking to ice layers for climate secrets 4 does this by managing Australian government activity in Antarctica, providing transport and New Airlink aircraft selected 4 logistic support to Australia’s Antarctic research Listening for whales 5 programme, maintaining four permanent Australian research stations, and conducting scientific research Ozone depletion may leave a hole in phytoplankton growth 6 programmes both on land and in the Southern Krill school takes shape 6 Ocean. Australia’s four Antarctic goals are: Seasonal changes in the effects of UV radiation on Antarctic marine microbes 8 • To maintain the Antarctic Treaty System and Crude ideas 10 enhance Australia’s influence in it; Penguins and oceanographers work together 11 • To protect the Antarctic environment; • To understand the role of Antarctica in the global Measuring sea ice thickness 12 climate system; and Aliens in Antarctica 12 • To undertake scientific work of practical, economic and national significance. Spotlight on the Subantarctic 13 Australian Antarctic Magazine seeks to inform the Managing fuel spills in Antarctica 14 Australian and international Antarctic community Protists in marine ice 15 about the activities of the Australian Antarctic programme.
    [Show full text]
  • Nan Ummsmmm a N E W S B U L L E T I N
    nan UmmSmmm A N E W S B U L L E T I N p u b l i s h e d q u a r t e r l y b y t h e NEW ZEALAND ANTARCTIC SOCIETY (INC) BORGA BASE. A WINTERING STATION OF THE SOUTH AFRICAN NATIONAL ANTARCTIC EXPEDITION IN WESTERN QUEEN MAUD LAND. ESTABLISHED IN MAY. 1969' THE BASE IS 350 KILOMETRES SOUTH OF THE MAIN BASE. SANAE. IT WAS BUILT AT A HEIGHT OF 7920FT IN THE BORGE MASSIF. NEAR THE HULDRESLOITTET NUNATAK, AND IS LOCATED AT 72 DEG 50 MIN S - 3DEG 48 MIN W. South African Geological Survey Photo | '.▶'Hev*^ ■ w. ■_■_ /+:-£*&■ ' •Tf*^*' Registered at Post Office Headquarters. Vol. 7. No. 1 Wellington, New Zealand, as a magazine. March, 1974 e-.i.-. M' AUSTRALIA CHRISTCHURCH NEW ZEALAND TASMANIA /^WsDEPENDENcy^. v£ft\ \**° \ 'Sis \ / - V\ . H i lt l e t te f U ! . ) /y . \\(nz) w |X XrS8* •V, / Byrd (US)* ANTARCTICA, Alferei Sobral (Arg)* />*> -toa \ - ^ING mauo\ « Molodyozhnaya^'^. VO/?way * xA ass** (USSR) (USSR)/^ * I B o r g M a s s i f \ <^*/SI{ny I (UK) DRAWN BY DEPARTMENT OF LANDS 4 SURVEY WELLINGTON. NEW ZEALAND. AUG 1969 3rd EDITION vrii::.T■ e<ui^*[PiiLB(S1Fa(B*d (Successor to "Antarctic News Bulletin") Vol. 7. No. 1 73rd Issue Editor: J. M. CAFFIN, 35 Chepstow Avenue, Christchurch 5. Address all contributions, enquiries, etc., to-the Editor. All Business Communications, Subscriptions, etc., to: Secretary, New Zealand Antarctic Society (Inc.), P.O. Box 1223, Christchurch, N.Z. CONTENTS ARTICLES POLAR CRIMINAL LAW 27, 28, 29 QUAIL ISLAND 31, 32 POLAR ACTIVITIES NEW ZEALAND 2, 3, 4, 5, 6, 7, 8 UNITED KINGDOM 9, 10, 11 AUSTRALIA 19, 20, 21, 22 UNITED STATES 12, 13, 14, 15, 16, 17, 18 SOVIET UNION 30 FRANCE 23, 24 SOUTH AFRICA 25, 26 ARGENTINE ITALY GENERAL TOURISM OBITUARY THE READER WRITES ANTARCTIC BOOKSHELF 34, 35, 36 Winter is always cold in Antarctica; this year it will be colder for the men living there.
    [Show full text]
  • Federal Service of Russia for Hydrometeorology And
    FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution the Arctic and Antarctic Research Institute Russian Antarctic Expedition QUARTERLY BULLETIN №4 (37) October - December 2006 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2007 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution the Arctic and Antarctic Research Institute Russian Antarctic Expedition QUARTERLY BULLETIN №4 (37) October - December 2006 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2007 Authors and contributors Editor-in-Chief M.O. Krichak (Russian Antarctic Expedition – RAE), Authors and contributors Section 1 M.O. Krichak (RAE), V.Ye. Lagun (Laboratory of Oceanographic and Climatic Studies of the Antarctic - LOCSA) Section 2 Ye.I. Aleksandrov (Department of Meteorology) Section 3 L.Yu. Ryzhakov (Department of Long-Range Weather Forecasting) Section 4 A.I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye.Ye. Sibir (Department of Meteorology) Section 6 I.P.Yeditkina, I.V.Moskvin, V.A.Gizler (Department of Geophysics) Section 7………………...V.L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctic Research and Russian Antarctic Expedition, Documents, Quarterly Bulletin. Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41 Fax: (812) 352 28 27 E-mail: [email protected] CONTENTS PREFACE……………………….…………………………………….…………………………..1 1.
    [Show full text]